Merge pull request #23 from openrelayxyz/feature/consensus-engine

Feature/consensus engine
This commit is contained in:
Philip Morlier 2023-06-12 12:45:20 -07:00 committed by GitHub
commit 0deaa33408
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 1855 additions and 339 deletions

View File

@ -114,6 +114,12 @@ type StateDB interface {
AddressInAccessList(addr Address) bool AddressInAccessList(addr Address) bool
SlotInAccessList(addr Address, slot Hash) (addressOk bool, slotOk bool) SlotInAccessList(addr Address, slot Hash) (addressOk bool, slotOk bool)
IntermediateRoot(deleteEmptyObjects bool) Hash
}
type RWStateDB interface {
StateDB
} }
type ScopeContext interface { type ScopeContext interface {

View File

@ -0,0 +1,102 @@
package consensus
import (
"math/big"
"github.com/openrelayxyz/plugeth-utils/restricted/params"
"github.com/openrelayxyz/plugeth-utils/restricted/types"
"github.com/openrelayxyz/plugeth-utils/core"
)
// ChainHeaderReader defines a small collection of methods needed to access the local
// blockchain during header verification.
type ChainHeaderReader interface {
// Config retrieves the blockchain's chain configuration.
Config() *params.ChainConfig
// CurrentHeader retrieves the current header from the local chain.
CurrentHeader() *types.Header
// GetHeader retrieves a block header from the database by hash and number.
GetHeader(hash core.Hash, number uint64) *types.Header
// GetHeaderByNumber retrieves a block header from the database by number.
GetHeaderByNumber(number uint64) *types.Header
// GetHeaderByHash retrieves a block header from the database by its hash.
GetHeaderByHash(hash core.Hash) *types.Header
// GetTd retrieves the total difficulty from the database by hash and number.
GetTd(hash core.Hash, number uint64) *big.Int
}
// ChainReader defines a small collection of methods needed to access the local
// blockchain during header and/or uncle verification.
type ChainReader interface {
ChainHeaderReader
// GetBlock retrieves a block from the database by hash and number.
GetBlock(hash core.Hash, number uint64) *types.Block
}
// Engine is an algorithm agnostic consensus engine.
type Engine interface {
// Author retrieves the Ethereum address of the account that minted the given
// block, which may be different from the header's coinbase if a consensus
// engine is based on signatures.
Author(header *types.Header) (core.Address, error)
// VerifyHeader checks whether a header conforms to the consensus rules of a
// given engine. Verifying the seal may be done optionally here, or explicitly
// via the VerifySeal method.
VerifyHeader(chain ChainHeaderReader, header *types.Header, seal bool) error
// VerifyHeaders is similar to VerifyHeader, but verifies a batch of headers
// concurrently. The method returns a quit channel to abort the operations and
// a results channel to retrieve the async verifications (the order is that of
// the input slice).
VerifyHeaders(chain ChainHeaderReader, headers []*types.Header, seals []bool) (chan<- struct{}, <-chan error)
// VerifyUncles verifies that the given block's uncles conform to the consensus
// rules of a given engine.
VerifyUncles(chain ChainReader, block *types.Block) error
// Prepare initializes the consensus fields of a block header according to the
// rules of a particular engine. The changes are executed inline.
Prepare(chain ChainHeaderReader, header *types.Header) error
// Finalize runs any post-transaction state modifications (e.g. block rewards
// or process withdrawals) but does not assemble the block.
//
// Note: The state database might be updated to reflect any consensus rules
// that happen at finalization (e.g. block rewards).
Finalize(chain ChainHeaderReader, header *types.Header, state core.RWStateDB, txs []*types.Transaction,
uncles []*types.Header, withdrawals []*types.Withdrawal)
// FinalizeAndAssemble runs any post-transaction state modifications (e.g. block
// rewards or process withdrawals) and assembles the final block.
//
// Note: The block header and state database might be updated to reflect any
// consensus rules that happen at finalization (e.g. block rewards).
FinalizeAndAssemble(chain ChainHeaderReader, header *types.Header, state core.RWStateDB, txs []*types.Transaction,
uncles []*types.Header, receipts []*types.Receipt, withdrawals []*types.Withdrawal) (*types.Block, error)
// Seal generates a new sealing request for the given input block and pushes
// the result into the given channel.
//
// Note, the method returns immediately and will send the result async. More
// than one result may also be returned depending on the consensus algorithm.
Seal(chain ChainHeaderReader, block *types.Block, results chan<- *types.Block, stop <-chan struct{}) error
// SealHash returns the hash of a block prior to it being sealed.
SealHash(header *types.Header) core.Hash
// CalcDifficulty is the difficulty adjustment algorithm. It returns the difficulty
// that a new block should have.
CalcDifficulty(chain ChainHeaderReader, time uint64, parent *types.Header) *big.Int
// APIs returns the RPC APIs this consensus engine provides.
APIs(chain ChainHeaderReader) []core.API
// Close terminates any background threads maintained by the consensus engine.
Close() error
}

View File

@ -14,8 +14,6 @@
// You should have received a copy of the GNU Lesser General Public License // You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// +build nacl js !cgo gofuzz
package crypto package crypto
import ( import (
@ -23,37 +21,48 @@ import (
"crypto/elliptic" "crypto/elliptic"
"errors" "errors"
"fmt" "fmt"
"math/big"
"github.com/btcsuite/btcd/btcec/v2" "github.com/btcsuite/btcd/btcec/v2"
btc_ecdsa "github.com/btcsuite/btcd/btcec/v2/ecdsa"
) )
// Ecrecover returns the uncompressed public key that created the given signature. // Ecrecover returns the uncompressed public key that created the given signature.
func Ecrecover(hash, sig []byte) ([]byte, error) { func Ecrecover(hash, sig []byte) ([]byte, error) {
pub, err := SigToPub(hash, sig) pub, err := sigToPub(hash, sig)
if err != nil { if err != nil {
return nil, err return nil, err
} }
bytes := (*btcec.PublicKey)(pub).SerializeUncompressed() bytes := pub.SerializeUncompressed()
return bytes, err return bytes, err
} }
func sigToPub(hash, sig []byte) (*btcec.PublicKey, error) {
if len(sig) != SignatureLength {
return nil, errors.New("invalid signature")
}
// Convert to btcec input format with 'recovery id' v at the beginning.
btcsig := make([]byte, SignatureLength)
btcsig[0] = sig[RecoveryIDOffset] + 27
copy(btcsig[1:], sig)
pub, _, err := btc_ecdsa.RecoverCompact(btcsig, hash)
return pub, err
}
// SigToPub returns the public key that created the given signature. // SigToPub returns the public key that created the given signature.
func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) { func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
// Convert to btcec input format with 'recovery id' v at the beginning. pub, err := sigToPub(hash, sig)
btcsig := make([]byte, SignatureLength) if err != nil {
btcsig[0] = sig[64] + 27 return nil, err
copy(btcsig[1:], sig) }
return pub.ToECDSA(), nil
pub, _, err := btcec.RecoverCompact(btcec.S256(), btcsig, hash)
return (*ecdsa.PublicKey)(pub), err
} }
// Sign calculates an ECDSA signature. // Sign calculates an ECDSA signature.
// //
// This function is susceptible to chosen plaintext attacks that can leak // This function is susceptible to chosen plaintext attacks that can leak
// information about the private key that is used for signing. Callers must // information about the private key that is used for signing. Callers must
// be aware that the given hash cannot be chosen by an adversery. Common // be aware that the given hash cannot be chosen by an adversary. Common
// solution is to hash any input before calculating the signature. // solution is to hash any input before calculating the signature.
// //
// The produced signature is in the [R || S || V] format where V is 0 or 1. // The produced signature is in the [R || S || V] format where V is 0 or 1.
@ -64,14 +73,20 @@ func Sign(hash []byte, prv *ecdsa.PrivateKey) ([]byte, error) {
if prv.Curve != btcec.S256() { if prv.Curve != btcec.S256() {
return nil, fmt.Errorf("private key curve is not secp256k1") return nil, fmt.Errorf("private key curve is not secp256k1")
} }
sig, err := btcec.SignCompact(btcec.S256(), (*btcec.PrivateKey)(prv), hash, false) // ecdsa.PrivateKey -> btcec.PrivateKey
var priv btcec.PrivateKey
if overflow := priv.Key.SetByteSlice(prv.D.Bytes()); overflow || priv.Key.IsZero() {
return nil, fmt.Errorf("invalid private key")
}
defer priv.Zero()
sig, err := btc_ecdsa.SignCompact(&priv, hash, false) // ref uncompressed pubkey
if err != nil { if err != nil {
return nil, err return nil, err
} }
// Convert to Ethereum signature format with 'recovery id' v at the end. // Convert to Ethereum signature format with 'recovery id' v at the end.
v := sig[0] - 27 v := sig[0] - 27
copy(sig, sig[1:]) copy(sig, sig[1:])
sig[64] = v sig[RecoveryIDOffset] = v
return sig, nil return sig, nil
} }
@ -82,13 +97,20 @@ func VerifySignature(pubkey, hash, signature []byte) bool {
if len(signature) != 64 { if len(signature) != 64 {
return false return false
} }
sig := &btcec.Signature{R: new(big.Int).SetBytes(signature[:32]), S: new(big.Int).SetBytes(signature[32:])} var r, s btcec.ModNScalar
key, err := btcec.ParsePubKey(pubkey, btcec.S256()) if r.SetByteSlice(signature[:32]) {
return false // overflow
}
if s.SetByteSlice(signature[32:]) {
return false
}
sig := btc_ecdsa.NewSignature(&r, &s)
key, err := btcec.ParsePubKey(pubkey)
if err != nil { if err != nil {
return false return false
} }
// Reject malleable signatures. libsecp256k1 does this check but btcec doesn't. // Reject malleable signatures. libsecp256k1 does this check but btcec doesn't.
if sig.S.Cmp(secp256k1halfN) > 0 { if s.IsOverHalfOrder() {
return false return false
} }
return sig.Verify(hash, key) return sig.Verify(hash, key)
@ -99,16 +121,26 @@ func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) {
if len(pubkey) != 33 { if len(pubkey) != 33 {
return nil, errors.New("invalid compressed public key length") return nil, errors.New("invalid compressed public key length")
} }
key, err := btcec.ParsePubKey(pubkey, btcec.S256()) key, err := btcec.ParsePubKey(pubkey)
if err != nil { if err != nil {
return nil, err return nil, err
} }
return key.ToECDSA(), nil return key.ToECDSA(), nil
} }
// CompressPubkey encodes a public key to the 33-byte compressed format. // CompressPubkey encodes a public key to the 33-byte compressed format. The
// provided PublicKey must be valid. Namely, the coordinates must not be larger
// than 32 bytes each, they must be less than the field prime, and it must be a
// point on the secp256k1 curve. This is the case for a PublicKey constructed by
// elliptic.Unmarshal (see UnmarshalPubkey), or by ToECDSA and ecdsa.GenerateKey
// when constructing a PrivateKey.
func CompressPubkey(pubkey *ecdsa.PublicKey) []byte { func CompressPubkey(pubkey *ecdsa.PublicKey) []byte {
return (*btcec.PublicKey)(pubkey).SerializeCompressed() // NOTE: the coordinates may be validated with
// btcec.ParsePubKey(FromECDSAPub(pubkey))
var x, y btcec.FieldVal
x.SetByteSlice(pubkey.X.Bytes())
y.SetByteSlice(pubkey.Y.Bytes())
return btcec.NewPublicKey(&x, &y).SerializeCompressed()
} }
// S256 returns an instance of the secp256k1 curve. // S256 returns an instance of the secp256k1 curve.

