cgo adjustments to avoid compile time errors
This commit is contained in:
parent
9127848510
commit
2f0a270ff2
@ -14,8 +14,6 @@
|
|||||||
// You should have received a copy of the GNU Lesser General Public License
|
// You should have received a copy of the GNU Lesser General Public License
|
||||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
// +build nacl js !cgo gofuzz
|
|
||||||
|
|
||||||
package crypto
|
package crypto
|
||||||
|
|
||||||
import (
|
import (
|
||||||
@ -23,37 +21,48 @@ import (
|
|||||||
"crypto/elliptic"
|
"crypto/elliptic"
|
||||||
"errors"
|
"errors"
|
||||||
"fmt"
|
"fmt"
|
||||||
"math/big"
|
|
||||||
|
|
||||||
"github.com/btcsuite/btcd/btcec/v2"
|
"github.com/btcsuite/btcd/btcec/v2"
|
||||||
|
btc_ecdsa "github.com/btcsuite/btcd/btcec/v2/ecdsa"
|
||||||
)
|
)
|
||||||
|
|
||||||
// Ecrecover returns the uncompressed public key that created the given signature.
|
// Ecrecover returns the uncompressed public key that created the given signature.
|
||||||
func Ecrecover(hash, sig []byte) ([]byte, error) {
|
func Ecrecover(hash, sig []byte) ([]byte, error) {
|
||||||
pub, err := SigToPub(hash, sig)
|
pub, err := sigToPub(hash, sig)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return nil, err
|
return nil, err
|
||||||
}
|
}
|
||||||
bytes := (*btcec.PublicKey)(pub).SerializeUncompressed()
|
bytes := pub.SerializeUncompressed()
|
||||||
return bytes, err
|
return bytes, err
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func sigToPub(hash, sig []byte) (*btcec.PublicKey, error) {
|
||||||
|
if len(sig) != SignatureLength {
|
||||||
|
return nil, errors.New("invalid signature")
|
||||||
|
}
|
||||||
|
// Convert to btcec input format with 'recovery id' v at the beginning.
|
||||||
|
btcsig := make([]byte, SignatureLength)
|
||||||
|
btcsig[0] = sig[RecoveryIDOffset] + 27
|
||||||
|
copy(btcsig[1:], sig)
|
||||||
|
|
||||||
|
pub, _, err := btc_ecdsa.RecoverCompact(btcsig, hash)
|
||||||
|
return pub, err
|
||||||
|
}
|
||||||
|
|
||||||
// SigToPub returns the public key that created the given signature.
|
// SigToPub returns the public key that created the given signature.
|
||||||
func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
|
func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
|
||||||
// Convert to btcec input format with 'recovery id' v at the beginning.
|
pub, err := sigToPub(hash, sig)
|
||||||
btcsig := make([]byte, SignatureLength)
|
if err != nil {
|
||||||
btcsig[0] = sig[64] + 27
|
return nil, err
|
||||||
copy(btcsig[1:], sig)
|
}
|
||||||
|
return pub.ToECDSA(), nil
|
||||||
pub, _, err := btcec.RecoverCompact(btcec.S256(), btcsig, hash)
|
|
||||||
return (*ecdsa.PublicKey)(pub), err
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Sign calculates an ECDSA signature.
|
// Sign calculates an ECDSA signature.
|
||||||
//
|
//
|
||||||
// This function is susceptible to chosen plaintext attacks that can leak
|
// This function is susceptible to chosen plaintext attacks that can leak
|
||||||
// information about the private key that is used for signing. Callers must
|
// information about the private key that is used for signing. Callers must
|
||||||
// be aware that the given hash cannot be chosen by an adversery. Common
|
// be aware that the given hash cannot be chosen by an adversary. Common
|
||||||
// solution is to hash any input before calculating the signature.
|
// solution is to hash any input before calculating the signature.
|
||||||
//
|
//
|
||||||
// The produced signature is in the [R || S || V] format where V is 0 or 1.
|
// The produced signature is in the [R || S || V] format where V is 0 or 1.
