plugeth-utils/restricted/types/receipt.go

360 lines
11 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package types
import (
"bytes"
"errors"
"fmt"
"io"
"math/big"
"unsafe"
"github.com/openrelayxyz/plugeth-utils/core"
"github.com/openrelayxyz/plugeth-utils/restricted/crypto"
"github.com/openrelayxyz/plugeth-utils/restricted/hexutil"
"github.com/openrelayxyz/plugeth-utils/restricted/params"
"github.com/openrelayxyz/plugeth-utils/restricted/rlp"
)
//go:generate go run github.com/fjl/gencodec -type Receipt -field-override receiptMarshaling -out gen_receipt_json.go
var (
receiptStatusFailedRLP = []byte{}
receiptStatusSuccessfulRLP = []byte{0x01}
)
// This error is returned when a typed receipt is decoded, but the string is empty.
var errEmptyTypedReceipt = errors.New("empty typed receipt bytes")
const (
// ReceiptStatusFailed is the status code of a transaction if execution failed.
ReceiptStatusFailed = uint64(0)
// ReceiptStatusSuccessful is the status code of a transaction if execution succeeded.
ReceiptStatusSuccessful = uint64(1)
)
// Receipt represents the results of a transaction.
type Receipt struct {
// Consensus fields: These fields are defined by the Yellow Paper
Type uint8 `json:"type,omitempty"`
PostState []byte `json:"root"`
Status uint64 `json:"status"`
CumulativeGasUsed uint64 `json:"cumulativeGasUsed" gencodec:"required"`
Bloom Bloom `json:"logsBloom" gencodec:"required"`
Logs []*Log `json:"logs" gencodec:"required"`
// Implementation fields: These fields are added by geth when processing a transaction.
TxHash core.Hash `json:"transactionHash" gencodec:"required"`
ContractAddress core.Address `json:"contractAddress"`
GasUsed uint64 `json:"gasUsed" gencodec:"required"`
EffectiveGasPrice *big.Int `json:"effectiveGasPrice"` // required, but tag omitted for backwards compatibility
// Inclusion information: These fields provide information about the inclusion of the
// transaction corresponding to this receipt.
BlockHash core.Hash `json:"blockHash,omitempty"`
BlockNumber *big.Int `json:"blockNumber,omitempty"`
TransactionIndex uint `json:"transactionIndex"`
}
type receiptMarshaling struct {
Type hexutil.Uint64
PostState hexutil.Bytes
Status hexutil.Uint64
CumulativeGasUsed hexutil.Uint64
GasUsed hexutil.Uint64
EffectiveGasPrice *hexutil.Big
BlockNumber *hexutil.Big
TransactionIndex hexutil.Uint
}
// receiptRLP is the consensus encoding of a receipt.
type receiptRLP struct {
PostStateOrStatus []byte
CumulativeGasUsed uint64
Bloom Bloom
Logs []*Log
}
// storedReceiptRLP is the storage encoding of a receipt.
type storedReceiptRLP struct {
PostStateOrStatus []byte
CumulativeGasUsed uint64
Logs []*Log
}
// NewReceipt creates a barebone transaction receipt, copying the init fields.
// Deprecated: create receipts using a struct literal instead.
func NewReceipt(root []byte, failed bool, cumulativeGasUsed uint64) *Receipt {
r := &Receipt{
Type: LegacyTxType,
PostState: core.CopyBytes(root),
CumulativeGasUsed: cumulativeGasUsed,
}
if failed {
r.Status = ReceiptStatusFailed
} else {
r.Status = ReceiptStatusSuccessful
}
return r
}
// EncodeRLP implements rlp.Encoder, and flattens the consensus fields of a receipt
// into an RLP stream. If no post state is present, byzantium fork is assumed.