View File

@ -1,86 +0,0 @@
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// +build !nacl,!js,cgo,!gofuzz
package crypto
import (
"crypto/ecdsa"
"crypto/elliptic"
"fmt"
"github.com/openrelayxyz/plugeth-utils/restricted/crypto/secp256k1"
)
// Ecrecover returns the uncompressed public key that created the given signature.
func Ecrecover(hash, sig []byte) ([]byte, error) {
return secp256k1.RecoverPubkey(hash, sig)
}
// SigToPub returns the public key that created the given signature.
func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
s, err := Ecrecover(hash, sig)
if err != nil {
return nil, err
}
x, y := elliptic.Unmarshal(S256(), s)
return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
}
// Sign calculates an ECDSA signature.
//
// This function is susceptible to chosen plaintext attacks that can leak
// information about the private key that is used for signing. Callers must
// be aware that the given digest cannot be chosen by an adversery. Common
// solution is to hash any input before calculating the signature.
//
// The produced signature is in the [R || S || V] format where V is 0 or 1.
func Sign(digestHash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
if len(digestHash) != DigestLength {
return nil, fmt.Errorf("hash is required to be exactly %d bytes (%d)", DigestLength, len(digestHash))
}
seckey := PaddedBigBytes(prv.D, prv.Params().BitSize/8)
defer zeroBytes(seckey)
return secp256k1.Sign(digestHash, seckey)
}
// VerifySignature checks that the given public key created signature over digest.
// The public key should be in compressed (33 bytes) or uncompressed (65 bytes) format.
// The signature should have the 64 byte [R || S] format.
func VerifySignature(pubkey, digestHash, signature []byte) bool {
return secp256k1.VerifySignature(pubkey, digestHash, signature)
}
// DecompressPubkey parses a public key in the 33-byte compressed format.
func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) {
x, y := secp256k1.DecompressPubkey(pubkey)
if x == nil {
return nil, fmt.Errorf("invalid public key")
}
return &ecdsa.PublicKey{X: x, Y: y, Curve: S256()}, nil
}
// CompressPubkey encodes a public key to the 33-byte compressed format.
func CompressPubkey(pubkey *ecdsa.PublicKey) []byte {
return secp256k1.CompressPubkey(pubkey.X, pubkey.Y)
}
// S256 returns an instance of the secp256k1 curve.
func S256() elliptic.Curve {
return secp256k1.S256()
}

View File

@ -0,0 +1,145 @@
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package hasher
// Trie keys are dealt with in three distinct encodings:
//
// KEYBYTES encoding contains the actual key and nothing else. This encoding is the
// input to most API functions.
//
// HEX encoding contains one byte for each nibble of the key and an optional trailing
// 'terminator' byte of value 0x10 which indicates whether or not the node at the key
// contains a value. Hex key encoding is used for nodes loaded in memory because it's
// convenient to access.
//
// COMPACT encoding is defined by the Ethereum Yellow Paper (it's called "hex prefix
// encoding" there) and contains the bytes of the key and a flag. The high nibble of the
// first byte contains the flag; the lowest bit encoding the oddness of the length and
// the second-lowest encoding whether the node at the key is a value node. The low nibble
// of the first byte is zero in the case of an even number of nibbles and the first nibble
// in the case of an odd number. All remaining nibbles (now an even number) fit properly
// into the remaining bytes. Compact encoding is used for nodes stored on disk.
func hexToCompact(hex []byte) []byte {
terminator := byte(0)
if hasTerm(hex) {
terminator = 1
hex = hex[:len(hex)-1]
}
buf := make([]byte, len(hex)/2+1)
buf[0] = terminator << 5 // the flag byte
if len(hex)&1 == 1 {
buf[0] |= 1 << 4 // odd flag
buf[0] |= hex[0] // first nibble is contained in the first byte
hex = hex[1:]
}
decodeNibbles(hex, buf[1:])
return buf
}
// hexToCompactInPlace places the compact key in input buffer, returning the length
// needed for the representation
func hexToCompactInPlace(hex []byte) int {
var (
hexLen = len(hex) // length of the hex input
firstByte = byte(0)
)
// Check if we have a terminator there
if hexLen > 0 && hex[hexLen-1] == 16 {
firstByte = 1 << 5
hexLen-- // last part was the terminator, ignore that
}
var (
binLen = hexLen/2 + 1
ni = 0 // index in hex
bi = 1 // index in bin (compact)
)
if hexLen&1 == 1 {
firstByte |= 1 << 4 // odd flag
firstByte |= hex[0] // first nibble is contained in the first byte
ni++
}
for ; ni < hexLen; bi, ni = bi+1, ni+2 {
hex[bi] = hex[ni]<<4 | hex[ni+1]
}
hex[0] = firstByte
return binLen
}
func compactToHex(compact []byte) []byte {
if len(compact) == 0 {
return compact
}
base := keybytesToHex(compact)
// delete terminator flag
if base[0] < 2 {
base = base[:len(base)-1]
}
// apply odd flag
chop := 2 - base[0]&1
return base[chop:]
}
func keybytesToHex(str []byte) []byte {
l := len(str)*2 + 1
var nibbles = make([]byte, l)
for i, b := range str {
nibbles[i*2] = b / 16
nibbles[i*2+1] = b % 16
}
nibbles[l-1] = 16
return nibbles
}
// hexToKeybytes turns hex nibbles into key bytes.
// This can only be used for keys of even length.
func hexToKeybytes(hex []byte) []byte {
if hasTerm(hex) {
hex = hex[:len(hex)-1]
}
if len(hex)&1 != 0 {
panic("can't convert hex key of odd length")
}
key := make([]byte, len(hex)/2)
decodeNibbles(hex, key)
return key
}
func decodeNibbles(nibbles []byte, bytes []byte) {
for bi, ni := 0, 0; ni < len(nibbles); bi, ni = bi+1, ni+2 {
bytes[bi] = nibbles[ni]<<4 | nibbles[ni+1]
}
}
// prefixLen returns the length of the common prefix of a and b.
func prefixLen(a, b []byte) int {
var i, length = 0, len(a)
if len(b) < length {
length = len(b)
}
for ; i < length; i++ {
if a[i] != b[i] {
break
}
}
return i
}
// hasTerm returns whether a hex key has the terminator flag.
func hasTerm(s []byte) bool {
return len(s) > 0 && s[len(s)-1] == 16
}