|
||||||
@ -64,14 +73,20 @@ func Sign(hash []byte, prv *ecdsa.PrivateKey) ([]byte, error) {
|
|||||||
if prv.Curve != btcec.S256() {
|
if prv.Curve != btcec.S256() {
|
||||||
return nil, fmt.Errorf("private key curve is not secp256k1")
|
return nil, fmt.Errorf("private key curve is not secp256k1")
|
||||||
}
|
}
|
||||||
sig, err := btcec.SignCompact(btcec.S256(), (*btcec.PrivateKey)(prv), hash, false)
|
// ecdsa.PrivateKey -> btcec.PrivateKey
|
||||||
|
var priv btcec.PrivateKey
|
||||||
|
if overflow := priv.Key.SetByteSlice(prv.D.Bytes()); overflow || priv.Key.IsZero() {
|
||||||
|
return nil, fmt.Errorf("invalid private key")
|
||||||
|
}
|
||||||
|
defer priv.Zero()
|
||||||
|
sig, err := btc_ecdsa.SignCompact(&priv, hash, false) // ref uncompressed pubkey
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return nil, err
|
return nil, err
|
||||||
}
|
}
|
||||||
// Convert to Ethereum signature format with 'recovery id' v at the end.
|
// Convert to Ethereum signature format with 'recovery id' v at the end.
|
||||||
v := sig[0] - 27
|
v := sig[0] - 27
|
||||||
copy(sig, sig[1:])
|
copy(sig, sig[1:])
|
||||||
sig[64] = v
|
sig[RecoveryIDOffset] = v
|
||||||
return sig, nil
|
return sig, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -82,13 +97,20 @@ func VerifySignature(pubkey, hash, signature []byte) bool {
|
|||||||
if len(signature) != 64 {
|
if len(signature) != 64 {
|
||||||
return false
|
return false
|
||||||
}
|
}
|
||||||
sig := &btcec.Signature{R: new(big.Int).SetBytes(signature[:32]), S: new(big.Int).SetBytes(signature[32:])}
|
var r, s btcec.ModNScalar
|
||||||
key, err := btcec.ParsePubKey(pubkey, btcec.S256())
|
if r.SetByteSlice(signature[:32]) {
|
||||||
|
return false // overflow
|
||||||
|
}
|
||||||
|
if s.SetByteSlice(signature[32:]) {
|
||||||
|
return false
|
||||||
|
}
|
||||||
|
sig := btc_ecdsa.NewSignature(&r, &s)
|
||||||
|
key, err := btcec.ParsePubKey(pubkey)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return false
|
return false
|
||||||
}
|
}
|
||||||
// Reject malleable signatures. libsecp256k1 does this check but btcec doesn't.
|
// Reject malleable signatures. libsecp256k1 does this check but btcec doesn't.
|
||||||
if sig.S.Cmp(secp256k1halfN) > 0 {
|
if s.IsOverHalfOrder() {
|
||||||
return false
|
return false
|
||||||
}
|
}
|
||||||
return sig.Verify(hash, key)
|
return sig.Verify(hash, key)
|
||||||
@ -99,16 +121,26 @@ func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) {
|
|||||||
if len(pubkey) != 33 {
|
if len(pubkey) != 33 {
|
||||||
return nil, errors.New("invalid compressed public key length")
|
return nil, errors.New("invalid compressed public key length")
|
||||||
}
|
}
|
||||||
key, err := btcec.ParsePubKey(pubkey, btcec.S256())
|
key, err := btcec.ParsePubKey(pubkey)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return nil, err
|
return nil, err
|
||||||
}
|
}
|
||||||
return key.ToECDSA(), nil
|
return key.ToECDSA(), nil
|
||||||
}
|
}
|
||||||
|
|
||||||
// CompressPubkey encodes a public key to the 33-byte compressed format.
|
// CompressPubkey encodes a public key to the 33-byte compressed format. The
|
||||||
|
// provided PublicKey must be valid. Namely, the coordinates must not be larger
|
||||||
|
// than 32 bytes each, they must be less than the field prime, and it must be a
|
||||||
|
// point on the secp256k1 curve. This is the case for a PublicKey constructed by
|
||||||
|
// elliptic.Unmarshal (see UnmarshalPubkey), or by ToECDSA and ecdsa.GenerateKey
|
||||||
|
// when constructing a PrivateKey.
|
||||||
func CompressPubkey(pubkey *ecdsa.PublicKey) []byte {
|
func CompressPubkey(pubkey *ecdsa.PublicKey) []byte {
|
||||||
return (*btcec.PublicKey)(pubkey).SerializeCompressed()
|
// NOTE: the coordinates may be validated with
|
||||||
|
// btcec.ParsePubKey(FromECDSAPub(pubkey))
|
||||||
|
var x, y btcec.FieldVal
|
||||||
|
x.SetByteSlice(pubkey.X.Bytes())
|
||||||
|
y.SetByteSlice(pubkey.Y.Bytes())
|
||||||
|
return btcec.NewPublicKey(&x, &y).SerializeCompressed()
|
||||||
}
|
}
|
||||||
|
|
||||||
// S256 returns an instance of the secp256k1 curve.