// For a legacy Receipt this returns RLP([PostStateOrStatus, CumulativeGasUsed, Bloom, Logs])
// For a EIP-2718 Receipt this returns RLP(TxType || ReceiptPayload)
// For a EIP-2930 Receipt, TxType == 0x01 and ReceiptPayload == RLP([PostStateOrStatus, CumulativeGasUsed, Bloom, Logs])
func (r *Receipt) EncodeRLP(w io.Writer) error {
data := &receiptRLP{r.statusEncoding(), r.CumulativeGasUsed, r.Bloom, r.Logs}
if r.Type == LegacyTxType {
return rlp.Encode(w, data)
}
buf := encodeBufferPool.Get().(*bytes.Buffer)
defer encodeBufferPool.Put(buf)
buf.Reset()
if err := r.encodeTyped(data, buf); err != nil {
return err
}
return rlp.Encode(w, buf.Bytes())
}
// encodeTyped writes the canonical encoding of a typed receipt to w.
func (r *Receipt) encodeTyped(data *receiptRLP, w *bytes.Buffer) error {
w.WriteByte(r.Type)
return rlp.Encode(w, data)
}
// MarshalBinary returns the consensus encoding of the receipt.
func (r *Receipt) MarshalBinary() ([]byte, error) {
if r.Type == LegacyTxType {
return rlp.EncodeToBytes(r)
}
data := &receiptRLP{r.statusEncoding(), r.CumulativeGasUsed, r.Bloom, r.Logs}
var buf bytes.Buffer
err := r.encodeTyped(data, &buf)
return buf.Bytes(), err
}
// DecodeRLP implements rlp.Decoder, and loads the consensus fields of a receipt
// from an RLP stream.
func (r *Receipt) DecodeRLP(s *rlp.Stream) error {
kind, _, err := s.Kind()
switch {
case err != nil:
return err
case kind == rlp.List:
// It's a legacy receipt.
var dec receiptRLP
if err := s.Decode(&dec); err != nil {
return err
}
r.Type = LegacyTxType
return r.setFromRLP(dec)
default:
// It's an EIP-2718 typed tx receipt.
b, err := s.Bytes()
if err != nil {
return err
}
return r.decodeTyped(b)
}
}
// UnmarshalBinary decodes the consensus encoding of receipts.
// It supports legacy RLP receipts and EIP-2718 typed receipts.
func (r *Receipt) UnmarshalBinary(b []byte) error {
if len(b) > 0 && b[0] > 0x7f {
// It's a legacy receipt decode the RLP
var data receiptRLP
err := rlp.DecodeBytes(b, &data)
if err != nil {
return err
}
r.Type = LegacyTxType
return r.setFromRLP(data)
}
// It's an EIP2718 typed transaction envelope.
return r.decodeTyped(b)
}
// decodeTyped decodes a typed receipt from the canonical format.
func (r *Receipt) decodeTyped(b []byte) error {
if len(b) <= 1 {
return errEmptyTypedReceipt
}
switch b[0] {
case DynamicFeeTxType, AccessListTxType:
var data receiptRLP
err := rlp.DecodeBytes(b[1:], &data)
if err != nil {
return err
}
r.Type = b[0]
return r.setFromRLP(data)
default:
return ErrTxTypeNotSupported
}
}
func (r *Receipt) setFromRLP(data receiptRLP) error {
r.CumulativeGasUsed, r.Bloom, r.Logs = data.CumulativeGasUsed, data.Bloom, data.Logs
return r.setStatus(data.PostStateOrStatus)
}
func (r *Receipt) setStatus(postStateOrStatus []byte) error {
switch {
case bytes.Equal(postStateOrStatus, receiptStatusSuccessfulRLP):
r.Status = ReceiptStatusSuccessful
case bytes.Equal(postStateOrStatus, receiptStatusFailedRLP):
r.Status = ReceiptStatusFailed
case len(postStateOrStatus) == len(core.Hash{}):
r.PostState = postStateOrStatus
default:
return fmt.Errorf("invalid receipt status %x", postStateOrStatus)
}
return nil
}
func (r *Receipt) statusEncoding() []byte {
if len(r.PostState) == 0 {
if r.Status == ReceiptStatusFailed {
return receiptStatusFailedRLP
}
return receiptStatusSuccessfulRLP
}
return r.PostState
}
// Size returns the approximate memory used by all internal contents. It is used
// to approximate and limit the memory consumption of various caches.
