2023-04-05 04:25:44 +00:00
|
|
|
// Copyright 2020 The go-ethereum Authors
|
|
|
|
// This file is part of the go-ethereum library.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
|
|
// (at your option) any later version.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU Lesser General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
package hasher
|
|
|
|
|
|
|
|
import (
|
|
|
|
"bufio"
|
|
|
|
"bytes"
|
|
|
|
"encoding/gob"
|
|
|
|
"errors"
|
|
|
|
"io"
|
|
|
|
"sync"
|
|
|
|
|
|
|
|
"github.com/openrelayxyz/plugeth-utils/core"
|
|
|
|
"github.com/openrelayxyz/plugeth-utils/restricted/types"
|
|
|
|
)
|
|
|
|
|
|
|
|
var ErrCommitDisabled = errors.New("no database for committing")
|
|
|
|
|
|
|
|
var stPool = sync.Pool{
|
|
|
|
New: func() interface{} {
|
|
|
|
return NewStackTrie(nil)
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
// NodeWriteFunc is used to provide all information of a dirty node for committing
|
|
|
|
// so that callers can flush nodes into database with desired scheme.
|
|
|
|
type NodeWriteFunc = func(owner core.Hash, path []byte, hash core.Hash, blob []byte)
|
|
|
|
|
|
|
|
func stackTrieFromPool(writeFn NodeWriteFunc, owner core.Hash) *StackTrie {
|
|
|
|
st := stPool.Get().(*StackTrie)
|
|
|
|
st.owner = owner
|
|
|
|
st.writeFn = writeFn
|
|
|
|
return st
|
|
|
|
}
|
|
|
|
|
|
|
|
func returnToPool(st *StackTrie) {
|
|
|
|
st.Reset()
|
|
|
|
stPool.Put(st)
|
|
|
|
}
|
|
|
|
|
|
|
|
// StackTrie is a trie implementation that expects keys to be inserted
|
|
|
|
// in order. Once it determines that a subtree will no longer be inserted
|
|
|
|
// into, it will hash it and free up the memory it uses.
|
|
|
|
type StackTrie struct {
|
2023-06-22 16:30:34 +00:00
|
|
|
owner core.Hash // the owner of the trie
|
2023-04-05 04:25:44 +00:00
|
|
|
nodeType uint8 // node type (as in branch, ext, leaf)
|
|
|
|
val []byte // value contained by this node if it's a leaf
|
|
|
|
key []byte // key chunk covered by this (leaf|ext) node
|
|
|
|
children [16]*StackTrie // list of children (for branch and exts)
|
|
|
|
writeFn NodeWriteFunc // function for committing nodes, can be nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// NewStackTrie allocates and initializes an empty trie.
|
|
|
|
func NewStackTrie(writeFn NodeWriteFunc) *StackTrie {
|
|
|
|
return &StackTrie{
|
|
|
|
nodeType: emptyNode,
|
|
|
|
writeFn: writeFn,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// NewStackTrieWithOwner allocates and initializes an empty trie, but with
|
|
|
|
// the additional owner field.
|
|
|
|
func NewStackTrieWithOwner(writeFn NodeWriteFunc, owner core.Hash) *StackTrie {
|
|
|
|
return &StackTrie{
|
|
|
|
owner: owner,
|
|
|
|
nodeType: emptyNode,
|
|
|
|
writeFn: writeFn,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// NewFromBinary initialises a serialized stacktrie with the given db.
