plugeth-utils/restricted/types/transaction.go
2021-09-14 11:53:41 -05:00

639 lines
19 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package types
import (
"bytes"
"container/heap"
"errors"
"io"
"math/big"
"sync/atomic"
"time"
"github.com/openrelayxyz/plugeth-utils/core"
"github.com/openrelayxyz/plugeth-utils/restricted/crypto"
"github.com/openrelayxyz/plugeth-utils/restricted/rlp"
)
var (
ErrInvalidSig = errors.New("invalid transaction v, r, s values")
ErrUnexpectedProtection = errors.New("transaction type does not supported EIP-155 protected signatures")
ErrInvalidTxType = errors.New("transaction type not valid in this context")
ErrTxTypeNotSupported = errors.New("transaction type not supported")
ErrGasFeeCapTooLow = errors.New("fee cap less than base fee")
errEmptyTypedTx = errors.New("empty typed transaction bytes")
)
// Transaction types.
const (
LegacyTxType = iota
AccessListTxType
DynamicFeeTxType
)
// Transaction is an Ethereum transaction.
type Transaction struct {
inner TxData // Consensus contents of a transaction
time time.Time // Time first seen locally (spam avoidance)
// caches
hash atomic.Value
size atomic.Value
from atomic.Value
}
func bigMin(a, b *big.Int) *big.Int {
if a.Cmp(b) > 0 { return b }
return a
}
// NewTx creates a new transaction.
func NewTx(inner TxData) *Transaction {
tx := new(Transaction)
tx.setDecoded(inner.copy(), 0)
return tx
}
// TxData is the underlying data of a transaction.
//
// This is implemented by DynamicFeeTx, LegacyTx and AccessListTx.
type TxData interface {
txType() byte // returns the type ID
copy() TxData // creates a deep copy and initializes all fields
chainID() *big.Int
accessList() AccessList
data() []byte
gas() uint64
gasPrice() *big.Int
gasTipCap() *big.Int
gasFeeCap() *big.Int
value() *big.Int
nonce() uint64
to() *core.Address
rawSignatureValues() (v, r, s *big.Int)
setSignatureValues(chainID, v, r, s *big.Int)
}
// EncodeRLP implements rlp.Encoder
func (tx *Transaction) EncodeRLP(w io.Writer) error {
if tx.Type() == LegacyTxType {
return rlp.Encode(w, tx.inner)
}
// It's an EIP-2718 typed TX envelope.
buf := encodeBufferPool.Get().(*bytes.Buffer)
defer encodeBufferPool.Put(buf)
buf.Reset()
if err := tx.encodeTyped(buf); err != nil {
return err
}
return rlp.Encode(w, buf.Bytes())
}
// encodeTyped writes the canonical encoding of a typed transaction to w.
func (tx *Transaction) encodeTyped(w *bytes.Buffer) error {
w.WriteByte(tx.Type())
return rlp.Encode(w, tx.inner)
}
// MarshalBinary returns the canonical encoding of the transaction.
// For legacy transactions, it returns the RLP encoding. For EIP-2718 typed
// transactions, it returns the type and payload.
func (tx *Transaction) MarshalBinary() ([]byte, error) {
if tx.Type() == LegacyTxType {
return rlp.EncodeToBytes(tx.inner)
}
var buf bytes.Buffer
err := tx.encodeTyped(&buf)
return buf.Bytes(), err
}
// DecodeRLP implements rlp.Decoder
func (tx *Transaction) DecodeRLP(s *rlp.Stream) error {
kind, size, err := s.Kind()
switch {
case err != nil:
return err
case kind == rlp.List:
// It's a legacy transaction.
var inner LegacyTx
err := s.Decode(&inner)
if err == nil {
tx.setDecoded(&inner, int(rlp.ListSize(size)))
}
return err
case kind == rlp.String:
// It's an EIP-2718 typed TX envelope.
var b []byte
if b, err = s.Bytes(); err != nil {
return err
}
inner, err := tx.decodeTyped(b)
if err == nil {
tx.setDecoded(inner, len(b))
}
return err
default:
return rlp.ErrExpectedList
}
}
// UnmarshalBinary decodes the canonical encoding of transactions.