func (r *Receipt) Size() float64 {
size := float64(unsafe.Sizeof(*r)) + float64(len(r.PostState))
size += float64(len(r.Logs)) * float64(unsafe.Sizeof(Log{}))
for _, log := range r.Logs {
size += float64(len(log.Topics)*32 + len(log.Data))
}
return size
}
// ReceiptForStorage is a wrapper around a Receipt with RLP serialization
// that omits the Bloom field and deserialization that re-computes it.
type ReceiptForStorage Receipt
// EncodeRLP implements rlp.Encoder.
func (r *ReceiptForStorage) EncodeRLP(w io.Writer) error {
enc := &storedReceiptRLP{
PostStateOrStatus: (*Receipt)(r).statusEncoding(),
CumulativeGasUsed: r.CumulativeGasUsed,
Logs: r.Logs,
}
return rlp.Encode(w, enc)
}
// DecodeRLP implements rlp.Decoder, and loads both consensus and implementation
// fields of a receipt from an RLP stream.
func (r *ReceiptForStorage) DecodeRLP(s *rlp.Stream) error {
var stored storedReceiptRLP
if err := s.Decode(&stored); err != nil {
return err
}
if err := (*Receipt)(r).setStatus(stored.PostStateOrStatus); err != nil {
return err
}
r.CumulativeGasUsed = stored.CumulativeGasUsed
r.Logs = stored.Logs
r.Bloom = CreateBloom(Receipts{(*Receipt)(r)})
return nil
}
// Receipts implements DerivableList for receipts.
type Receipts []*Receipt
// Len returns the number of receipts in this list.
func (rs Receipts) Len() int { return len(rs) }
// EncodeIndex encodes the i'th receipt to w.
func (rs Receipts) EncodeIndex(i int, w *bytes.Buffer) {
r := rs[i]
data := &receiptRLP{r.statusEncoding(), r.CumulativeGasUsed, r.Bloom, r.Logs}
switch r.Type {
case LegacyTxType:
rlp.Encode(w, data)
case AccessListTxType:
w.WriteByte(AccessListTxType)
rlp.Encode(w, data)
case DynamicFeeTxType:
w.WriteByte(DynamicFeeTxType)
rlp.Encode(w, data)
default:
// For unsupported types, write nothing. Since this is for
// DeriveSha, the error will be caught matching the derived hash
// to the block.
}
}
// DeriveFields fills the receipts with their computed fields based on consensus
// data and contextual infos like containing block and transactions.
func (rs Receipts) DeriveFields(config *params.ChainConfig, hash core.Hash, number uint64, baseFee *big.Int, txs []*Transaction) error {
signer := MakeSigner(config, new(big.Int).SetUint64(number))
logIndex := uint(0)
if len(txs) != len(rs) {
return errors.New("transaction and receipt count mismatch")
}
for i := 0; i < len(rs); i++ {
// The transaction type and hash can be retrieved from the transaction itself
rs[i].Type = txs[i].Type()
rs[i].TxHash = txs[i].Hash()
rs[i].EffectiveGasPrice = txs[i].inner.effectiveGasPrice(new(big.Int), baseFee)
// block location fields
rs[i].BlockHash = hash
rs[i].BlockNumber = new(big.Int).SetUint64(number)
rs[i].TransactionIndex = uint(i)
// The contract address can be derived from the transaction itself
if txs[i].To() == nil {
// Deriving the signer is expensive, only do if it's actually needed
from, _ := Sender(signer, txs[i])
rs[i].ContractAddress = crypto.CreateAddress(from, txs[i].Nonce())
} else {
rs[i].ContractAddress = core.Address{}
}
// The used gas can be calculated based on previous r
if i == 0 {
rs[i].GasUsed = rs[i].CumulativeGasUsed
} else {
rs[i].GasUsed = rs[i].CumulativeGasUsed - rs[i-1].CumulativeGasUsed
}
// The derived log fields can simply be set from the block and transaction
for j := 0; j < len(rs[i].Logs); j++ {
rs[i].Logs[j].BlockNumber = number
rs[i].Logs[j].BlockHash = hash
rs[i].Logs[j].TxHash = rs[i].TxHash
rs[i].Logs[j].TxIndex = uint(i)
rs[i].Logs[j].Index = logIndex
logIndex++
}
}
return nil
}