|
|
|
|
func NewFromBinary(data []byte, writeFn NodeWriteFunc) (*StackTrie, error) {
|
|
|
|
var st StackTrie
|
|
|
|
if err := st.UnmarshalBinary(data); err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
// If a database is used, we need to recursively add it to every child
|
|
|
|
if writeFn != nil {
|
|
|
|
st.setWriter(writeFn)
|
|
|
|
}
|
|
|
|
return &st, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// MarshalBinary implements encoding.BinaryMarshaler
|
|
|
|
func (st *StackTrie) MarshalBinary() (data []byte, err error) {
|
|
|
|
var (
|
|
|
|
b bytes.Buffer
|
|
|
|
w = bufio.NewWriter(&b)
|
|
|
|
)
|
|
|
|
if err := gob.NewEncoder(w).Encode(struct {
|
|
|
|
Owner core.Hash
|
|
|
|
NodeType uint8
|
|
|
|
Val []byte
|
|
|
|
Key []byte
|
|
|
|
}{
|
|
|
|
st.owner,
|
|
|
|
st.nodeType,
|
|
|
|
st.val,
|
|
|
|
st.key,
|
|
|
|
}); err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
for _, child := range st.children {
|
|
|
|
if child == nil {
|
|
|
|
w.WriteByte(0)
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
w.WriteByte(1)
|
|
|
|
if childData, err := child.MarshalBinary(); err != nil {
|
|
|
|
return nil, err
|
|
|
|
} else {
|
|
|
|
w.Write(childData)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
w.Flush()
|
|
|
|
return b.Bytes(), nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// UnmarshalBinary implements encoding.BinaryUnmarshaler
|
|
|
|
func (st *StackTrie) UnmarshalBinary(data []byte) error {
|
|
|
|
r := bytes.NewReader(data)
|
|
|
|
return st.unmarshalBinary(r)
|
|
|
|
}
|
|
|
|
|
|
|
|
func (st *StackTrie) unmarshalBinary(r io.Reader) error {
|
|
|
|
var dec struct {
|
|
|
|
Owner core.Hash
|
|
|
|
NodeType uint8
|
|
|
|
Val []byte
|
|
|
|
Key []byte
|
|
|
|
}
|
|
|
|
if err := gob.NewDecoder(r).Decode(&dec); err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
st.owner = dec.Owner
|
|
|
|
st.nodeType = dec.NodeType
|
|
|
|
st.val = dec.Val
|
|
|
|
st.key = dec.Key
|
|
|
|
|
|
|
|
var hasChild = make([]byte, 1)
|
|
|
|
for i := range st.children {
|
|
|
|
if _, err := r.Read(hasChild); err != nil {
|
|
|
|
return err
|
|
|
|
} else if hasChild[0] == 0 {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
var child StackTrie
|
|
|
|
if err := child.unmarshalBinary(r); err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
st.children[i] = &child
|
|
|
|
}
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (st *StackTrie) setWriter(writeFn NodeWriteFunc) {
|
|
|
|
st.writeFn = writeFn
|
|
|
|
for _, child := range st.children {
|
|
|
|
if child != nil {
|
|
|
|
child.setWriter(writeFn)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func newLeaf(owner core.Hash, key, val []byte, writeFn NodeWriteFunc) *StackTrie {
|
|
|
|
st := stackTrieFromPool(writeFn, owner)
|
|
|
|
st.nodeType = leafNode
|
|
|
|
st.key = append(st.key, key...)
|
|
|
|
st.val = val
|
|
|
|
return st
|
|
|
|
}
|
|
|
|
|
|
|
|
func newExt(owner core.Hash, key []byte, child *StackTrie, writeFn NodeWriteFunc) *StackTrie {
|
|
|
|
st := stackTrieFromPool(writeFn, owner)
|
|
|
|
st.nodeType = extNode
|
|
|
|
st.key = append(st.key, key...)
|
|
|
|
st.children[0] = child
|
|
|
|
return st
|
|
|
|
}
|
|
|
|
|
|
|
|
// List all values that StackTrie#nodeType can hold
|
|
|
|
const (
|
|
|
|
emptyNode = iota
|
|
|
|
branchNode
|
|
|
|
extNode
|
|
|
|
leafNode
|
|
|
|
hashedNode
|
|
|
|
)
|
|
|
|
|
|
|
|
// TryUpdate inserts a (key, value) pair into the stack trie
|
|
|
|
func (st *StackTrie) TryUpdate(key, value []byte) error {
|
|
|
|
k := keybytesToHex(key)
|
|
|
|
if len(value) == 0 {
|
|
|
|
panic("deletion not supported")
|
|
|
|
}
|
|
|
|
st.insert(k[:len(k)-1], value, nil)
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (st *StackTrie) Update(key, value []byte) {
|
2023-09-11 19:22:59 +00:00
|
|
|
st.TryUpdate(key, value)
|
2023-04-05 04:25:44 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
func (st *StackTrie) Reset() {
|
|
|
|
st.owner = core.Hash{}
|
|
|
|
st.writeFn = nil
|
|
|
|
st.key = st.key[:0]
|
|
|
|
st.val = nil
|
|
|
|
for i := range st.children {
|
|
|
|
st.children[i] = nil
|
|
|
|
}
|
|
|
|
st.nodeType = emptyNode
|
|
|
|
}
|
|
|
|
|
|
|
|
// Helper function that, given a full key, determines the index
|
|
|
|
// at which the chunk pointed by st.keyOffset is different from
|
|
|
|
// the same chunk in the full key.
|
|
|
|
func (st *StackTrie) getDiffIndex(key []byte) int {
|
|
|
|
for idx, nibble := range st.key {
|
|
|
|
if nibble != key[idx] {
|
|
|
|
return idx
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return len(st.key)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Helper function to that inserts a (key, value) pair into
|
|
|
|
// the trie.
