plugeth-statediff/builder.go

678 lines
26 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Contains a batch of utility type declarations used by the tests. As the node
// operates on unique types, a lot of them are needed to check various features.
package statediff
import (
"bytes"
"fmt"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
metrics2 "github.com/ethereum/go-ethereum/statediff/indexer/database/metrics"
ipld2 "github.com/ethereum/go-ethereum/statediff/indexer/ipld"
"github.com/ethereum/go-ethereum/statediff/indexer/shared"
"github.com/ethereum/go-ethereum/statediff/trie_helpers"
types2 "github.com/ethereum/go-ethereum/statediff/types"
"github.com/ethereum/go-ethereum/trie"
)
var (
emptyNode, _ = rlp.EncodeToBytes(&[]byte{})
emptyContractRoot = crypto.Keccak256Hash(emptyNode)
nullCodeHash = crypto.Keccak256Hash([]byte{}).Bytes()
nullNodeHash = common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000000000")
)
// Builder interface exposes the method for building a state diff between two blocks
type Builder interface {
BuildStateDiffObject(args Args, params Params) (types2.StateObject, error)
WriteStateDiffObject(args Args, params Params, output types2.StateNodeSink, ipldOutput types2.IPLDSink) error
}
type StateDiffBuilder struct {
StateCache state.Database
}
type IterPair struct {
Older, Newer trie.NodeIterator
}
func StateNodeAppender(nodes *[]types2.StateLeafNode) types2.StateNodeSink {
return func(node types2.StateLeafNode) error {
*nodes = append(*nodes, node)
return nil
}
}
func StorageNodeAppender(nodes *[]types2.StorageLeafNode) types2.StorageNodeSink {
return func(node types2.StorageLeafNode) error {
*nodes = append(*nodes, node)
return nil
}
}
func IPLDMappingAppender(iplds *[]types2.IPLD) types2.IPLDSink {
return func(c types2.IPLD) error {
*iplds = append(*iplds, c)
return nil
}
}
// NewBuilder is used to create a statediff builder
func NewBuilder(stateCache state.Database) Builder {
return &StateDiffBuilder{
StateCache: stateCache, // state cache is safe for concurrent reads
}
}
// BuildStateDiffObject builds a statediff object from two blocks and the provided parameters
func (sdb *StateDiffBuilder) BuildStateDiffObject(args Args, params Params) (types2.StateObject, error) {
defer metrics2.UpdateDuration(time.Now(), metrics2.IndexerMetrics.BuildStateDiffObjectTimer)
var stateNodes []types2.StateLeafNode
var iplds []types2.IPLD
err := sdb.WriteStateDiffObject(args, params, StateNodeAppender(&stateNodes), IPLDMappingAppender(&iplds))
if err != nil {
return types2.StateObject{}, err
}
return types2.StateObject{
BlockHash: args.BlockHash,
BlockNumber: args.BlockNumber,
Nodes: stateNodes,
IPLDs: iplds,
}, nil
}
// WriteStateDiffObject writes a statediff object to output sinks
func (sdb *StateDiffBuilder) WriteStateDiffObject(args Args, params Params, output types2.StateNodeSink,
ipldOutput types2.IPLDSink) error {
defer metrics2.UpdateDuration(time.Now(), metrics2.IndexerMetrics.WriteStateDiffObjectTimer)
// Load tries for old and new states
oldTrie, err := sdb.StateCache.OpenTrie(args.OldStateRoot)
if err != nil {
return fmt.Errorf("error creating trie for oldStateRoot: %v", err)
}
newTrie, err := sdb.StateCache.OpenTrie(args.NewStateRoot)
if err != nil {
return fmt.Errorf("error creating trie for newStateRoot: %v", err)
}
// we do two state trie iterations:
// one for new/updated nodes,
// one for deleted/updated nodes;
// prepare 2 iterator instances for each task
iterPairs := []IterPair{
{
Older: oldTrie.NodeIterator([]byte{}),