209
restricted/hasher/hasher.go Normal file
View File

@ -0,0 +1,209 @@
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package hasher
import (
"sync"
"github.com/openrelayxyz/plugeth-utils/restricted/crypto"
"github.com/openrelayxyz/plugeth-utils/restricted/rlp"
"golang.org/x/crypto/sha3"
)
// Hasher is a type used for the trie Hash operation. A Hasher has some
// internal preallocated temp space
type Hasher struct {
sha crypto.KeccakState
tmp []byte
encbuf rlp.EncoderBuffer
parallel bool // Whether to use parallel threads when hashing
}
// HasherPool holds pureHashers
var HasherPool = sync.Pool{
New: func() interface{} {
return &Hasher{
tmp: make([]byte, 0, 550), // cap is as large as a full fullNode.
sha: sha3.NewLegacyKeccak256().(crypto.KeccakState),
encbuf: rlp.NewEncoderBuffer(nil),
}
},
}
func newHasher(parallel bool) *Hasher {
h := HasherPool.Get().(*Hasher)
h.parallel = parallel
return h
}
func returnHasherToPool(h *Hasher) {
HasherPool.Put(h)
}
// hash collapses a node down into a hash node, also returning a copy of the
// original node initialized with the computed hash to replace the original one.
func (h *Hasher) hash(n node, force bool) (hashed node, cached node) {
// Return the cached hash if it's available
if hash, _ := n.cache(); hash != nil {
return hash, n
}
// Trie not processed yet, walk the children
switch n := n.(type) {
case *shortNode:
collapsed, cached := h.hashShortNodeChildren(n)
hashed := h.shortnodeToHash(collapsed, force)
// We need to retain the possibly _not_ hashed node, in case it was too
// small to be hashed
if hn, ok := hashed.(hashNode); ok {
cached.flags.hash = hn
} else {
cached.flags.hash = nil
}
return hashed, cached
case *fullNode:
collapsed, cached := h.hashFullNodeChildren(n)
hashed = h.fullnodeToHash(collapsed, force)
if hn, ok := hashed.(hashNode); ok {
cached.flags.hash = hn
} else {
cached.flags.hash = nil
}
return hashed, cached
default:
// Value and hash nodes don't have children so they're left as were
return n, n
}
}
// hashShortNodeChildren collapses the short node. The returned collapsed node
// holds a live reference to the Key, and must not be modified.
// The cached
func (h *Hasher) hashShortNodeChildren(n *shortNode) (collapsed, cached *shortNode) {
// Hash the short node's child, caching the newly hashed subtree
collapsed, cached = n.copy(), n.copy()
// Previously, we did copy this one. We don't seem to need to actually
// do that, since we don't overwrite/reuse keys
//cached.Key = common.CopyBytes(n.Key)
collapsed.Key = hexToCompact(n.Key)
// Unless the child is a valuenode or hashnode, hash it
switch n.Val.(type) {
case *fullNode, *shortNode:
collapsed.Val, cached.Val = h.hash(n.Val, false)
}
return collapsed, cached
}
func (h *Hasher) hashFullNodeChildren(n *fullNode) (collapsed *fullNode, cached *fullNode) {
// Hash the full node's children, caching the newly hashed subtrees
cached = n.copy()
collapsed = n.copy()
if h.parallel {
var wg sync.WaitGroup
wg.Add(16)
for i := 0; i < 16; i++ {
go func(i int) {
Hasher := newHasher(false)
if child := n.Children[i]; child != nil {
collapsed.Children[i], cached.Children[i] = Hasher.hash(child, false)
} else {
collapsed.Children[i] = nilValueNode
}
returnHasherToPool(Hasher)
wg.Done()
}(i)
}
wg.Wait()
} else {
for i := 0; i < 16; i++ {
if child := n.Children[i]; child != nil {
collapsed.Children[i], cached.Children[i] = h.hash(child, false)
} else {
collapsed.Children[i] = nilValueNode
}
}
}
return collapsed, cached
}
// shortnodeToHash creates a hashNode from a shortNode. The supplied shortnode
// should have hex-type Key, which will be converted (without modification)
// into compact form for RLP encoding.
// If the rlp data is smaller than 32 bytes, `nil` is returned.
func (h *Hasher) shortnodeToHash(n *shortNode, force bool) node {
n.encode(h.encbuf)
enc := h.encodedBytes()
if len(enc) < 32 && !force {
return n // Nodes smaller than 32 bytes are stored inside their parent
}
return h.hashData(enc)
}
// shortnodeToHash is used to creates a hashNode from a set of hashNodes, (which
// may contain nil values)
func (h *Hasher) fullnodeToHash(n *fullNode, force bool) node {
n.encode(h.encbuf)
enc := h.encodedBytes()
if len(enc) < 32 && !force {
return n // Nodes smaller than 32 bytes are stored inside their parent
}
return h.hashData(enc)
}
// encodedBytes returns the result of the last encoding operation on h.encbuf.
// This also resets the encoder buffer.
//
// All node encoding must be done like this:
//
// node.encode(h.encbuf)
// enc := h.encodedBytes()
//
// This convention exists because node.encode can only be inlined/escape-analyzed when
// called on a concrete receiver type.
func (h *Hasher) encodedBytes() []byte {
h.tmp = h.encbuf.AppendToBytes(h.tmp[:0])
h.encbuf.Reset(nil)
return h.tmp
}
// hashData hashes the provided data
func (h *Hasher) hashData(data []byte) hashNode {
n := make(hashNode, 32)
h.sha.Reset()
h.sha.Write(data)
h.sha.Read(n)
return n
}
// proofHash is used to construct trie proofs, and returns the 'collapsed'
// node (for later RLP encoding) as well as the hashed node -- unless the
// node is smaller than 32 bytes, in which case it will be returned as is.
// This method does not do anything on value- or hash-nodes.
func (h *Hasher) proofHash(original node) (collapsed, hashed node) {
switch n := original.(type) {
case *shortNode:
sn, _ := h.hashShortNodeChildren(n)
return sn, h.shortnodeToHash(sn, false)
case *fullNode:
fn, _ := h.hashFullNodeChildren(n)
return fn, h.fullnodeToHash(fn, false)
default:
// Value and hash nodes don't have children so they're left as were
return n, n
}
}

280
restricted/hasher/node.go Normal file
View File

@ -0,0 +1,280 @@
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package hasher
import (
"fmt"
"io"
"strings"
"github.com/openrelayxyz/plugeth-utils/core"
"github.com/openrelayxyz/plugeth-utils/restricted/rlp"
)
var indices = []string{"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "[17]"}
type node interface {
cache() (hashNode, bool)
encode(w rlp.EncoderBuffer)
fstring(string) string
}
type (
fullNode struct {
Children [17]node // Actual trie node data to encode/decode (needs custom encoder)
flags nodeFlag
}
shortNode struct {
Key []byte
Val node
flags nodeFlag
}
hashNode []byte
valueNode []byte
)
// nilValueNode is used when collapsing internal trie nodes for hashing, since
// unset children need to serialize correctly.
var nilValueNode = valueNode(nil)
// EncodeRLP encodes a full node into the consensus RLP format.
func (n *fullNode) EncodeRLP(w io.Writer) error {
eb := rlp.NewEncoderBuffer(w)
n.encode(eb)
return eb.Flush()
}
func (n *fullNode) copy() *fullNode { copy := *n; return &copy }
func (n *shortNode) copy() *shortNode { copy := *n; return &copy }
// nodeFlag contains caching-related metadata about a node.
type nodeFlag struct {
hash hashNode // cached hash of the node (may be nil)
dirty bool // whether the node has changes that must be written to the database
}
func (n *fullNode) cache() (hashNode, bool) { return n.flags.hash, n.flags.dirty }
func (n *shortNode) cache() (hashNode, bool) { return n.flags.hash, n.flags.dirty }
func (n hashNode) cache() (hashNode, bool) { return nil, true }
func (n valueNode) cache() (hashNode, bool) { return nil, true }
// Pretty printing.
func (n *fullNode) String() string { return n.fstring("") }
func (n *shortNode) String() string { return n.fstring("") }
func (n hashNode) String() string { return n.fstring("") }
func (n valueNode) String() string { return n.fstring("") }
func (n *fullNode) fstring(ind string) string {
resp := fmt.Sprintf("[\n%s ", ind)
for i, node := range &n.Children {
if node == nil {
resp += fmt.Sprintf("%s: <nil> ", indices[i])
} else {
resp += fmt.Sprintf("%s: %v", indices[i], node.fstring(ind+" "))
}
}
return resp + fmt.Sprintf("\n%s] ", ind)
}
func (n *shortNode) fstring(ind string) string {
return fmt.Sprintf("{%x: %v} ", n.Key, n.Val.fstring(ind+" "))
}
func (n hashNode) fstring(ind string) string {
return fmt.Sprintf("<%x> ", []byte(n))
}
func (n valueNode) fstring(ind string) string {
return fmt.Sprintf("%x ", []byte(n))
}
// mustDecodeNode is a wrapper of decodeNode and panic if any error is encountered.
func mustDecodeNode(hash, buf []byte) node {
n, err := decodeNode(hash, buf)
if err != nil {
panic(fmt.Sprintf("node %x: %v", hash, err))
}
return n
}
// mustDecodeNodeUnsafe is a wrapper of decodeNodeUnsafe and panic if any error is
// encountered.
func mustDecodeNodeUnsafe(hash, buf []byte) node {
n, err := decodeNodeUnsafe(hash, buf)
if err != nil {
panic(fmt.Sprintf("node %x: %v", hash, err))
}
return n
}
// decodeNode parses the RLP encoding of a trie node. It will deep-copy the passed
// byte slice for decoding, so it's safe to modify the byte slice afterwards. The-
// decode performance of this function is not optimal, but it is suitable for most
// scenarios with low performance requirements and hard to determine whether the
// byte slice be modified or not.
func decodeNode(hash, buf []byte) (node, error) {
return decodeNodeUnsafe(hash, core.CopyBytes(buf))
}
// decodeNodeUnsafe parses the RLP encoding of a trie node. The passed byte slice
// will be directly referenced by node without bytes deep copy, so the input MUST
// not be changed after.
func decodeNodeUnsafe(hash, buf []byte) (node, error) {
if len(buf) == 0 {
return nil, io.ErrUnexpectedEOF
}
elems, _, err := rlp.SplitList(buf)
if err != nil {
return nil, fmt.Errorf("decode error: %v", err)
}
switch c, _ := rlp.CountValues(elems); c {
case 2:
n, err := decodeShort(hash, elems)
return n, wrapError(err, "short")
case 17:
n, err := decodeFull(hash, elems)
return n, wrapError(err, "full")
default:
return nil, fmt.Errorf("invalid number of list elements: %v", c)
}
}
func decodeShort(hash, elems []byte) (node, error) {
kbuf, rest, err := rlp.SplitString(elems)
if err != nil {
return nil, err
}
flag := nodeFlag{hash: hash}
key := compactToHex(kbuf)
if hasTerm(key) {
// value node
val, _, err := rlp.SplitString(rest)
if err != nil {
return nil, fmt.Errorf("invalid value node: %v", err)
}
return &shortNode{key, valueNode(val), flag}, nil
}
r, _, err := decodeRef(rest)
if err != nil {
return nil, wrapError(err, "val")
}
return &shortNode{key, r, flag}, nil
}
func decodeFull(hash, elems []byte) (*fullNode, error) {
n := &fullNode{flags: nodeFlag{hash: hash}}
for i := 0; i < 16; i++ {
cld, rest, err := decodeRef(elems)
if err != nil {
return n, wrapError(err, fmt.Sprintf("[%d]", i))
}
n.Children[i], elems = cld, rest
}
val, _, err := rlp.SplitString(elems)
if err != nil {
return n, err
}
if len(val) > 0 {
n.Children[16] = valueNode(val)
}
return n, nil
}
const hashLen = len(core.Hash{})
func decodeRef(buf []byte) (node, []byte, error) {
kind, val, rest, err := rlp.Split(buf)
if err != nil {
return nil, buf, err
}
switch {
case kind == rlp.List:
// 'embedded' node reference. The encoding must be smaller
// than a hash in order to be valid.
if size := len(buf) - len(rest); size > hashLen {
err := fmt.Errorf("oversized embedded node (size is %d bytes, want size < %d)", size, hashLen)
return nil, buf, err
}
n, err := decodeNode(nil, buf)
return n, rest, err
case kind == rlp.String && len(val) == 0:
// empty node
return nil, rest, nil
case kind == rlp.String && len(val) == 32:
return hashNode(val), rest, nil
default:
return nil, nil, fmt.Errorf("invalid RLP string size %d (want 0 or 32)", len(val))
}
}
// wraps a decoding error with information about the path to the
// invalid child node (for debugging encoding issues).
type decodeError struct {
what error
stack []string
}
func wrapError(err error, ctx string) error {
if err == nil {
return nil
}
if decErr, ok := err.(*decodeError); ok {
decErr.stack = append(decErr.stack, ctx)
return decErr
}
return &decodeError{err, []string{ctx}}
}
func (err *decodeError) Error() string {
return fmt.Sprintf("%v (decode path: %s)", err.what, strings.Join(err.stack, "<-"))
}
// rawNode is a simple binary blob used to differentiate between collapsed trie
// nodes and already encoded RLP binary blobs (while at the same time store them
// in the same cache fields).
type rawNode []byte
func (n rawNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") }
func (n rawNode) fstring(ind string) string { panic("this should never end up in a live trie") }
func (n rawNode) EncodeRLP(w io.Writer) error {
_, err := w.Write(n)
return err
}
// rawFullNode represents only the useful data content of a full node, with the
// caches and flags stripped out to minimize its data storage. This type honors
// the same RLP encoding as the original parent.
type rawFullNode [17]node
func (n rawFullNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") }
func (n rawFullNode) fstring(ind string) string { panic("this should never end up in a live trie") }
func (n rawFullNode) EncodeRLP(w io.Writer) error {
eb := rlp.NewEncoderBuffer(w)
n.encode(eb)
return eb.Flush()
}
// rawShortNode represents only the useful data content of a short node, with the
// caches and flags stripped out to minimize its data storage. This type honors
// the same RLP encoding as the original parent.
type rawShortNode struct {
Key []byte
Val node
}
func (n rawShortNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") }
func (n rawShortNode) fstring(ind string) string { panic("this should never end up in a live trie") }