|
|
|
|
func (st *StackTrie) insert(key, value []byte, prefix []byte) {
|
|
|
|
switch st.nodeType {
|
|
|
|
case branchNode: /* Branch */
|
|
|
|
idx := int(key[0])
|
|
|
|
|
|
|
|
// Unresolve elder siblings
|
|
|
|
for i := idx - 1; i >= 0; i-- {
|
|
|
|
if st.children[i] != nil {
|
|
|
|
if st.children[i].nodeType != hashedNode {
|
|
|
|
st.children[i].hash(append(prefix, byte(i)))
|
|
|
|
}
|
|
|
|
break
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add new child
|
|
|
|
if st.children[idx] == nil {
|
|
|
|
st.children[idx] = newLeaf(st.owner, key[1:], value, st.writeFn)
|
|
|
|
} else {
|
|
|
|
st.children[idx].insert(key[1:], value, append(prefix, key[0]))
|
|
|
|
}
|
|
|
|
|
|
|
|
case extNode: /* Ext */
|
|
|
|
// Compare both key chunks and see where they differ
|
|
|
|
diffidx := st.getDiffIndex(key)
|
|
|
|
|
|
|
|
// Check if chunks are identical. If so, recurse into
|
|
|
|
// the child node. Otherwise, the key has to be split
|
|
|
|
// into 1) an optional common prefix, 2) the fullnode
|
|
|
|
// representing the two differing path, and 3) a leaf
|
|
|
|
// for each of the differentiated subtrees.
|
|
|
|
if diffidx == len(st.key) {
|
|
|
|
// Ext key and key segment are identical, recurse into
|
|
|
|
// the child node.
|
|
|
|
st.children[0].insert(key[diffidx:], value, append(prefix, key[:diffidx]...))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
// Save the original part. Depending if the break is
|
|
|
|
// at the extension's last byte or not, create an
|
|
|
|
// intermediate extension or use the extension's child
|
|
|
|
// node directly.
|
|
|
|
var n *StackTrie
|
|
|
|
if diffidx < len(st.key)-1 {
|
|
|
|
// Break on the non-last byte, insert an intermediate
|
|
|
|
// extension. The path prefix of the newly-inserted
|
|
|
|
// extension should also contain the different byte.
|
|
|
|
n = newExt(st.owner, st.key[diffidx+1:], st.children[0], st.writeFn)
|
|
|
|
n.hash(append(prefix, st.key[:diffidx+1]...))
|
|
|
|
} else {
|
|
|
|
// Break on the last byte, no need to insert
|
|
|
|
// an extension node: reuse the current node.
|
|
|
|
// The path prefix of the original part should
|
|
|
|
// still be same.
|
|
|
|
n = st.children[0]
|
|
|
|
n.hash(append(prefix, st.key...))
|
|
|
|
}
|
|
|
|
var p *StackTrie
|
|
|
|
if diffidx == 0 {
|
|
|
|
// the break is on the first byte, so
|
|
|
|
// the current node is converted into
|
|
|
|
// a branch node.
|
|
|
|
st.children[0] = nil
|
|
|
|
p = st
|
|
|
|
st.nodeType = branchNode
|
|
|
|
} else {
|
|
|
|
// the common prefix is at least one byte
|
|
|
|
// long, insert a new intermediate branch
|
|
|
|
// node.
|
|
|
|
st.children[0] = stackTrieFromPool(st.writeFn, st.owner)
|
|
|
|
st.children[0].nodeType = branchNode
|
|
|
|
p = st.children[0]
|
|
|
|
}
|
|
|
|
// Create a leaf for the inserted part
|
|
|
|
o := newLeaf(st.owner, key[diffidx+1:], value, st.writeFn)
|
|
|
|
|
|
|
|
// Insert both child leaves where they belong:
|
|
|
|
origIdx := st.key[diffidx]
|
|
|
|
newIdx := key[diffidx]
|
|
|
|
p.children[origIdx] = n
|
|
|
|
p.children[newIdx] = o
|
|
|
|
st.key = st.key[:diffidx]
|
|
|
|
|
|
|
|
case leafNode: /* Leaf */
|
|
|
|
// Compare both key chunks and see where they differ
|
|
|
|
diffidx := st.getDiffIndex(key)
|
|
|
|
|
|
|
|
// Overwriting a key isn't supported, which means that
|
|
|
|
// the current leaf is expected to be split into 1) an
|
|
|
|
// optional extension for the common prefix of these 2
|
|
|
|
// keys, 2) a fullnode selecting the path on which the
|
|
|
|
// keys differ, and 3) one leaf for the differentiated
|
|
|
|
// component of each key.