// It supports legacy RLP transactions and EIP2718 typed transactions.
func (tx *Transaction) UnmarshalBinary(b []byte) error {
if len(b) > 0 && b[0] > 0x7f {
// It's a legacy transaction.
var data LegacyTx
err := rlp.DecodeBytes(b, &data)
if err != nil {
return err
}
tx.setDecoded(&data, len(b))
return nil
}
// It's an EIP2718 typed transaction envelope.
inner, err := tx.decodeTyped(b)
if err != nil {
return err
}
tx.setDecoded(inner, len(b))
return nil
}
// decodeTyped decodes a typed transaction from the canonical format.
func (tx *Transaction) decodeTyped(b []byte) (TxData, error) {
if len(b) == 0 {
return nil, errEmptyTypedTx
}
switch b[0] {
case AccessListTxType:
var inner AccessListTx
err := rlp.DecodeBytes(b[1:], &inner)
return &inner, err
case DynamicFeeTxType:
var inner DynamicFeeTx
err := rlp.DecodeBytes(b[1:], &inner)
return &inner, err
default:
return nil, ErrTxTypeNotSupported
}
}
// setDecoded sets the inner transaction and size after decoding.
func (tx *Transaction) setDecoded(inner TxData, size int) {
tx.inner = inner
tx.time = time.Now()
if size > 0 {
tx.size.Store(float64(size))
}
}
func sanityCheckSignature(v *big.Int, r *big.Int, s *big.Int, maybeProtected bool) error {
if isProtectedV(v) && !maybeProtected {
return ErrUnexpectedProtection
}
var plainV byte
if isProtectedV(v) {
chainID := deriveChainId(v).Uint64()
plainV = byte(v.Uint64() - 35 - 2*chainID)
} else if maybeProtected {
// Only EIP-155 signatures can be optionally protected. Since
// we determined this v value is not protected, it must be a
// raw 27 or 28.
plainV = byte(v.Uint64() - 27)
} else {
// If the signature is not optionally protected, we assume it
// must already be equal to the recovery id.
plainV = byte(v.Uint64())
}
if !crypto.ValidateSignatureValues(plainV, r, s, false) {
return ErrInvalidSig
}
return nil
}
func isProtectedV(V *big.Int) bool {
if V.BitLen() <= 8 {
v := V.Uint64()
return v != 27 && v != 28 && v != 1 && v != 0
}
// anything not 27 or 28 is considered protected
return true
}
// Protected says whether the transaction is replay-protected.
func (tx *Transaction) Protected() bool {
switch tx := tx.inner.(type) {
case *LegacyTx:
return tx.V != nil && isProtectedV(tx.V)
default:
return true
}
}
// Type returns the transaction type.
func (tx *Transaction) Type() uint8 {
return tx.inner.txType()
}
// ChainId returns the EIP155 chain ID of the transaction. The return value will always be
// non-nil. For legacy transactions which are not replay-protected, the return value is
// zero.
func (tx *Transaction) ChainId() *big.Int {
return tx.inner.chainID()
}
// Data returns the input data of the transaction.
func (tx *Transaction) Data() []byte { return tx.inner.data() }
// AccessList returns the access list of the transaction.
func (tx *Transaction) AccessList() AccessList { return tx.inner.accessList() }
// Gas returns the gas limit of the transaction.
func (tx *Transaction) Gas() uint64 { return tx.inner.gas() }
// GasPrice returns the gas price of the transaction.
func (tx *Transaction) GasPrice() *big.Int { return new(big.Int).Set(tx.inner.gasPrice()) }
// GasTipCap returns the gasTipCap per gas of the transaction.
func (tx *Transaction) GasTipCap() *big.Int { return new(big.Int).Set(tx.inner.gasTipCap()) }
// GasFeeCap returns the fee cap per gas of the transaction.
func (tx *Transaction) GasFeeCap() *big.Int { return new(big.Int).Set(tx.inner.gasFeeCap()) }
// Value returns the ether amount of the transaction.
func (tx *Transaction) Value() *big.Int { return new(big.Int).Set(tx.inner.value()) }
// Nonce returns the sender account nonce of the transaction.
func (tx *Transaction) Nonce() uint64 { return tx.inner.nonce() }
// To returns the recipient address of the transaction.