View File

@ -0,0 +1,87 @@
// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package hasher
import (
"github.com/openrelayxyz/plugeth-utils/restricted/rlp"
)
func nodeToBytes(n node) []byte {
w := rlp.NewEncoderBuffer(nil)
n.encode(w)
result := w.ToBytes()
w.Flush()
return result
}
func (n *fullNode) encode(w rlp.EncoderBuffer) {
offset := w.List()
for _, c := range n.Children {
if c != nil {
c.encode(w)
} else {
w.Write(rlp.EmptyString)
}
}
w.ListEnd(offset)
}
func (n *shortNode) encode(w rlp.EncoderBuffer) {
offset := w.List()
w.WriteBytes(n.Key)
if n.Val != nil {
n.Val.encode(w)
} else {
w.Write(rlp.EmptyString)
}
w.ListEnd(offset)
}
func (n hashNode) encode(w rlp.EncoderBuffer) {
w.WriteBytes(n)
}
func (n valueNode) encode(w rlp.EncoderBuffer) {
w.WriteBytes(n)
}
func (n rawFullNode) encode(w rlp.EncoderBuffer) {
offset := w.List()
for _, c := range n {
if c != nil {
c.encode(w)
} else {
w.Write(rlp.EmptyString)
}
}
w.ListEnd(offset)
}
func (n *rawShortNode) encode(w rlp.EncoderBuffer) {
offset := w.List()
w.WriteBytes(n.Key)
if n.Val != nil {
n.Val.encode(w)
} else {
w.Write(rlp.EmptyString)
}
w.ListEnd(offset)
}
func (n rawNode) encode(w rlp.EncoderBuffer) {
w.Write(n)
}