|
|
|
|
if diffidx >= len(st.key) {
|
|
|
|
panic("Trying to insert into existing key")
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if the split occurs at the first nibble of the
|
|
|
|
// chunk. In that case, no prefix extnode is necessary.
|
|
|
|
// Otherwise, create that
|
|
|
|
var p *StackTrie
|
|
|
|
if diffidx == 0 {
|
|
|
|
// Convert current leaf into a branch
|
|
|
|
st.nodeType = branchNode
|
|
|
|
p = st
|
|
|
|
st.children[0] = nil
|
|
|
|
} else {
|
|
|
|
// Convert current node into an ext,
|
|
|
|
// and insert a child branch node.
|
|
|
|
st.nodeType = extNode
|
|
|
|
st.children[0] = NewStackTrieWithOwner(st.writeFn, st.owner)
|
|
|
|
st.children[0].nodeType = branchNode
|
|
|
|
p = st.children[0]
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create the two child leaves: one containing the original
|
|
|
|
// value and another containing the new value. The child leaf
|
|
|
|
// is hashed directly in order to free up some memory.
|
|
|
|
origIdx := st.key[diffidx]
|
|
|
|
p.children[origIdx] = newLeaf(st.owner, st.key[diffidx+1:], st.val, st.writeFn)
|
|
|
|
p.children[origIdx].hash(append(prefix, st.key[:diffidx+1]...))
|
|
|
|
|
|
|
|
newIdx := key[diffidx]
|
|
|
|
p.children[newIdx] = newLeaf(st.owner, key[diffidx+1:], value, st.writeFn)
|
|
|
|
|
|
|
|
// Finally, cut off the key part that has been passed
|
|
|
|
// over to the children.
|
|
|
|
st.key = st.key[:diffidx]
|
|
|
|
st.val = nil
|
|
|
|
|
|
|
|
case emptyNode: /* Empty */
|
|
|
|
st.nodeType = leafNode
|
|
|
|
st.key = key
|
|
|
|
st.val = value
|
|
|
|
|
|
|
|
case hashedNode:
|
|
|
|
panic("trying to insert into hash")
|
|
|
|
|
|
|
|
default:
|
|
|
|
panic("invalid type")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// hash converts st into a 'hashedNode', if possible. Possible outcomes:
|
|
|
|
//
|
|
|
|
// 1. The rlp-encoded value was >= 32 bytes:
|
|
|
|
// - Then the 32-byte `hash` will be accessible in `st.val`.
|
|
|
|
// - And the 'st.type' will be 'hashedNode'
|
|
|
|
//
|
|
|
|
// 2. The rlp-encoded value was < 32 bytes
|
|
|
|
// - Then the <32 byte rlp-encoded value will be accessible in 'st.val'.
|
|
|
|
// - And the 'st.type' will be 'hashedNode' AGAIN
|
|
|
|
//
|
|
|
|
// This method also sets 'st.type' to hashedNode, and clears 'st.key'.
|
|
|
|
func (st *StackTrie) hash(path []byte) {
|
|
|
|
h := newHasher(false)
|
|
|
|
defer returnHasherToPool(h)
|
|
|
|
|
|
|
|
st.hashRec(h, path)
|
|
|
|
}
|
|
|
|
|
|
|
|
func (st *StackTrie) hashRec(hasher *Hasher, path []byte) {
|
|
|
|
// The switch below sets this to the RLP-encoding of this node.
|
|
|
|
var encodedNode []byte
|
|
|
|
|
|
|
|
switch st.nodeType {
|
|
|
|
case hashedNode:
|
|
|
|
return
|
|
|
|
|
|
|
|
case emptyNode:
|
|
|
|
st.val = types.EmptyRootHash.Bytes()
|
|
|
|
st.key = st.key[:0]
|
|
|
|
st.nodeType = hashedNode
|
|
|
|
return
|
|
|
|
|
|
|
|
case branchNode:
|
|
|
|
var nodes rawFullNode
|
|
|
|
for i, child := range st.children {
|
|
|
|
if child == nil {
|
|
|
|
nodes[i] = nilValueNode
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
child.hashRec(hasher, append(path, byte(i)))
|
|
|
|
if len(child.val) < 32 {
|
|
|
|
nodes[i] = rawNode(child.val)
|
|
|
|
} else {
|
|
|
|
nodes[i] = hashNode(child.val)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Release child back to pool.