Newer: newTrie.NodeIterator([]byte{}),
},
{
Older: oldTrie.NodeIterator([]byte{}),
Newer: newTrie.NodeIterator([]byte{}),
},
}
logger := log.New("hash", args.BlockHash.Hex(), "number", args.BlockNumber)
return sdb.BuildStateDiffWithIntermediateStateNodes(iterPairs, params, output, ipldOutput, logger, nil)
}
func (sdb *StateDiffBuilder) BuildStateDiffWithIntermediateStateNodes(iterPairs []IterPair, params Params,
output types2.StateNodeSink, ipldOutput types2.IPLDSink, logger log.Logger, prefixPath []byte) error {
logger.Debug("statediff BEGIN BuildStateDiffWithIntermediateStateNodes")
defer metrics2.ReportAndUpdateDuration("statediff END BuildStateDiffWithIntermediateStateNodes", time.Now(), logger, metrics2.IndexerMetrics.BuildStateDiffWithIntermediateStateNodesTimer)
// collect a slice of all the nodes that were touched and exist at B (B-A)
// a map of their leafkey to all the accounts that were touched and exist at B
// and a slice of all the paths for the nodes in both of the above sets
diffAccountsAtB, err := sdb.createdAndUpdatedState(
iterPairs[0].Older, iterPairs[0].Newer, params.watchedAddressesLeafPaths, ipldOutput, logger, prefixPath)
if err != nil {
return fmt.Errorf("error collecting createdAndUpdatedNodes: %v", err)
}
// collect a slice of all the nodes that existed at a path in A that doesn't exist in B
// a map of their leafkey to all the accounts that were touched and exist at A
diffAccountsAtA, err := sdb.deletedOrUpdatedState(
iterPairs[1].Older, iterPairs[1].Newer, diffAccountsAtB,
params.watchedAddressesLeafPaths, output, logger, prefixPath)
if err != nil {
return fmt.Errorf("error collecting deletedOrUpdatedNodes: %v", err)
}
// collect and sort the leafkey keys for both account mappings into a slice
t := time.Now()
createKeys := trie_helpers.SortKeys(diffAccountsAtB)
deleteKeys := trie_helpers.SortKeys(diffAccountsAtA)
logger.Debug(fmt.Sprintf("statediff BuildStateDiffWithIntermediateStateNodes sort duration=%dms", time.Since(t).Milliseconds()))
// and then find the intersection of these keys
// these are the leafkeys for the accounts which exist at both A and B but are different
// this also mutates the passed in createKeys and deleteKeys, removing the intersection keys
// and leaving the truly created or deleted keys in place
t = time.Now()
updatedKeys := trie_helpers.FindIntersection(createKeys, deleteKeys)
logger.Debug(fmt.Sprintf("statediff BuildStateDiffWithIntermediateStateNodes intersection count=%d duration=%dms",
len(updatedKeys),
time.Since(t).Milliseconds()))
// build the diff nodes for the updated accounts using the mappings at both A and B as directed by the keys found as the intersection of the two
err = sdb.buildAccountUpdates(diffAccountsAtB, diffAccountsAtA, updatedKeys, output, ipldOutput, logger)
if err != nil {
return fmt.Errorf("error building diff for updated accounts: %v", err)
}
// build the diff nodes for created accounts
err = sdb.buildAccountCreations(diffAccountsAtB, output, ipldOutput, logger)
if err != nil {
return fmt.Errorf("error building diff for created accounts: %v", err)
}
return nil
}
// createdAndUpdatedState returns
// a slice of all the intermediate nodes that exist in a different state at B than A
// a mapping of their leafkeys to all the accounts that exist in a different state at B than A
// and a slice of the paths for all of the nodes included in both
func (sdb *StateDiffBuilder) createdAndUpdatedState(a, b trie.NodeIterator,
watchedAddressesLeafPaths [][]byte, output types2.IPLDSink, logger log.Logger, prefixPath []byte) (types2.AccountMap, error) {