View File

@ -0,0 +1,532 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package hasher
import (
"fmt"
"bufio"
"bytes"
"encoding/gob"
"errors"
"io"
"sync"
"github.com/openrelayxyz/plugeth-utils/core"
"github.com/openrelayxyz/plugeth-utils/restricted/types"
)
var ErrCommitDisabled = errors.New("no database for committing")
var stPool = sync.Pool{
New: func() interface{} {
return NewStackTrie(nil)
},
}
// NodeWriteFunc is used to provide all information of a dirty node for committing
// so that callers can flush nodes into database with desired scheme.
type NodeWriteFunc = func(owner core.Hash, path []byte, hash core.Hash, blob []byte)
func stackTrieFromPool(writeFn NodeWriteFunc, owner core.Hash) *StackTrie {
st := stPool.Get().(*StackTrie)
st.owner = owner
st.writeFn = writeFn
return st
}
func returnToPool(st *StackTrie) {
st.Reset()
stPool.Put(st)
}
// StackTrie is a trie implementation that expects keys to be inserted
// in order. Once it determines that a subtree will no longer be inserted
// into, it will hash it and free up the memory it uses.
type StackTrie struct {
owner core.Hash // the owner of the trie
nodeType uint8 // node type (as in branch, ext, leaf)
val []byte // value contained by this node if it's a leaf
key []byte // key chunk covered by this (leaf|ext) node
children [16]*StackTrie // list of children (for branch and exts)
writeFn NodeWriteFunc // function for committing nodes, can be nil
}
// NewStackTrie allocates and initializes an empty trie.
func NewStackTrie(writeFn NodeWriteFunc) *StackTrie {
return &StackTrie{
nodeType: emptyNode,
writeFn: writeFn,
}
}
// NewStackTrieWithOwner allocates and initializes an empty trie, but with
// the additional owner field.
func NewStackTrieWithOwner(writeFn NodeWriteFunc, owner core.Hash) *StackTrie {
return &StackTrie{
owner: owner,
nodeType: emptyNode,
writeFn: writeFn,
}
}
// NewFromBinary initialises a serialized stacktrie with the given db.
func NewFromBinary(data []byte, writeFn NodeWriteFunc) (*StackTrie, error) {
var st StackTrie
if err := st.UnmarshalBinary(data); err != nil {
return nil, err
}
// If a database is used, we need to recursively add it to every child
if writeFn != nil {
st.setWriter(writeFn)
}
return &st, nil
}
// MarshalBinary implements encoding.BinaryMarshaler
func (st *StackTrie) MarshalBinary() (data []byte, err error) {
var (
b bytes.Buffer
w = bufio.NewWriter(&b)
)
if err := gob.NewEncoder(w).Encode(struct {
Owner core.Hash
NodeType uint8
Val []byte
Key []byte
}{
st.owner,
st.nodeType,
st.val,
st.key,
}); err != nil {
return nil, err
}
for _, child := range st.children {
if child == nil {
w.WriteByte(0)
continue
}
w.WriteByte(1)
if childData, err := child.MarshalBinary(); err != nil {
return nil, err
} else {
w.Write(childData)
}
}
w.Flush()
return b.Bytes(), nil
}
// UnmarshalBinary implements encoding.BinaryUnmarshaler
func (st *StackTrie) UnmarshalBinary(data []byte) error {
r := bytes.NewReader(data)
return st.unmarshalBinary(r)
}
func (st *StackTrie) unmarshalBinary(r io.Reader) error {
var dec struct {
Owner core.Hash
NodeType uint8
Val []byte
Key []byte
}
if err := gob.NewDecoder(r).Decode(&dec); err != nil {
return err
}
st.owner = dec.Owner
st.nodeType = dec.NodeType
st.val = dec.Val
st.key = dec.Key
var hasChild = make([]byte, 1)
for i := range st.children {
if _, err := r.Read(hasChild); err != nil {
return err
} else if hasChild[0] == 0 {
continue
}
var child StackTrie
if err := child.unmarshalBinary(r); err != nil {
return err
}
st.children[i] = &child
}
return nil
}
func (st *StackTrie) setWriter(writeFn NodeWriteFunc) {
st.writeFn = writeFn
for _, child := range st.children {
if child != nil {
child.setWriter(writeFn)
}
}
}
func newLeaf(owner core.Hash, key, val []byte, writeFn NodeWriteFunc) *StackTrie {
st := stackTrieFromPool(writeFn, owner)
st.nodeType = leafNode
st.key = append(st.key, key...)
st.val = val
return st
}
func newExt(owner core.Hash, key []byte, child *StackTrie, writeFn NodeWriteFunc) *StackTrie {
st := stackTrieFromPool(writeFn, owner)
st.nodeType = extNode
st.key = append(st.key, key...)
st.children[0] = child
return st
}
// List all values that StackTrie#nodeType can hold
const (
emptyNode = iota
branchNode
extNode
leafNode
hashedNode
)
// TryUpdate inserts a (key, value) pair into the stack trie
func (st *StackTrie) TryUpdate(key, value []byte) error {
k := keybytesToHex(key)
if len(value) == 0 {
panic("deletion not supported")
}
st.insert(k[:len(k)-1], value, nil)
return nil
}
func (st *StackTrie) Update(key, value []byte) {
if err := st.TryUpdate(key, value); err != nil {
fmt.Errorf("Unhandled trie error in StackTrie.Update", "err", err)
}
}
func (st *StackTrie) Reset() {
st.owner = core.Hash{}
st.writeFn = nil
st.key = st.key[:0]
st.val = nil
for i := range st.children {
st.children[i] = nil
}
st.nodeType = emptyNode
}
// Helper function that, given a full key, determines the index
// at which the chunk pointed by st.keyOffset is different from
// the same chunk in the full key.
func (st *StackTrie) getDiffIndex(key []byte) int {
for idx, nibble := range st.key {
if nibble != key[idx] {
return idx
}
}
return len(st.key)
}
// Helper function to that inserts a (key, value) pair into
// the trie.
func (st *StackTrie) insert(key, value []byte, prefix []byte) {
switch st.nodeType {
case branchNode: /* Branch */
idx := int(key[0])
// Unresolve elder siblings
for i := idx - 1; i >= 0; i-- {
if st.children[i] != nil {
if st.children[i].nodeType != hashedNode {
st.children[i].hash(append(prefix, byte(i)))
}
break
}
}
// Add new child
if st.children[idx] == nil {
st.children[idx] = newLeaf(st.owner, key[1:], value, st.writeFn)
} else {
st.children[idx].insert(key[1:], value, append(prefix, key[0]))
}
case extNode: /* Ext */
// Compare both key chunks and see where they differ
diffidx := st.getDiffIndex(key)
// Check if chunks are identical. If so, recurse into
// the child node. Otherwise, the key has to be split
// into 1) an optional common prefix, 2) the fullnode
// representing the two differing path, and 3) a leaf
// for each of the differentiated subtrees.
if diffidx == len(st.key) {
// Ext key and key segment are identical, recurse into
// the child node.
st.children[0].insert(key[diffidx:], value, append(prefix, key[:diffidx]...))
return
}
// Save the original part. Depending if the break is
// at the extension's last byte or not, create an
// intermediate extension or use the extension's child
// node directly.
var n *StackTrie
if diffidx < len(st.key)-1 {
// Break on the non-last byte, insert an intermediate
// extension. The path prefix of the newly-inserted
// extension should also contain the different byte.
n = newExt(st.owner, st.key[diffidx+1:], st.children[0], st.writeFn)
n.hash(append(prefix, st.key[:diffidx+1]...))
} else {
// Break on the last byte, no need to insert
// an extension node: reuse the current node.
// The path prefix of the original part should
// still be same.
n = st.children[0]
n.hash(append(prefix, st.key...))
}
var p *StackTrie
if diffidx == 0 {
// the break is on the first byte, so
// the current node is converted into
// a branch node.
st.children[0] = nil
p = st
st.nodeType = branchNode
} else {
// the common prefix is at least one byte
// long, insert a new intermediate branch
// node.
st.children[0] = stackTrieFromPool(st.writeFn, st.owner)
st.children[0].nodeType = branchNode
p = st.children[0]
}
// Create a leaf for the inserted part
o := newLeaf(st.owner, key[diffidx+1:], value, st.writeFn)
// Insert both child leaves where they belong:
origIdx := st.key[diffidx]
newIdx := key[diffidx]
p.children[origIdx] = n
p.children[newIdx] = o
st.key = st.key[:diffidx]
case leafNode: /* Leaf */
// Compare both key chunks and see where they differ
diffidx := st.getDiffIndex(key)
// Overwriting a key isn't supported, which means that
// the current leaf is expected to be split into 1) an
// optional extension for the common prefix of these 2
// keys, 2) a fullnode selecting the path on which the
// keys differ, and 3) one leaf for the differentiated
// component of each key.
if diffidx >= len(st.key) {
panic("Trying to insert into existing key")
}
// Check if the split occurs at the first nibble of the
// chunk. In that case, no prefix extnode is necessary.
// Otherwise, create that
var p *StackTrie
if diffidx == 0 {
// Convert current leaf into a branch
st.nodeType = branchNode
p = st
st.children[0] = nil
} else {
// Convert current node into an ext,
// and insert a child branch node.
st.nodeType = extNode
st.children[0] = NewStackTrieWithOwner(st.writeFn, st.owner)
st.children[0].nodeType = branchNode
p = st.children[0]
}
// Create the two child leaves: one containing the original
// value and another containing the new value. The child leaf
// is hashed directly in order to free up some memory.
origIdx := st.key[diffidx]
p.children[origIdx] = newLeaf(st.owner, st.key[diffidx+1:], st.val, st.writeFn)
p.children[origIdx].hash(append(prefix, st.key[:diffidx+1]...))
newIdx := key[diffidx]
p.children[newIdx] = newLeaf(st.owner, key[diffidx+1:], value, st.writeFn)
// Finally, cut off the key part that has been passed
// over to the children.
st.key = st.key[:diffidx]
st.val = nil
case emptyNode: /* Empty */
st.nodeType = leafNode
st.key = key
st.val = value
case hashedNode:
panic("trying to insert into hash")
default:
panic("invalid type")
}
}
// hash converts st into a 'hashedNode', if possible. Possible outcomes:
//
// 1. The rlp-encoded value was >= 32 bytes:
// - Then the 32-byte `hash` will be accessible in `st.val`.
// - And the 'st.type' will be 'hashedNode'
//
// 2. The rlp-encoded value was < 32 bytes
// - Then the <32 byte rlp-encoded value will be accessible in 'st.val'.
// - And the 'st.type' will be 'hashedNode' AGAIN
//
// This method also sets 'st.type' to hashedNode, and clears 'st.key'.
func (st *StackTrie) hash(path []byte) {
h := newHasher(false)
defer returnHasherToPool(h)
st.hashRec(h, path)
}
func (st *StackTrie) hashRec(hasher *Hasher, path []byte) {
// The switch below sets this to the RLP-encoding of this node.
var encodedNode []byte
switch st.nodeType {
case hashedNode:
return
case emptyNode:
st.val = types.EmptyRootHash.Bytes()
st.key = st.key[:0]
st.nodeType = hashedNode
return
case branchNode:
var nodes rawFullNode
for i, child := range st.children {
if child == nil {
nodes[i] = nilValueNode
continue
}
child.hashRec(hasher, append(path, byte(i)))
if len(child.val) < 32 {
nodes[i] = rawNode(child.val)
} else {
nodes[i] = hashNode(child.val)
}
// Release child back to pool.
st.children[i] = nil
returnToPool(child)
}
nodes.encode(hasher.encbuf)
encodedNode = hasher.encodedBytes()
case extNode:
st.children[0].hashRec(hasher, append(path, st.key...))
n := rawShortNode{Key: hexToCompact(st.key)}
if len(st.children[0].val) < 32 {
n.Val = rawNode(st.children[0].val)
} else {
n.Val = hashNode(st.children[0].val)
}
n.encode(hasher.encbuf)
encodedNode = hasher.encodedBytes()
// Release child back to pool.
returnToPool(st.children[0])
st.children[0] = nil
case leafNode:
st.key = append(st.key, byte(16))
n := rawShortNode{Key: hexToCompact(st.key), Val: valueNode(st.val)}
n.encode(hasher.encbuf)
encodedNode = hasher.encodedBytes()
default:
panic("invalid node type")
}
st.nodeType = hashedNode
st.key = st.key[:0]
if len(encodedNode) < 32 {
st.val = core.CopyBytes(encodedNode)
return
}
// Write the hash to the 'val'. We allocate a new val here to not mutate
// input values
st.val = hasher.hashData(encodedNode)
if st.writeFn != nil {
st.writeFn(st.owner, path, core.BytesToHash(st.val), encodedNode)
}
}
// Hash returns the hash of the current node.
func (st *StackTrie) Hash() (h core.Hash) {
hasher := newHasher(false)
defer returnHasherToPool(hasher)
st.hashRec(hasher, nil)
if len(st.val) == 32 {
copy(h[:], st.val)
return h
}
// If the node's RLP isn't 32 bytes long, the node will not
// be hashed, and instead contain the rlp-encoding of the
// node. For the top level node, we need to force the hashing.
hasher.sha.Reset()
hasher.sha.Write(st.val)
hasher.sha.Read(h[:])
return h
}
// Commit will firstly hash the entire trie if it's still not hashed
// and then commit all nodes to the associated database. Actually most
// of the trie nodes MAY have been committed already. The main purpose
// here is to commit the root node.
//
// The associated database is expected, otherwise the whole commit
// functionality should be disabled.
func (st *StackTrie) Commit() (h core.Hash, err error) {
if st.writeFn == nil {
return core.Hash{}, ErrCommitDisabled
}
hasher := newHasher(false)
defer returnHasherToPool(hasher)
st.hashRec(hasher, nil)
if len(st.val) == 32 {
copy(h[:], st.val)
return h, nil
}
// If the node's RLP isn't 32 bytes long, the node will not
// be hashed (and committed), and instead contain the rlp-encoding of the
// node. For the top level node, we need to force the hashing+commit.
hasher.sha.Reset()
hasher.sha.Write(st.val)
hasher.sha.Read(h[:])
st.writeFn(st.owner, nil, h, st.val)
return h, nil
}