// For contract-creation transactions, To returns nil.
func (tx *Transaction) To() *core.Address {
// Copy the pointed-to address.
ito := tx.inner.to()
if ito == nil {
return nil
}
cpy := *ito
return &cpy
}
// Cost returns gas * gasPrice + value.
func (tx *Transaction) Cost() *big.Int {
total := new(big.Int).Mul(tx.GasPrice(), new(big.Int).SetUint64(tx.Gas()))
total.Add(total, tx.Value())
return total
}
// RawSignatureValues returns the V, R, S signature values of the transaction.
// The return values should not be modified by the caller.
func (tx *Transaction) RawSignatureValues() (v, r, s *big.Int) {
return tx.inner.rawSignatureValues()
}
// GasFeeCapCmp compares the fee cap of two transactions.
func (tx *Transaction) GasFeeCapCmp(other *Transaction) int {
return tx.inner.gasFeeCap().Cmp(other.inner.gasFeeCap())
}
// GasFeeCapIntCmp compares the fee cap of the transaction against the given fee cap.
func (tx *Transaction) GasFeeCapIntCmp(other *big.Int) int {
return tx.inner.gasFeeCap().Cmp(other)
}
// GasTipCapCmp compares the gasTipCap of two transactions.
func (tx *Transaction) GasTipCapCmp(other *Transaction) int {
return tx.inner.gasTipCap().Cmp(other.inner.gasTipCap())
}
// GasTipCapIntCmp compares the gasTipCap of the transaction against the given gasTipCap.
func (tx *Transaction) GasTipCapIntCmp(other *big.Int) int {
return tx.inner.gasTipCap().Cmp(other)
}
// EffectiveGasTip returns the effective miner gasTipCap for the given base fee.
// Note: if the effective gasTipCap is negative, this method returns both error
// the actual negative value, _and_ ErrGasFeeCapTooLow
func (tx *Transaction) EffectiveGasTip(baseFee *big.Int) (*big.Int, error) {
if baseFee == nil {
return tx.GasTipCap(), nil
}
var err error
gasFeeCap := tx.GasFeeCap()
if gasFeeCap.Cmp(baseFee) == -1 {
err = ErrGasFeeCapTooLow
}
return bigMin(tx.GasTipCap(), gasFeeCap.Sub(gasFeeCap, baseFee)), err
}
// EffectiveGasTipValue is identical to EffectiveGasTip, but does not return an
// error in case the effective gasTipCap is negative
func (tx *Transaction) EffectiveGasTipValue(baseFee *big.Int) *big.Int {
effectiveTip, _ := tx.EffectiveGasTip(baseFee)
return effectiveTip
}
// EffectiveGasTipCmp compares the effective gasTipCap of two transactions assuming the given base fee.
func (tx *Transaction) EffectiveGasTipCmp(other *Transaction, baseFee *big.Int) int {
if baseFee == nil {
return tx.GasTipCapCmp(other)
}
return tx.EffectiveGasTipValue(baseFee).Cmp(other.EffectiveGasTipValue(baseFee))
}
// EffectiveGasTipIntCmp compares the effective gasTipCap of a transaction to the given gasTipCap.
func (tx *Transaction) EffectiveGasTipIntCmp(other *big.Int, baseFee *big.Int) int {
if baseFee == nil {
return tx.GasTipCapIntCmp(other)
}
return tx.EffectiveGasTipValue(baseFee).Cmp(other)
}
// Hash returns the transaction hash.
func (tx *Transaction) Hash() core.Hash {
if hash := tx.hash.Load(); hash != nil {
return hash.(core.Hash)
}
var h core.Hash
if tx.Type() == LegacyTxType {
h = rlpHash(tx.inner)
} else {
h = prefixedRlpHash(tx.Type(), tx.inner)
}
tx.hash.Store(h)
return h
}
// Size returns the true RLP encoded storage size of the transaction, either by
// encoding and returning it, or returning a previously cached value.
func (tx *Transaction) Size() float64 {
if size := tx.size.Load(); size != nil {
return size.(float64)
}
c := writeCounter(0)
rlp.Encode(&c, &tx.inner)
tx.size.Store(float64(c))
return float64(c)
}
// WithSignature returns a new transaction with the given signature.