logger.Debug("statediff BEGIN createdAndUpdatedState")
defer metrics2.ReportAndUpdateDuration("statediff END createdAndUpdatedState", time.Now(), logger, metrics2.IndexerMetrics.CreatedAndUpdatedStateTimer)
diffAccountsAtB := make(types2.AccountMap)
watchingAddresses := len(watchedAddressesLeafPaths) > 0
it, itCount := trie.NewDifferenceIterator(a, b)
for it.Next(true) {
// ignore node if it is not along paths of interest
if watchingAddresses && !isValidPrefixPath(watchedAddressesLeafPaths, append(prefixPath, it.Path()...)) {
continue
}
// index values by leaf key
if it.Leaf() {
// if it is a "value" node, we will index the value by leaf key
accountW, err := sdb.processStateValueNode(it, watchedAddressesLeafPaths, prefixPath)
if err != nil {
return nil, err
}
if accountW == nil {
continue
}
// for now, just add it to diffAccountsAtB
// we will compare to diffAccountsAtA to determine which diffAccountsAtB
// were creations and which were updates and also identify accounts that were removed going A->B
diffAccountsAtB[common.Bytes2Hex(accountW.LeafKey)] = *accountW
} else { // trie nodes will be written to blockstore only
// reminder that this includes leaf nodes, since the geth iterator.Leaf() actually signifies a "value" node
if bytes.Equal(it.Hash().Bytes(), nullNodeHash) {
continue
}
nodeVal := make([]byte, len(it.NodeBlob()))
copy(nodeVal, it.NodeBlob())
if len(watchedAddressesLeafPaths) > 0 {
var elements []interface{}
if err := rlp.DecodeBytes(nodeVal, &elements); err != nil {
return nil, err
}
ok, err := isLeaf(elements)
if err != nil {
return nil, err
}
if ok {
nodePath := append(prefixPath, it.Path()...)
partialPath := trie.CompactToHex(elements[0].([]byte))
valueNodePath := append(nodePath, partialPath...)
if !isWatchedAddress(watchedAddressesLeafPaths, valueNodePath) {
continue
}
}
}
nodeHash := make([]byte, len(it.Hash().Bytes()))
copy(nodeHash, it.Hash().Bytes())
if err := output(types2.IPLD{
CID: ipld2.Keccak256ToCid(ipld2.MEthStateTrie, nodeHash).String(),
Content: nodeVal,
}); err != nil {
return nil, err
}
}
}
logger.Debug("statediff COUNTS createdAndUpdatedStateWithIntermediateNodes", "it", itCount, "diffAccountsAtB", len(diffAccountsAtB))
metrics2.IndexerMetrics.DifferenceIteratorCounter.Inc(int64(*itCount))
return diffAccountsAtB, it.Error()
}
// reminder: it.Leaf() == true when the iterator is positioned at a "value node" which is not something that actually exists in an MMPT
func (sdb *StateDiffBuilder) processStateValueNode(it trie.NodeIterator, watchedAddressesLeafPaths [][]byte, prefixPath []byte) (*types2.AccountWrapper, error) {
// skip if it is not a watched address
// If we aren't watching any specific addresses, we are watching everything
if len(watchedAddressesLeafPaths) > 0 && !isWatchedAddress(watchedAddressesLeafPaths, append(prefixPath, it.Path()...)) {
return nil, nil
}
// since this is a "value node", we need to move up to the "parent" node which is the actual leaf node
// it should be in the fastcache since it necessarily was recently accessed to reach the current node
parentNodeRLP, err := sdb.StateCache.TrieDB().Node(it.Parent())
if err != nil {
return nil, err
}
var nodeElements []interface{}
if err = rlp.DecodeBytes(parentNodeRLP, &nodeElements); err != nil {
return nil, err
}
parentSubPath := make([]byte, len(it.ParentPath()))
copy(parentSubPath, it.ParentPath())
parentPath := append(prefixPath, parentSubPath...)
partialPath := trie.CompactToHex(nodeElements[0].([]byte))
valueNodePath := append(parentPath, partialPath...)