|
// S256 returns an instance of the secp256k1 curve.
|
@ -1,86 +0,0 @@
|
|||||||
// Copyright 2017 The go-ethereum Authors
|
|
||||||
// This file is part of the go-ethereum library.
|
|
||||||
//
|
|
||||||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
||||||
// it under the terms of the GNU Lesser General Public License as published by
|
|
||||||
// the Free Software Foundation, either version 3 of the License, or
|
|
||||||
// (at your option) any later version.
|
|
||||||
//
|
|
||||||
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
||||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
// GNU Lesser General Public License for more details.
|
|
||||||
//
|
|
||||||
// You should have received a copy of the GNU Lesser General Public License
|
|
||||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
||||||
|
|
||||||
// +build !nacl,!js,cgo,!gofuzz
|
|
||||||
|
|
||||||
package crypto
|
|
||||||
|
|
||||||
import (
|
|
||||||
"crypto/ecdsa"
|
|
||||||
"crypto/elliptic"
|
|
||||||
"fmt"
|
|
||||||
|
|
||||||
"github.com/openrelayxyz/plugeth-utils/restricted/crypto/secp256k1"
|
|
||||||
)
|
|
||||||
|
|
||||||
// Ecrecover returns the uncompressed public key that created the given signature.
|
|
||||||
func Ecrecover(hash, sig []byte) ([]byte, error) {
|
|
||||||
return secp256k1.RecoverPubkey(hash, sig)
|
|
||||||
}
|
|
||||||
|
|
||||||
// SigToPub returns the public key that created the given signature.
|
|
||||||
func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
|
|
||||||
s, err := Ecrecover(hash, sig)
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
x, y := elliptic.Unmarshal(S256(), s)
|
|
||||||
return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
|
|
||||||
}
|
|
||||||
|
|
||||||
// Sign calculates an ECDSA signature.
|
|
||||||
//
|
|
||||||
// This function is susceptible to chosen plaintext attacks that can leak
|
|
||||||
// information about the private key that is used for signing. Callers must
|
|
||||||
// be aware that the given digest cannot be chosen by an adversery. Common
|
|
||||||
// solution is to hash any input before calculating the signature.
|
|
||||||
//
|
|
||||||
// The produced signature is in the [R || S || V] format where V is 0 or 1.
|
|
||||||
func Sign(digestHash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
|
|
||||||
if len(digestHash) != DigestLength {
|
|
||||||
return nil, fmt.Errorf("hash is required to be exactly %d bytes (%d)", DigestLength, len(digestHash))
|
|
||||||
}
|
|
||||||
seckey := PaddedBigBytes(prv.D, prv.Params().BitSize/8)
|
|
||||||
defer zeroBytes(seckey)
|
|
||||||
return secp256k1.Sign(digestHash, seckey)
|
|
||||||
}
|
|
||||||
|
|
||||||
// VerifySignature checks that the given public key created signature over digest.
|
|
||||||
// The public key should be in compressed (33 bytes) or uncompressed (65 bytes) format.
|
|
||||||
// The signature should have the 64 byte [R || S] format.
|
|
||||||
func VerifySignature(pubkey, digestHash, signature []byte) bool {
|
|
||||||
return secp256k1.VerifySignature(pubkey, digestHash, signature)
|
|
||||||
}
|
|
||||||
|
|
||||||
// DecompressPubkey parses a public key in the 33-byte compressed format.
|
|
||||||
func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) {
|
|
||||||
x, y := secp256k1.DecompressPubkey(pubkey)
|
|
||||||
if x == nil {
|
|
||||||
return nil, fmt.Errorf("invalid public key")
|
|
||||||
}
|
|
||||||
return &ecdsa.PublicKey{X: x, Y: y, Curve: S256()}, nil
|
|
||||||
}
|
|
||||||
|
|
||||||
// CompressPubkey encodes a public key to the 33-byte compressed format.
|
|
||||||
func CompressPubkey(pubkey *ecdsa.PublicKey) []byte {
|
|
||||||
return secp256k1.CompressPubkey(pubkey.X, pubkey.Y)
|
|
||||||
}
|
|
||||||
|
|
||||||
// S256 returns an instance of the secp256k1 curve.
|
|
||||||
func S256() elliptic.Curve {
|
|
||||||
return secp256k1.S256()
|
|
||||||
}
|
|
Loading…
Reference in New Issue
Block a user