// This signature needs to be in the [R || S || V] format where V is 0 or 1.
func (tx *Transaction) WithSignature(signer Signer, sig []byte) (*Transaction, error) {
r, s, v, err := signer.SignatureValues(tx, sig)
if err != nil {
return nil, err
}
cpy := tx.inner.copy()
cpy.setSignatureValues(signer.ChainID(), v, r, s)
return &Transaction{inner: cpy, time: tx.time}, nil
}
// Transactions implements DerivableList for transactions.
type Transactions []*Transaction
// Len returns the length of s.
func (s Transactions) Len() int { return len(s) }
// EncodeIndex encodes the i'th transaction to w. Note that this does not check for errors
// because we assume that *Transaction will only ever contain valid txs that were either
// constructed by decoding or via public API in this package.
func (s Transactions) EncodeIndex(i int, w *bytes.Buffer) {
tx := s[i]
if tx.Type() == LegacyTxType {
rlp.Encode(w, tx.inner)
} else {
tx.encodeTyped(w)
}
}
// TxDifference returns a new set which is the difference between a and b.
func TxDifference(a, b Transactions) Transactions {
keep := make(Transactions, 0, len(a))
remove := make(map[core.Hash]struct{})
for _, tx := range b {
remove[tx.Hash()] = struct{}{}
}
for _, tx := range a {
if _, ok := remove[tx.Hash()]; !ok {
keep = append(keep, tx)
}
}
return keep
}
// TxByNonce implements the sort interface to allow sorting a list of transactions
// by their nonces. This is usually only useful for sorting transactions from a
// single account, otherwise a nonce comparison doesn't make much sense.
type TxByNonce Transactions
func (s TxByNonce) Len() int { return len(s) }
func (s TxByNonce) Less(i, j int) bool { return s[i].Nonce() < s[j].Nonce() }
func (s TxByNonce) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// TxWithMinerFee wraps a transaction with its gas price or effective miner gasTipCap
type TxWithMinerFee struct {
tx *Transaction
minerFee *big.Int
}
// NewTxWithMinerFee creates a wrapped transaction, calculating the effective
// miner gasTipCap if a base fee is provided.
// Returns error in case of a negative effective miner gasTipCap.
func NewTxWithMinerFee(tx *Transaction, baseFee *big.Int) (*TxWithMinerFee, error) {
minerFee, err := tx.EffectiveGasTip(baseFee)
if err != nil {
return nil, err
}
return &TxWithMinerFee{
tx: tx,
minerFee: minerFee,
}, nil
}
// TxByPriceAndTime implements both the sort and the heap interface, making it useful
// for all at once sorting as well as individually adding and removing elements.
type TxByPriceAndTime []*TxWithMinerFee
func (s TxByPriceAndTime) Len() int { return len(s) }
func (s TxByPriceAndTime) Less(i, j int) bool {
// If the prices are equal, use the time the transaction was first seen for
// deterministic sorting
cmp := s[i].minerFee.Cmp(s[j].minerFee)
if cmp == 0 {
return s[i].tx.time.Before(s[j].tx.time)
}
return cmp > 0
}
func (s TxByPriceAndTime) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s *TxByPriceAndTime) Push(x interface{}) {
*s = append(*s, x.(*TxWithMinerFee))
}
func (s *TxByPriceAndTime) Pop() interface{} {
old := *s
n := len(old)
x := old[n-1]
*s = old[0 : n-1]
return x
}
// TransactionsByPriceAndNonce represents a set of transactions that can return
// transactions in a profit-maximizing sorted order, while supporting removing
// entire batches of transactions for non-executable accounts.
type TransactionsByPriceAndNonce struct {
txs map[core.Address]Transactions // Per account nonce-sorted list of transactions
heads TxByPriceAndTime // Next transaction for each unique account (price heap)
signer Signer // Signer for the set of transactions
baseFee *big.Int // Current base fee
}
// NewTransactionsByPriceAndNonce creates a transaction set that can retrieve
// price sorted transactions in a nonce-honouring way.