encodedPath := trie.HexToCompact(valueNodePath)
leafKey := encodedPath[1:]
var account types.StateAccount
accountRLP := make([]byte, len(it.LeafBlob()))
copy(accountRLP, it.LeafBlob())
if err := rlp.DecodeBytes(accountRLP, &account); err != nil {
return nil, fmt.Errorf("error decoding account for leaf value at leaf key %x\nerror: %v", leafKey, err)
}
return &types2.AccountWrapper{
LeafKey: leafKey,
Account: &account,
CID: ipld2.Keccak256ToCid(ipld2.MEthStateTrie, crypto.Keccak256(parentNodeRLP)).String(),
}, nil
}
// deletedOrUpdatedState returns a slice of all the pathes that are emptied at B
// and a mapping of their leafkeys to all the accounts that exist in a different state at A than B
func (sdb *StateDiffBuilder) deletedOrUpdatedState(a, b trie.NodeIterator, diffAccountsAtB types2.AccountMap,
watchedAddressesLeafPaths [][]byte, output types2.StateNodeSink, logger log.Logger, prefixPath []byte) (types2.AccountMap, error) {
logger.Debug("statediff BEGIN deletedOrUpdatedState")
defer metrics2.ReportAndUpdateDuration("statediff END deletedOrUpdatedState", time.Now(), logger, metrics2.IndexerMetrics.DeletedOrUpdatedStateTimer)
diffAccountAtA := make(types2.AccountMap)
watchingAddresses := len(watchedAddressesLeafPaths) > 0
it, _ := trie.NewDifferenceIterator(b, a)
for it.Next(true) {
// ignore node if it is not along paths of interest
if watchingAddresses && !isValidPrefixPath(watchedAddressesLeafPaths, append(prefixPath, it.Path()...)) {
continue
}
if it.Leaf() {
accountW, err := sdb.processStateValueNode(it, watchedAddressesLeafPaths, prefixPath)
if err != nil {
return nil, err
}
if accountW == nil {
continue
}
leafKey := common.Bytes2Hex(accountW.LeafKey)
diffAccountAtA[leafKey] = *accountW
// if this node's leaf key did not show up in diffAccountsAtB
// that means the account was deleted
// in that case, emit an empty "removed" diff state node
// include empty "removed" diff storage nodes for all the storage slots
if _, ok := diffAccountsAtB[leafKey]; !ok {
diff := types2.StateLeafNode{
AccountWrapper: types2.AccountWrapper{
Account: nil,
LeafKey: accountW.LeafKey,
CID: shared.RemovedNodeStateCID,
},
Removed: true,
}
storageDiff := make([]types2.StorageLeafNode, 0)
err := sdb.buildRemovedAccountStorageNodes(accountW.Account.Root, StorageNodeAppender(&storageDiff))
if err != nil {
return nil, fmt.Errorf("failed building storage diffs for removed state account with key %x\r\nerror: %v", leafKey, err)
}
diff.StorageDiff = storageDiff
if err := output(diff); err != nil {
return nil, err
}
}
}
}
return diffAccountAtA, it.Error()
}
// buildAccountUpdates uses the account diffs maps for A => B and B => A and the known intersection of their leafkeys
// to generate the statediff node objects for all of the accounts that existed at both A and B but in different states
// needs to be called before building account creations and deletions as this mutates
// those account maps to remove the accounts which were updated
func (sdb *StateDiffBuilder) buildAccountUpdates(creations, deletions types2.AccountMap, updatedKeys []string,
output types2.StateNodeSink, ipldOutput types2.IPLDSink, logger log.Logger) error {
logger.Debug("statediff BEGIN buildAccountUpdates", "creations", len(creations), "deletions", len(deletions), "updatedKeys", len(updatedKeys))
defer metrics2.ReportAndUpdateDuration("statediff END buildAccountUpdates ", time.Now(), logger, metrics2.IndexerMetrics.BuildAccountUpdatesTimer)
var err error
for _, key := range updatedKeys {