View File

@ -34,231 +34,6 @@ var (
CalaverasGenesisHash = core.HexToHash("0xeb9233d066c275efcdfed8037f4fc082770176aefdbcb7691c71da412a5670f2") CalaverasGenesisHash = core.HexToHash("0xeb9233d066c275efcdfed8037f4fc082770176aefdbcb7691c71da412a5670f2")
) )
// TrustedCheckpoints associates each known checkpoint with the genesis hash of
// the chain it belongs to.
var TrustedCheckpoints = map[core.Hash]*TrustedCheckpoint{
MainnetGenesisHash: MainnetTrustedCheckpoint,
RopstenGenesisHash: RopstenTrustedCheckpoint,
RinkebyGenesisHash: RinkebyTrustedCheckpoint,
GoerliGenesisHash: GoerliTrustedCheckpoint,
}
// CheckpointOracles associates each known checkpoint oracles with the genesis hash of
// the chain it belongs to.
var CheckpointOracles = map[core.Hash]*CheckpointOracleConfig{
MainnetGenesisHash: MainnetCheckpointOracle,
RopstenGenesisHash: RopstenCheckpointOracle,
RinkebyGenesisHash: RinkebyCheckpointOracle,
GoerliGenesisHash: GoerliCheckpointOracle,
}
var (
// MainnetChainConfig is the chain parameters to run a node on the main network.
MainnetChainConfig = &ChainConfig{
ChainID: big.NewInt(1),
HomesteadBlock: big.NewInt(1_150_000),
DAOForkBlock: big.NewInt(1_920_000),
DAOForkSupport: true,
EIP150Block: big.NewInt(2_463_000),
EIP150Hash: core.HexToHash("0x2086799aeebeae135c246c65021c82b4e15a2c451340993aacfd2751886514f0"),
EIP155Block: big.NewInt(2_675_000),
EIP158Block: big.NewInt(2_675_000),
ByzantiumBlock: big.NewInt(4_370_000),
ConstantinopleBlock: big.NewInt(7_280_000),
PetersburgBlock: big.NewInt(7_280_000),
IstanbulBlock: big.NewInt(9_069_000),
MuirGlacierBlock: big.NewInt(9_200_000),
BerlinBlock: big.NewInt(12_244_000),
LondonBlock: big.NewInt(12_965_000),
Ethash: new(EthashConfig),
}
// MainnetTrustedCheckpoint contains the light client trusted checkpoint for the main network.
MainnetTrustedCheckpoint = &TrustedCheckpoint{
SectionIndex: 389,
SectionHead: core.HexToHash("0x8f96e510cf64abf34095c5aa3937acdf5316de5540945b9688f4a2e083cddc73"),
CHTRoot: core.HexToHash("0xa2362493848d6dbc50dcbbf74c017ea808b8938bfb129217d507bd276950d7ac"),
BloomRoot: core.HexToHash("0x72fc78a841bde7e08e1fb7c187b622c49dc8271db12db748ff5d0f27bdb41413"),
}
// MainnetCheckpointOracle contains a set of configs for the main network oracle.
MainnetCheckpointOracle = &CheckpointOracleConfig{
Address: core.HexToAddress("0x9a9070028361F7AAbeB3f2F2Dc07F82C4a98A02a"),
Signers: []core.Address{
core.HexToAddress("0x1b2C260efc720BE89101890E4Db589b44E950527"), // Peter
core.HexToAddress("0x78d1aD571A1A09D60D9BBf25894b44e4C8859595"), // Martin
core.HexToAddress("0x286834935f4A8Cfb4FF4C77D5770C2775aE2b0E7"), // Zsolt
core.HexToAddress("0xb86e2B0Ab5A4B1373e40c51A7C712c70Ba2f9f8E"), // Gary
core.HexToAddress("0x0DF8fa387C602AE62559cC4aFa4972A7045d6707"), // Guillaume
},
Threshold: 2,
}
// RopstenChainConfig contains the chain parameters to run a node on the Ropsten test network.
RopstenChainConfig = &ChainConfig{
ChainID: big.NewInt(3),
HomesteadBlock: big.NewInt(0),
DAOForkBlock: nil,
DAOForkSupport: true,
EIP150Block: big.NewInt(0),
EIP150Hash: core.HexToHash("0x41941023680923e0fe4d74a34bdac8141f2540e3ae90623718e47d66d1ca4a2d"),
EIP155Block: big.NewInt(10),
EIP158Block: big.NewInt(10),
ByzantiumBlock: big.NewInt(1_700_000),
ConstantinopleBlock: big.NewInt(4_230_000),
PetersburgBlock: big.NewInt(4_939_394),
IstanbulBlock: big.NewInt(6_485_846),
MuirGlacierBlock: big.NewInt(7_117_117),
BerlinBlock: big.NewInt(9_812_189),
LondonBlock: big.NewInt(10_499_401),
Ethash: new(EthashConfig),
}
// RopstenTrustedCheckpoint contains the light client trusted checkpoint for the Ropsten test network.
RopstenTrustedCheckpoint = &TrustedCheckpoint{
SectionIndex: 322,
SectionHead: core.HexToHash("0xe3f2fb70acd752bbcac06b67688db8430815c788a31213011ed51b966108a5f4"),
CHTRoot: core.HexToHash("0xb2993a6bc28b23b84159cb477c38c0ec5607434faae6b3657ad44cbcf116f288"),
BloomRoot: core.HexToHash("0x871841e5c2ada9dab2011a550d38e9fe0a30047cfc81f1ffc7ebc09f4f230732"),
}
// RopstenCheckpointOracle contains a set of configs for the Ropsten test network oracle.
RopstenCheckpointOracle = &CheckpointOracleConfig{
Address: core.HexToAddress("0xEF79475013f154E6A65b54cB2742867791bf0B84"),
Signers: []core.Address{
core.HexToAddress("0x32162F3581E88a5f62e8A61892B42C46E2c18f7b"), // Peter
core.HexToAddress("0x78d1aD571A1A09D60D9BBf25894b44e4C8859595"), // Martin
core.HexToAddress("0x286834935f4A8Cfb4FF4C77D5770C2775aE2b0E7"), // Zsolt
core.HexToAddress("0xb86e2B0Ab5A4B1373e40c51A7C712c70Ba2f9f8E"), // Gary
core.HexToAddress("0x0DF8fa387C602AE62559cC4aFa4972A7045d6707"), // Guillaume
},
Threshold: 2,
}
// RinkebyChainConfig contains the chain parameters to run a node on the Rinkeby test network.
RinkebyChainConfig = &ChainConfig{
ChainID: big.NewInt(4),
HomesteadBlock: big.NewInt(1),
DAOForkBlock: nil,
DAOForkSupport: true,
EIP150Block: big.NewInt(2),
EIP150Hash: core.HexToHash("0x9b095b36c15eaf13044373aef8ee0bd3a382a5abb92e402afa44b8249c3a90e9"),
EIP155Block: big.NewInt(3),
EIP158Block: big.NewInt(3),
ByzantiumBlock: big.NewInt(1_035_301),
ConstantinopleBlock: big.NewInt(3_660_663),
PetersburgBlock: big.NewInt(4_321_234),
IstanbulBlock: big.NewInt(5_435_345),
MuirGlacierBlock: nil,
BerlinBlock: big.NewInt(8_290_928),
LondonBlock: big.NewInt(8_897_988),
Clique: &CliqueConfig{
Period: 15,
Epoch: 30000,
},
}
// RinkebyTrustedCheckpoint contains the light client trusted checkpoint for the Rinkeby test network.
RinkebyTrustedCheckpoint = &TrustedCheckpoint{
SectionIndex: 270,
SectionHead: core.HexToHash("0x03ef8982c93bbf18c859bc1b20ae05b439f04cf1ff592656e941d2c3fcff5d68"),
CHTRoot: core.HexToHash("0x9eb80685e8ece479e105b170439779bc0f89997ab7f4dee425f85c4234e8a6b5"),
BloomRoot: core.HexToHash("0xc3673721c5697efe5fe4cb825d178f4a335dbfeda6a197fb75c9256a767379dc"),
}
// RinkebyCheckpointOracle contains a set of configs for the Rinkeby test network oracle.
RinkebyCheckpointOracle = &CheckpointOracleConfig{
Address: core.HexToAddress("0xebe8eFA441B9302A0d7eaECc277c09d20D684540"),
Signers: []core.Address{
core.HexToAddress("0xd9c9cd5f6779558b6e0ed4e6acf6b1947e7fa1f3"), // Peter
core.HexToAddress("0x78d1aD571A1A09D60D9BBf25894b44e4C8859595"), // Martin
core.HexToAddress("0x286834935f4A8Cfb4FF4C77D5770C2775aE2b0E7"), // Zsolt
core.HexToAddress("0xb86e2B0Ab5A4B1373e40c51A7C712c70Ba2f9f8E"), // Gary
},
Threshold: 2,
}
// GoerliChainConfig contains the chain parameters to run a node on the Görli test network.
GoerliChainConfig = &ChainConfig{
ChainID: big.NewInt(5),
HomesteadBlock: big.NewInt(0),
DAOForkBlock: nil,
DAOForkSupport: true,
EIP150Block: big.NewInt(0),