|
|
|
|
st.children[i] = nil
|
|
|
|
returnToPool(child)
|
|
|
|
}
|
|
|
|
|
|
|
|
nodes.encode(hasher.encbuf)
|
|
|
|
encodedNode = hasher.encodedBytes()
|
|
|
|
|
|
|
|
case extNode:
|
|
|
|
st.children[0].hashRec(hasher, append(path, st.key...))
|
|
|
|
|
|
|
|
n := rawShortNode{Key: hexToCompact(st.key)}
|
|
|
|
if len(st.children[0].val) < 32 {
|
|
|
|
n.Val = rawNode(st.children[0].val)
|
|
|
|
} else {
|
|
|
|
n.Val = hashNode(st.children[0].val)
|
|
|
|
}
|
|
|
|
|
|
|
|
n.encode(hasher.encbuf)
|
|
|
|
encodedNode = hasher.encodedBytes()
|
|
|
|
|
|
|
|
// Release child back to pool.
|
|
|
|
returnToPool(st.children[0])
|
|
|
|
st.children[0] = nil
|
|
|
|
|
|
|
|
case leafNode:
|
|
|
|
st.key = append(st.key, byte(16))
|
|
|
|
n := rawShortNode{Key: hexToCompact(st.key), Val: valueNode(st.val)}
|
|
|
|
|
|
|
|
n.encode(hasher.encbuf)
|
|
|
|
encodedNode = hasher.encodedBytes()
|
|
|
|
|
|
|
|
default:
|
|
|
|
panic("invalid node type")
|
|
|
|
}
|
|
|
|
|
|
|
|
st.nodeType = hashedNode
|
|
|
|
st.key = st.key[:0]
|
|
|
|
if len(encodedNode) < 32 {
|
|
|
|
st.val = core.CopyBytes(encodedNode)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// Write the hash to the 'val'. We allocate a new val here to not mutate
|
|
|
|
// input values
|
|
|
|
st.val = hasher.hashData(encodedNode)
|
|
|
|
if st.writeFn != nil {
|
|
|
|
st.writeFn(st.owner, path, core.BytesToHash(st.val), encodedNode)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Hash returns the hash of the current node.
|
|
|
|
func (st *StackTrie) Hash() (h core.Hash) {
|
|
|
|
hasher := newHasher(false)
|
|
|
|
defer returnHasherToPool(hasher)
|
|
|
|
|
|
|
|
st.hashRec(hasher, nil)
|
|
|
|
if len(st.val) == 32 {
|
|
|
|
copy(h[:], st.val)
|
|
|
|
return h
|
|
|
|
}
|
|
|
|
// If the node's RLP isn't 32 bytes long, the node will not
|
|
|
|
// be hashed, and instead contain the rlp-encoding of the
|
|
|
|
// node. For the top level node, we need to force the hashing.
|
|
|
|
hasher.sha.Reset()
|
|
|
|
hasher.sha.Write(st.val)
|
|
|
|
hasher.sha.Read(h[:])
|
|
|
|
return h
|
|
|
|
}
|
|
|
|
|
|
|
|
// Commit will firstly hash the entire trie if it's still not hashed
|
|
|
|
// and then commit all nodes to the associated database. Actually most
|
|
|
|
// of the trie nodes MAY have been committed already. The main purpose
|
|
|
|
// here is to commit the root node.
|
|
|
|
//
|
|
|
|
// The associated database is expected, otherwise the whole commit
|
|
|
|
// functionality should be disabled.
|
|
|
|
func (st *StackTrie) Commit() (h core.Hash, err error) {
|
|
|
|
if st.writeFn == nil {
|
|
|
|
return core.Hash{}, ErrCommitDisabled
|
|
|
|
}
|
|
|
|
hasher := newHasher(false)
|
|
|
|
defer returnHasherToPool(hasher)
|
|
|
|
|
|
|
|
st.hashRec(hasher, nil)
|
|
|
|
if len(st.val) == 32 {
|
|
|
|
copy(h[:], st.val)
|
|
|
|
return h, nil
|
|
|
|
}
|
|
|
|
// If the node's RLP isn't 32 bytes long, the node will not
|
|
|
|
// be hashed (and committed), and instead contain the rlp-encoding of the
|
|
|
|
// node. For the top level node, we need to force the hashing+commit.
|
|
|
|
hasher.sha.Reset()
|
|
|
|
hasher.sha.Write(st.val)
|
|
|
|
hasher.sha.Read(h[:])
|
|
|
|
|
|
|
|
st.writeFn(st.owner, nil, h, st.val)
|
|
|
|
return h, nil
|
|
|
|
}
|