createdAcc := creations[key]
deletedAcc := deletions[key]
storageDiff := make([]types2.StorageLeafNode, 0)
if deletedAcc.Account != nil && createdAcc.Account != nil {
oldSR := deletedAcc.Account.Root
newSR := createdAcc.Account.Root
err = sdb.buildStorageNodesIncremental(
oldSR, newSR, StorageNodeAppender(&storageDiff), ipldOutput)
if err != nil {
return fmt.Errorf("failed building incremental storage diffs for account with leafkey %s\r\nerror: %v", key, err)
}
}
if err = output(types2.StateLeafNode{
AccountWrapper: createdAcc,
Removed: false,
StorageDiff: storageDiff,
}); err != nil {
return err
}
delete(creations, key)
delete(deletions, key)
}
return nil
}
// buildAccountCreations returns the statediff node objects for all the accounts that exist at B but not at A
// it also returns the code and codehash for created contract accounts
func (sdb *StateDiffBuilder) buildAccountCreations(accounts types2.AccountMap, output types2.StateNodeSink,
ipldOutput types2.IPLDSink, logger log.Logger) error {
logger.Debug("statediff BEGIN buildAccountCreations")
defer metrics2.ReportAndUpdateDuration("statediff END buildAccountCreations", time.Now(), logger, metrics2.IndexerMetrics.BuildAccountCreationsTimer)
for _, val := range accounts {
diff := types2.StateLeafNode{
AccountWrapper: val,
Removed: false,
}
if !bytes.Equal(val.Account.CodeHash, nullCodeHash) {
// For contract creations, any storage node contained is a diff
storageDiff := make([]types2.StorageLeafNode, 0)
err := sdb.buildStorageNodesEventual(val.Account.Root, StorageNodeAppender(&storageDiff), ipldOutput)
if err != nil {
return fmt.Errorf("failed building eventual storage diffs for node with leaf key %x\r\nerror: %v", val.LeafKey, err)
}
diff.StorageDiff = storageDiff
// emit codehash => code mappings for contract
codeHash := common.BytesToHash(val.Account.CodeHash)
code, err := sdb.StateCache.ContractCode(common.Hash{}, codeHash)
if err != nil {
return fmt.Errorf("failed to retrieve code for codehash %s\r\n error: %v", codeHash.String(), err)
}
if err := ipldOutput(types2.IPLD{
CID: ipld2.Keccak256ToCid(ipld2.RawBinary, codeHash.Bytes()).String(),
Content: code,
}); err != nil {
return err
}
}
if err := output(diff); err != nil {
return err
}
}
return nil
}
// buildStorageNodesEventual builds the storage diff node objects for a created account
// i.e. it returns all the storage nodes at this state, since there is no previous state
func (sdb *StateDiffBuilder) buildStorageNodesEventual(sr common.Hash, output types2.StorageNodeSink,
ipldOutput types2.IPLDSink) error {
defer metrics2.UpdateDuration(time.Now(), metrics2.IndexerMetrics.BuildStorageNodesEventualTimer)
if bytes.Equal(sr.Bytes(), emptyContractRoot.Bytes()) {
return nil
}
log.Debug("Storage Root For Eventual Diff", "root", sr.Hex())
sTrie, err := sdb.StateCache.OpenTrie(sr)
if err != nil {
log.Info("error in build storage diff eventual", "error", err)
return err
}
it := sTrie.NodeIterator(make([]byte, 0))
err = sdb.buildStorageNodesFromTrie(it, output, ipldOutput)
if err != nil {
return err
}
return nil
}
// buildStorageNodesFromTrie returns all the storage diff node objects in the provided node interator
// including intermediate nodes can be turned on or off
func (sdb *StateDiffBuilder) buildStorageNodesFromTrie(it trie.NodeIterator, output types2.StorageNodeSink,
ipldOutput types2.IPLDSink) error {
defer metrics2.UpdateDuration(time.Now(), metrics2.IndexerMetrics.BuildStorageNodesFromTrieTimer)
for it.Next(true) {