EIP155Block: big.NewInt(0),
EIP158Block: big.NewInt(0),
ByzantiumBlock: big.NewInt(0),
ConstantinopleBlock: big.NewInt(0),
PetersburgBlock: big.NewInt(0),
IstanbulBlock: big.NewInt(1_561_651),
MuirGlacierBlock: nil,
BerlinBlock: big.NewInt(4_460_644),
LondonBlock: big.NewInt(5_062_605),
Clique: &CliqueConfig{
Period: 15,
Epoch: 30000,
},
}
// GoerliTrustedCheckpoint contains the light client trusted checkpoint for the Görli test network.
GoerliTrustedCheckpoint = &TrustedCheckpoint{
SectionIndex: 154,
SectionHead: core.HexToHash("0xf4cb74cc0e3683589f4992902184241fb892d7c3859d0044c16ec864605ff80d"),
CHTRoot: core.HexToHash("0xead95f9f2504b2c7c6d82c51d30e50b40631c3ea2f590cddcc9721cfc0ae79de"),
BloomRoot: core.HexToHash("0xc6dd6cfe88ac9c4a6d19c9a8651944fa9d941a2340a8f5ddaf673d4d39779d81"),
}
// GoerliCheckpointOracle contains a set of configs for the Goerli test network oracle.
GoerliCheckpointOracle = &CheckpointOracleConfig{
Address: core.HexToAddress("0x18CA0E045F0D772a851BC7e48357Bcaab0a0795D"),
Signers: []core.Address{
core.HexToAddress("0x4769bcaD07e3b938B7f43EB7D278Bc7Cb9efFb38"), // Peter
core.HexToAddress("0x78d1aD571A1A09D60D9BBf25894b44e4C8859595"), // Martin
core.HexToAddress("0x286834935f4A8Cfb4FF4C77D5770C2775aE2b0E7"), // Zsolt
core.HexToAddress("0xb86e2B0Ab5A4B1373e40c51A7C712c70Ba2f9f8E"), // Gary
core.HexToAddress("0x0DF8fa387C602AE62559cC4aFa4972A7045d6707"), // Guillaume
},
Threshold: 2,
}
CalaverasChainConfig = &ChainConfig{
ChainID: big.NewInt(123),
HomesteadBlock: big.NewInt(0),
DAOForkBlock: nil,
DAOForkSupport: true,
EIP150Block: big.NewInt(0),
EIP155Block: big.NewInt(0),
EIP158Block: big.NewInt(0),
ByzantiumBlock: big.NewInt(0),
ConstantinopleBlock: big.NewInt(0),
PetersburgBlock: big.NewInt(0),
IstanbulBlock: big.NewInt(0),
MuirGlacierBlock: nil,
BerlinBlock: big.NewInt(0),
LondonBlock: big.NewInt(500),
Clique: &CliqueConfig{
Period: 30,
Epoch: 30000,
},
}
// AllEthashProtocolChanges contains every protocol change (EIPs) introduced
// and accepted by the Ethereum core developers into the Ethash consensus.
//
// This configuration is intentionally not using keyed fields to force anyone
// adding flags to the config to also have to set these fields.
AllEthashProtocolChanges = &ChainConfig{big.NewInt(1337), big.NewInt(0), nil, false, big.NewInt(0), core.Hash{}, big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), nil, new(EthashConfig), nil}
// AllCliqueProtocolChanges contains every protocol change (EIPs) introduced
// and accepted by the Ethereum core developers into the Clique consensus.
//
// This configuration is intentionally not using keyed fields to force anyone
// adding flags to the config to also have to set these fields.
AllCliqueProtocolChanges = &ChainConfig{big.NewInt(1337), big.NewInt(0), nil, false, big.NewInt(0), core.Hash{}, big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), nil, nil, &CliqueConfig{Period: 0, Epoch: 30000}}
TestChainConfig = &ChainConfig{big.NewInt(1), big.NewInt(0), nil, false, big.NewInt(0), core.Hash{}, big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), nil, new(EthashConfig), nil}
TestRules = TestChainConfig.Rules(new(big.Int))
)
// TrustedCheckpoint represents a set of post-processed trie roots (CHT and // TrustedCheckpoint represents a set of post-processed trie roots (CHT and
// BloomTrie) associated with the appropriate section index and head hash. It is // BloomTrie) associated with the appropriate section index and head hash. It is
@ -336,7 +111,24 @@ type ChainConfig struct {
BerlinBlock *big.Int `json:"berlinBlock,omitempty"` // Berlin switch block (nil = no fork, 0 = already on berlin) BerlinBlock *big.Int `json:"berlinBlock,omitempty"` // Berlin switch block (nil = no fork, 0 = already on berlin)
LondonBlock *big.Int `json:"londonBlock,omitempty"` // London switch block (nil = no fork, 0 = already on london) LondonBlock *big.Int `json:"londonBlock,omitempty"` // London switch block (nil = no fork, 0 = already on london)
CatalystBlock *big.Int `json:"catalystBlock,omitempty"` // Catalyst switch block (nil = no fork, 0 = already on catalyst) ArrowGlacierBlock *big.Int `json:"arrowGlacierBlock,omitempty"` // Eip-4345 (bomb delay) switch block (nil = no fork, 0 = already activated)
GrayGlacierBlock *big.Int `json:"grayGlacierBlock,omitempty"` // Eip-5133 (bomb delay) switch block (nil = no fork, 0 = already activated)
MergeNetsplitBlock *big.Int `json:"mergeNetsplitBlock,omitempty"` // Virtual fork after The Merge to use as a network splitter
// Fork scheduling was switched from blocks to timestamps here
ShanghaiTime *uint64 `json:"shanghaiTime,omitempty"` // Shanghai switch time (nil = no fork, 0 = already on shanghai)
CancunTime *uint64 `json:"cancunTime,omitempty"` // Cancun switch time (nil = no fork, 0 = already on cancun)
PragueTime *uint64 `json:"pragueTime,omitempty"` // Prague switch time (nil = no fork, 0 = already on prague)
// TerminalTotalDifficulty is the amount of total difficulty reached by
// the network that triggers the consensus upgrade.
TerminalTotalDifficulty *big.Int `json:"terminalTotalDifficulty,omitempty"`
// TerminalTotalDifficultyPassed is a flag specifying that the network already
// passed the terminal total difficulty. Its purpose is to disable legacy sync
// even without having seen the TTD locally (safer long term).
TerminalTotalDifficultyPassed bool `json:"terminalTotalDifficultyPassed,omitempty"`
// Various consensus engines // Various consensus engines
Ethash *EthashConfig `json:"ethash,omitempty"` Ethash *EthashConfig `json:"ethash,omitempty"`
@ -454,11 +246,6 @@ func (c *ChainConfig) IsLondon(num *big.Int) bool {
return isForked(c.LondonBlock, num) return isForked(c.LondonBlock, num)
} }
// IsCatalyst returns whether num is either equal to the Merge fork block or greater.
func (c *ChainConfig) IsCatalyst(num *big.Int) bool {
return isForked(c.CatalystBlock, num)
}
// CheckCompatible checks whether scheduled fork transitions have been imported // CheckCompatible checks whether scheduled fork transitions have been imported
// with a mismatching chain configuration. // with a mismatching chain configuration.
func (c *ChainConfig) CheckCompatible(newcfg *ChainConfig, height uint64) *ConfigCompatError { func (c *ChainConfig) CheckCompatible(newcfg *ChainConfig, height uint64) *ConfigCompatError {
@ -656,6 +443,5 @@ func (c *ChainConfig) Rules(num *big.Int) Rules {
IsIstanbul: c.IsIstanbul(num), IsIstanbul: c.IsIstanbul(num),
IsBerlin: c.IsBerlin(num), IsBerlin: c.IsBerlin(num),
IsLondon: c.IsLondon(num), IsLondon: c.IsLondon(num),
IsCatalyst: c.IsCatalyst(num),
} }
} }