//
// Note, the input map is reowned so the caller should not interact any more with
// if after providing it to the constructor.
func NewTransactionsByPriceAndNonce(signer Signer, txs map[core.Address]Transactions, baseFee *big.Int) *TransactionsByPriceAndNonce {
// Initialize a price and received time based heap with the head transactions
heads := make(TxByPriceAndTime, 0, len(txs))
for from, accTxs := range txs {
acc, _ := Sender(signer, accTxs[0])
wrapped, err := NewTxWithMinerFee(accTxs[0], baseFee)
// Remove transaction if sender doesn't match from, or if wrapping fails.
if acc != from || err != nil {
delete(txs, from)
continue
}
heads = append(heads, wrapped)
txs[from] = accTxs[1:]
}
heap.Init(&heads)
// Assemble and return the transaction set
return &TransactionsByPriceAndNonce{
txs: txs,
heads: heads,
signer: signer,
baseFee: baseFee,
}
}
// Peek returns the next transaction by price.
func (t *TransactionsByPriceAndNonce) Peek() *Transaction {
if len(t.heads) == 0 {
return nil
}
return t.heads[0].tx
}
// Shift replaces the current best head with the next one from the same account.
func (t *TransactionsByPriceAndNonce) Shift() {
acc, _ := Sender(t.signer, t.heads[0].tx)
if txs, ok := t.txs[acc]; ok && len(txs) > 0 {
if wrapped, err := NewTxWithMinerFee(txs[0], t.baseFee); err == nil {
t.heads[0], t.txs[acc] = wrapped, txs[1:]
heap.Fix(&t.heads, 0)
return
}
}
heap.Pop(&t.heads)
}
// Pop removes the best transaction, *not* replacing it with the next one from
// the same account. This should be used when a transaction cannot be executed
// and hence all subsequent ones should be discarded from the same account.
func (t *TransactionsByPriceAndNonce) Pop() {
heap.Pop(&t.heads)
}
// Message is a fully derived transaction and implements core.Message
//
// NOTE: In a future PR this will be removed.
type Message struct {
to *core.Address
from core.Address
nonce uint64
amount *big.Int
gasLimit uint64
gasPrice *big.Int
gasFeeCap *big.Int
gasTipCap *big.Int
data []byte
accessList AccessList
checkNonce bool
}
func NewMessage(from core.Address, to *core.Address, nonce uint64, amount *big.Int, gasLimit uint64, gasPrice, gasFeeCap, gasTipCap *big.Int, data []byte, accessList AccessList, checkNonce bool) Message {
return Message{
from: from,
to: to,
nonce: nonce,
amount: amount,
gasLimit: gasLimit,
gasPrice: gasPrice,
gasFeeCap: gasFeeCap,
gasTipCap: gasTipCap,
data: data,
accessList: accessList,
checkNonce: checkNonce,
}
}
// AsMessage returns the transaction as a core.Message.
func (tx *Transaction) AsMessage(s Signer, baseFee *big.Int) (Message, error) {
msg := Message{
nonce: tx.Nonce(),
gasLimit: tx.Gas(),
gasPrice: new(big.Int).Set(tx.GasPrice()),
gasFeeCap: new(big.Int).Set(tx.GasFeeCap()),
gasTipCap: new(big.Int).Set(tx.GasTipCap()),
to: tx.To(),
amount: tx.Value(),
data: tx.Data(),
accessList: tx.AccessList(),
checkNonce: true,
}
// If baseFee provided, set gasPrice to effectiveGasPrice.
if baseFee != nil {
msg.gasPrice = bigMin(msg.gasPrice.Add(msg.gasTipCap, baseFee), msg.gasFeeCap)
}
var err error
msg.from, err = Sender(s, tx)
return msg, err
}
func (m Message) From() core.Address { return m.from }
func (m Message) To() *core.Address { return m.to }
func (m Message) GasPrice() *big.Int { return m.gasPrice }
func (m Message) GasFeeCap() *big.Int { return m.gasFeeCap }
func (m Message) GasTipCap() *big.Int { return m.gasTipCap }
func (m Message) Value() *big.Int { return m.amount }
func (m Message) Gas() uint64 { return m.gasLimit }
func (m Message) Nonce() uint64 { return m.nonce }
func (m Message) Data() []byte { return m.data }
func (m Message) AccessList() AccessList { return m.accessList }
func (m Message) CheckNonce() bool { return m.checkNonce }