if it.Leaf() {
storageLeafNode, err := sdb.processStorageValueNode(it)
if err != nil {
return err
}
if err := output(storageLeafNode); err != nil {
return err
}
} else {
nodeVal := make([]byte, len(it.NodeBlob()))
copy(nodeVal, it.NodeBlob())
nodeHash := make([]byte, len(it.Hash().Bytes()))
copy(nodeHash, it.Hash().Bytes())
if err := ipldOutput(types2.IPLD{
CID: ipld2.Keccak256ToCid(ipld2.MEthStorageTrie, nodeHash).String(),
Content: nodeVal,
}); err != nil {
return err
}
}
}
return it.Error()
}
// reminder: it.Leaf() == true when the iterator is positioned at a "value node" which is not something that actually exists in an MMPT
func (sdb *StateDiffBuilder) processStorageValueNode(it trie.NodeIterator) (types2.StorageLeafNode, error) {
// skip if it is not a watched address
leafKey := make([]byte, len(it.LeafKey()))
copy(leafKey, it.LeafKey())
value := make([]byte, len(it.LeafBlob()))
copy(value, it.LeafBlob())
// since this is a "value node", we need to move up to the "parent" node which is the actual leaf node
// it should be in the fastcache since it necessarily was recently accessed to reach the current node
parentNodeRLP, err := sdb.StateCache.TrieDB().Node(it.Parent())
if err != nil {
return types2.StorageLeafNode{}, err
}
return types2.StorageLeafNode{
LeafKey: leafKey,
Value: value,
CID: ipld2.Keccak256ToCid(ipld2.MEthStorageTrie, crypto.Keccak256(parentNodeRLP)).String(),
}, nil
}
// buildRemovedAccountStorageNodes builds the "removed" diffs for all the storage nodes for a destroyed account
func (sdb *StateDiffBuilder) buildRemovedAccountStorageNodes(sr common.Hash, output types2.StorageNodeSink) error {
defer metrics2.UpdateDuration(time.Now(), metrics2.IndexerMetrics.BuildRemovedAccountStorageNodesTimer)
if bytes.Equal(sr.Bytes(), emptyContractRoot.Bytes()) {
return nil
}
log.Debug("Storage Root For Removed Diffs", "root", sr.Hex())
sTrie, err := sdb.StateCache.OpenTrie(sr)
if err != nil {
log.Info("error in build removed account storage diffs", "error", err)
return err
}
it := sTrie.NodeIterator(make([]byte, 0))
err = sdb.buildRemovedStorageNodesFromTrie(it, output)
if err != nil {
return err
}
return nil
}
// buildRemovedStorageNodesFromTrie returns diffs for all the storage nodes in the provided node interator
func (sdb *StateDiffBuilder) buildRemovedStorageNodesFromTrie(it trie.NodeIterator, output types2.StorageNodeSink) error {
defer metrics2.UpdateDuration(time.Now(), metrics2.IndexerMetrics.BuildRemovedStorageNodesFromTrieTimer)
for it.Next(true) {
if it.Leaf() { // only leaf values are indexed, don't need to demarcate removed intermediate nodes
leafKey := make([]byte, len(it.LeafKey()))
copy(leafKey, it.LeafKey())
if err := output(types2.StorageLeafNode{
CID: shared.RemovedNodeStorageCID,
Removed: true,
LeafKey: leafKey,
Value: []byte{},
}); err != nil {
return err
}
}
}
return it.Error()
}
// buildStorageNodesIncremental builds the storage diff node objects for all nodes that exist in a different state at B than A
func (sdb *StateDiffBuilder) buildStorageNodesIncremental(oldSR common.Hash, newSR common.Hash, output types2.StorageNodeSink,
ipldOutput types2.IPLDSink) error {
defer metrics2.UpdateDuration(time.Now(), metrics2.IndexerMetrics.BuildStorageNodesIncrementalTimer)
if bytes.Equal(newSR.Bytes(), oldSR.Bytes()) {
return nil
}
log.Trace("Storage Roots for Incremental Diff", "old", oldSR.Hex(), "new", newSR.Hex())
oldTrie, err := sdb.StateCache.OpenTrie(oldSR)
if err != nil {
return err
}