423
restricted/rlp/encbuffer.go Normal file
View File

@ -0,0 +1,423 @@
// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package rlp
import (
"encoding/binary"
"io"
"math/big"
// "reflect"
"sync"
"github.com/holiman/uint256"
)
type encBuffer struct {
str []byte // string data, contains everything except list headers
lheads []listhead // all list headers
lhsize int // sum of sizes of all encoded list headers
sizebuf [9]byte // auxiliary buffer for uint encoding
}
// The global encBuffer pool.
var encBufferPool = sync.Pool{
New: func() interface{} { return new(encBuffer) },
}
func getEncBuffer() *encBuffer {
buf := encBufferPool.Get().(*encBuffer)
buf.reset()
return buf
}
func (buf *encBuffer) reset() {
buf.lhsize = 0
buf.str = buf.str[:0]
buf.lheads = buf.lheads[:0]
}
// size returns the length of the encoded data.
func (buf *encBuffer) size() int {
return len(buf.str) + buf.lhsize
}
// makeBytes creates the encoder output.
func (w *encBuffer) makeBytes() []byte {
out := make([]byte, w.size())
w.copyTo(out)
return out
}
func (w *encBuffer) copyTo(dst []byte) {
strpos := 0
pos := 0
for _, head := range w.lheads {
// write string data before header
n := copy(dst[pos:], w.str[strpos:head.offset])
pos += n
strpos += n
// write the header
enc := head.encode(dst[pos:])
pos += len(enc)
}
// copy string data after the last list header
copy(dst[pos:], w.str[strpos:])
}
// writeTo writes the encoder output to w.
func (buf *encBuffer) writeTo(w io.Writer) (err error) {
strpos := 0
for _, head := range buf.lheads {
// write string data before header
if head.offset-strpos > 0 {
n, err := w.Write(buf.str[strpos:head.offset])
strpos += n
if err != nil {
return err
}
}
// write the header
enc := head.encode(buf.sizebuf[:])
if _, err = w.Write(enc); err != nil {
return err
}
}
if strpos < len(buf.str) {
// write string data after the last list header
_, err = w.Write(buf.str[strpos:])
}
return err
}
// Write implements io.Writer and appends b directly to the output.
func (buf *encBuffer) Write(b []byte) (int, error) {
buf.str = append(buf.str, b...)
return len(b), nil
}
// writeBool writes b as the integer 0 (false) or 1 (true).
func (buf *encBuffer) writeBool(b bool) {
if b {
buf.str = append(buf.str, 0x01)
} else {
buf.str = append(buf.str, 0x80)
}
}
func (buf *encBuffer) writeUint64(i uint64) {
if i == 0 {
buf.str = append(buf.str, 0x80)
} else if i < 128 {
// fits single byte
buf.str = append(buf.str, byte(i))
} else {
s := putint(buf.sizebuf[1:], i)
buf.sizebuf[0] = 0x80 + byte(s)
buf.str = append(buf.str, buf.sizebuf[:s+1]...)
}
}
func (buf *encBuffer) writeBytes(b []byte) {
if len(b) == 1 && b[0] <= 0x7F {
// fits single byte, no string header
buf.str = append(buf.str, b[0])
} else {
buf.encodeStringHeader(len(b))
buf.str = append(buf.str, b...)
}
}
func (buf *encBuffer) writeString(s string) {
buf.writeBytes([]byte(s))
}
// // wordBytes is the number of bytes in a big.Word
// const wordBytes = (32 << (uint64(^big.Word(0)) >> 63)) / 8
// writeBigInt writes i as an integer.
func (w *encBuffer) writeBigInt(i *big.Int) {
bitlen := i.BitLen()
if bitlen <= 64 {
w.writeUint64(i.Uint64())
return
}
// Integer is larger than 64 bits, encode from i.Bits().
// The minimal byte length is bitlen rounded up to the next
// multiple of 8, divided by 8.
length := ((bitlen + 7) & -8) >> 3
w.encodeStringHeader(length)
w.str = append(w.str, make([]byte, length)...)
index := length
buf := w.str[len(w.str)-length:]
for _, d := range i.Bits() {
for j := 0; j < wordBytes && index > 0; j++ {
index--
buf[index] = byte(d)
d >>= 8
}
}
}
// writeUint256 writes z as an integer.
func (w *encBuffer) writeUint256(z *uint256.Int) {
bitlen := z.BitLen()
if bitlen <= 64 {
w.writeUint64(z.Uint64())
return
}
nBytes := byte((bitlen + 7) / 8)
var b [33]byte
binary.BigEndian.PutUint64(b[1:9], z[3])
binary.BigEndian.PutUint64(b[9:17], z[2])
binary.BigEndian.PutUint64(b[17:25], z[1])
binary.BigEndian.PutUint64(b[25:33], z[0])
b[32-nBytes] = 0x80 + nBytes
w.str = append(w.str, b[32-nBytes:]...)
}
// list adds a new list header to the header stack. It returns the index of the header.
// Call listEnd with this index after encoding the content of the list.
func (buf *encBuffer) list() int {
buf.lheads = append(buf.lheads, listhead{offset: len(buf.str), size: buf.lhsize})
return len(buf.lheads) - 1
}
func (buf *encBuffer) listEnd(index int) {
lh := &buf.lheads[index]
lh.size = buf.size() - lh.offset - lh.size
if lh.size < 56 {
buf.lhsize++ // length encoded into kind tag
} else {
buf.lhsize += 1 + intsize(uint64(lh.size))
}
}
// func (buf *encBuffer) encode(val interface{}) error {
// rval := reflect.ValueOf(val)
// writer, err := cachedWriter(rval.Type())
// if err != nil {
// return err
// }
// return writer(rval, buf)
// }
func (buf *encBuffer) encodeStringHeader(size int) {
if size < 56 {
buf.str = append(buf.str, 0x80+byte(size))
} else {
sizesize := putint(buf.sizebuf[1:], uint64(size))
buf.sizebuf[0] = 0xB7 + byte(sizesize)
buf.str = append(buf.str, buf.sizebuf[:sizesize+1]...)
}
}
// // encReader is the io.Reader returned by EncodeToReader.
// // It releases its encbuf at EOF.
// type encReader struct {
// buf *encBuffer // the buffer we're reading from. this is nil when we're at EOF.
// lhpos int // index of list header that we're reading
// strpos int // current position in string buffer
// piece []byte // next piece to be read
// }
// func (r *encReader) Read(b []byte) (n int, err error) {
// for {
// if r.piece = r.next(); r.piece == nil {
// // Put the encode buffer back into the pool at EOF when it
// // is first encountered. Subsequent calls still return EOF
// // as the error but the buffer is no longer valid.
// if r.buf != nil {
// encBufferPool.Put(r.buf)
// r.buf = nil
// }
// return n, io.EOF
// }
// nn := copy(b[n:], r.piece)
// n += nn
// if nn < len(r.piece) {
// // piece didn't fit, see you next time.
// r.piece = r.piece[nn:]
// return n, nil
// }
// r.piece = nil
// }
// }
// // next returns the next piece of data to be read.
// // it returns nil at EOF.
// func (r *encReader) next() []byte {
// switch {
// case r.buf == nil:
// return nil
// case r.piece != nil:
// // There is still data available for reading.
// return r.piece
// case r.lhpos < len(r.buf.lheads):
// // We're before the last list header.
// head := r.buf.lheads[r.lhpos]
// sizebefore := head.offset - r.strpos
// if sizebefore > 0 {
// // String data before header.
// p := r.buf.str[r.strpos:head.offset]
// r.strpos += sizebefore
// return p
// }
// r.lhpos++
// return head.encode(r.buf.sizebuf[:])
// case r.strpos < len(r.buf.str):
// // String data at the end, after all list headers.
// p := r.buf.str[r.strpos:]
// r.strpos = len(r.buf.str)
// return p
// default:
// return nil
// }
// }
func encBufferFromWriter(w io.Writer) *encBuffer {
switch w := w.(type) {
case EncoderBuffer:
return w.buf
case *EncoderBuffer:
return w.buf
case *encBuffer:
return w
default:
return nil
}
}
// EncoderBuffer is a buffer for incremental encoding.
//
// The zero value is NOT ready for use. To get a usable buffer,
// create it using NewEncoderBuffer or call Reset.
type EncoderBuffer struct {
buf *encBuffer
dst io.Writer
ownBuffer bool
}
// NewEncoderBuffer creates an encoder buffer.
func NewEncoderBuffer(dst io.Writer) EncoderBuffer {
var w EncoderBuffer
w.Reset(dst)
return w
}
// Reset truncates the buffer and sets the output destination.
func (w *EncoderBuffer) Reset(dst io.Writer) {
if w.buf != nil && !w.ownBuffer {
panic("can't Reset derived EncoderBuffer")
}
// If the destination writer has an *encBuffer, use it.
// Note that w.ownBuffer is left false here.
if dst != nil {
if outer := encBufferFromWriter(dst); outer != nil {
*w = EncoderBuffer{outer, nil, false}
return
}
}
// Get a fresh buffer.
if w.buf == nil {
w.buf = encBufferPool.Get().(*encBuffer)
w.ownBuffer = true
}
w.buf.reset()
w.dst = dst
}
// Flush writes encoded RLP data to the output writer. This can only be called once.
// If you want to re-use the buffer after Flush, you must call Reset.
func (w *EncoderBuffer) Flush() error {
var err error
if w.dst != nil {
err = w.buf.writeTo(w.dst)
}
// Release the internal buffer.
if w.ownBuffer {
encBufferPool.Put(w.buf)
}
*w = EncoderBuffer{}
return err
}
// ToBytes returns the encoded bytes.
func (w *EncoderBuffer) ToBytes() []byte {
return w.buf.makeBytes()
}
// AppendToBytes appends the encoded bytes to dst.
func (w *EncoderBuffer) AppendToBytes(dst []byte) []byte {
size := w.buf.size()
out := append(dst, make([]byte, size)...)
w.buf.copyTo(out[len(dst):])
return out
}
// Write appends b directly to the encoder output.
func (w EncoderBuffer) Write(b []byte) (int, error) {
return w.buf.Write(b)
}
// WriteBool writes b as the integer 0 (false) or 1 (true).
func (w EncoderBuffer) WriteBool(b bool) {
w.buf.writeBool(b)
}
// WriteUint64 encodes an unsigned integer.
func (w EncoderBuffer) WriteUint64(i uint64) {
w.buf.writeUint64(i)
}
// WriteBigInt encodes a big.Int as an RLP string.
// Note: Unlike with Encode, the sign of i is ignored.
func (w EncoderBuffer) WriteBigInt(i *big.Int) {
w.buf.writeBigInt(i)
}
// WriteUint256 encodes uint256.Int as an RLP string.
func (w EncoderBuffer) WriteUint256(i *uint256.Int) {
w.buf.writeUint256(i)
}
// WriteBytes encodes b as an RLP string.
func (w EncoderBuffer) WriteBytes(b []byte) {
w.buf.writeBytes(b)
}
// WriteString encodes s as an RLP string.
func (w EncoderBuffer) WriteString(s string) {
w.buf.writeString(s)
}
// List starts a list. It returns an internal index. Call EndList with
// this index after encoding the content to finish the list.
func (w EncoderBuffer) List() int {
return w.buf.list()
}
// ListEnd finishes the given list.
func (w EncoderBuffer) ListEnd(index int) {
w.buf.listEnd(index)
}