newTrie, err := sdb.StateCache.OpenTrie(newSR)
if err != nil {
return err
}
diffSlotsAtB, err := sdb.createdAndUpdatedStorage(
oldTrie.NodeIterator([]byte{}), newTrie.NodeIterator([]byte{}), output, ipldOutput)
if err != nil {
return err
}
err = sdb.deletedOrUpdatedStorage(oldTrie.NodeIterator([]byte{}), newTrie.NodeIterator([]byte{}),
diffSlotsAtB, output)
if err != nil {
return err
}
return nil
}
func (sdb *StateDiffBuilder) createdAndUpdatedStorage(a, b trie.NodeIterator, output types2.StorageNodeSink,
ipldOutput types2.IPLDSink) (map[string]bool, error) {
defer metrics2.UpdateDuration(time.Now(), metrics2.IndexerMetrics.CreatedAndUpdatedStorageTimer)
diffSlotsAtB := make(map[string]bool)
it, _ := trie.NewDifferenceIterator(a, b)
for it.Next(true) {
if it.Leaf() {
storageLeafNode, err := sdb.processStorageValueNode(it)
if err != nil {
return nil, err
}
if err := output(storageLeafNode); err != nil {
return nil, err
}
diffSlotsAtB[common.Bytes2Hex(storageLeafNode.LeafKey)] = true
} else {
if bytes.Equal(it.Hash().Bytes(), nullNodeHash) {
continue
}
nodeVal := make([]byte, len(it.NodeBlob()))
copy(nodeVal, it.NodeBlob())
nodeHash := make([]byte, len(it.Hash().Bytes()))
copy(nodeHash, it.Hash().Bytes())
if err := ipldOutput(types2.IPLD{
CID: ipld2.Keccak256ToCid(ipld2.MEthStorageTrie, nodeHash).String(),
Content: nodeVal,
}); err != nil {
return nil, err
}
}
}
return diffSlotsAtB, it.Error()
}
func (sdb *StateDiffBuilder) deletedOrUpdatedStorage(a, b trie.NodeIterator, diffSlotsAtB map[string]bool, output types2.StorageNodeSink) error {
defer metrics2.UpdateDuration(time.Now(), metrics2.IndexerMetrics.DeletedOrUpdatedStorageTimer)
it, _ := trie.NewDifferenceIterator(b, a)
for it.Next(true) {
if it.Leaf() {
leafKey := make([]byte, len(it.LeafKey()))
copy(leafKey, it.LeafKey())
// if this node's leaf key did not show up in diffSlotsAtB
// that means the storage slot was vacated
// in that case, emit an empty "removed" diff storage node
if _, ok := diffSlotsAtB[common.Bytes2Hex(leafKey)]; !ok {
if err := output(types2.StorageLeafNode{
CID: shared.RemovedNodeStorageCID,
Removed: true,
LeafKey: leafKey,
Value: []byte{},
}); err != nil {
return err
}
}
}
}
return it.Error()
}
// isValidPrefixPath is used to check if a node at currentPath is a parent | ancestor to one of the addresses the builder is configured to watch
func isValidPrefixPath(watchedAddressesLeafPaths [][]byte, currentPath []byte) bool {
for _, watchedAddressPath := range watchedAddressesLeafPaths {
if bytes.HasPrefix(watchedAddressPath, currentPath) {
return true
}
}
return false
}
// isWatchedAddress is used to check if a state account corresponds to one of the addresses the builder is configured to watch
func isWatchedAddress(watchedAddressesLeafPaths [][]byte, valueNodePath []byte) bool {
defer metrics2.UpdateDuration(time.Now(), metrics2.IndexerMetrics.IsWatchedAddressTimer)
for _, watchedAddressPath := range watchedAddressesLeafPaths {
if bytes.Equal(watchedAddressPath, valueNodePath) {
return true
}
}
return false
}
// isLeaf checks if the node we are at is a leaf
func isLeaf(elements []interface{}) (bool, error) {
if len(elements) > 2 {
return false, nil
}
if len(elements) < 2 {
return false, fmt.Errorf("node cannot be less than two elements in length")
}
switch elements[0].([]byte)[0] / 16 {
case '\x00':
return false, nil
case '\x01':
return false, nil
case '\x02':
return true, nil
case '\x03':
return true, nil
default:
return false, fmt.Errorf("unknown hex prefix")
}
}