plugeth-statediff/builder.go

620 lines
19 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Contains a batch of utility type declarations used by the tests. As the node
// operates on unique types, a lot of them are needed to check various features.
package statediff
import (
"bytes"
"context"
"fmt"
"sync"
"time"
iterutils "github.com/cerc-io/eth-iterator-utils"
"github.com/cerc-io/eth-iterator-utils/tracker"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
"golang.org/x/sync/errgroup"
"github.com/cerc-io/plugeth-statediff/adapt"
"github.com/cerc-io/plugeth-statediff/indexer/database/metrics"
"github.com/cerc-io/plugeth-statediff/indexer/ipld"
"github.com/cerc-io/plugeth-statediff/indexer/shared"
sdtypes "github.com/cerc-io/plugeth-statediff/types"
"github.com/cerc-io/plugeth-statediff/utils"
"github.com/cerc-io/plugeth-statediff/utils/log"
)
var (
emptyNode, _ = rlp.EncodeToBytes(&[]byte{})
emptyContractRoot = crypto.Keccak256Hash(emptyNode)
nullCodeHash = crypto.Keccak256([]byte{})
zeroHash common.Hash
defaultSubtrieWorkers uint = 1
)
// Builder interface exposes the method for building a state diff between two blocks
type Builder interface {
BuildStateDiffObject(Args, Params) (sdtypes.StateObject, error)
WriteStateDiff(Args, Params, sdtypes.StateNodeSink, sdtypes.IPLDSink) error
}
type builder struct {
// state cache is safe for concurrent reads
stateCache adapt.StateView
subtrieWorkers uint
}
type accountUpdate struct {
new sdtypes.AccountWrapper
oldRoot common.Hash
}
type accountUpdateMap map[string]*accountUpdate
func appender[T any](to *[]T) func(T) error {
return func(a T) error {
*to = append(*to, a)
return nil
}
}
func syncedAppender[T any](to *[]T) func(T) error {
var mtx sync.Mutex
return func(a T) error {
mtx.Lock()
*to = append(*to, a)
mtx.Unlock()
return nil
}
}
// NewBuilder is used to create a statediff builder
func NewBuilder(stateCache adapt.StateView) *builder {
return &builder{
stateCache: stateCache,
subtrieWorkers: defaultSubtrieWorkers,
}
}
// SetSubtrieWorkers sets the number of disjoint subtries to divide among parallel workers.
// Passing 0 will reset this to the default value.
func (sdb *builder) SetSubtrieWorkers(n uint) {
if n == 0 {
n = defaultSubtrieWorkers
}
sdb.subtrieWorkers = n
}
// BuildStateDiffObject builds a statediff object from two blocks and the provided parameters
func (sdb *builder) BuildStateDiffObject(args Args, params Params) (sdtypes.StateObject, error) {
defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.BuildStateDiffObjectTimer)
var stateNodes []sdtypes.StateLeafNode
var iplds []sdtypes.IPLD
err := sdb.WriteStateDiff(args, params, syncedAppender(&stateNodes), syncedAppender(&iplds))
if err != nil {
return sdtypes.StateObject{}, err
}
return sdtypes.StateObject{
BlockHash: args.BlockHash,
BlockNumber: args.BlockNumber,
Nodes: stateNodes,
IPLDs: iplds,
}, nil
}
// WriteStateDiff writes a statediff object to output sinks
func (sdb *builder) WriteStateDiff(
args Args, params Params,
nodeSink sdtypes.StateNodeSink,
ipldSink sdtypes.IPLDSink,
) error {
defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.WriteStateDiffTimer)
// Load tries for old and new states
triea, err := sdb.stateCache.OpenTrie(args.OldStateRoot)
if err != nil {
return fmt.Errorf("error opening old state trie: %w", err)
}
trieb, err := sdb.stateCache.OpenTrie(args.NewStateRoot)
if err != nil {
return fmt.Errorf("error opening new state trie: %w", err)
}
subitersA, err := iterutils.SubtrieIterators(triea.NodeIterator, uint(sdb.subtrieWorkers))
if err != nil {
return fmt.Errorf("error creating subtrie iterators for old state trie: %w", err)
}
subitersB, err := iterutils.SubtrieIterators(trieb.NodeIterator, uint(sdb.subtrieWorkers))
if err != nil {
return fmt.Errorf("error creating subtrie iterators for new state trie: %w", err)
}
logger := log.New("hash", args.BlockHash, "number", args.BlockNumber)
// errgroup will cancel if any group fails
g, ctx := errgroup.WithContext(context.Background())
for i := uint(0); i < sdb.subtrieWorkers; i++ {
func(subdiv uint) {
g.Go(func() error {
a, b := subitersA[subdiv], subitersB[subdiv]
it := utils.NewSymmetricDifferenceIterator(a, b)
return sdb.processAccounts(ctx,
it, &it.SymmDiffState,
params.watchedAddressesLeafPaths,
nodeSink, ipldSink, logger,
)
})
}(i)
}
return g.Wait()
}
// WriteStateDiff writes a statediff object to output sinks
func (sdb *builder) WriteStateSnapshot(
stateRoot common.Hash, params Params,
nodeSink sdtypes.StateNodeSink,
ipldSink sdtypes.IPLDSink,
tracker tracker.IteratorTracker,
) error {
defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.WriteStateDiffTimer)
tree, err := sdb.stateCache.OpenTrie(stateRoot)
if err != nil {
return fmt.Errorf("error opening new state trie: %w", err)
}
subiters, _, err := tracker.Restore(tree.NodeIterator)
if err != nil {
return fmt.Errorf("error restoring iterators: %w", err)
}
if len(subiters) != 0 {
// Completed iterators are not saved by the tracker, so restoring fewer than configured is ok,
// but having too many is a problem.
if len(subiters) > int(sdb.subtrieWorkers) {
return fmt.Errorf("restored too many iterators: expected %d, got %d",
sdb.subtrieWorkers, len(subiters))
}
} else {
subiters, err = iterutils.SubtrieIterators(tree.NodeIterator, uint(sdb.subtrieWorkers))
if err != nil {
return fmt.Errorf("error creating subtrie iterators for trie: %w", err)
}
for i := range subiters {
subiters[i] = tracker.Tracked(subiters[i])
}
}
// errgroup will cancel if any group fails
g, ctx := errgroup.WithContext(context.Background())
for i := range subiters {
func(subdiv uint) {
g.Go(func() error {
symdiff := utils.AlwaysBState()
return sdb.processAccounts(ctx,
subiters[subdiv], &symdiff,
params.watchedAddressesLeafPaths,
nodeSink, ipldSink, log.DefaultLogger,
)
})
}(uint(i))
}
return g.Wait()
}
// processAccounts processes account creations, deletions, and updates
// the NodeIterator and SymmDiffIterator instances should refer to the same object, will only be used
func (sdb *builder) processAccounts(
ctx context.Context,
it trie.NodeIterator, symdiff *utils.SymmDiffState,
watchedAddressesLeafPaths [][]byte,
nodeSink sdtypes.StateNodeSink, ipldSink sdtypes.IPLDSink,
logger log.Logger,
) error {
logger.Trace("statediff/processAccounts BEGIN")
defer metrics.ReportAndUpdateDuration("statediff/processAccounts END",
time.Now(), logger, metrics.IndexerMetrics.ProcessAccountsTimer)
updates := make(accountUpdateMap)
// Cache the RLP of the previous node. When we hit a value node this will be the parent blob.
var prevBlob = it.NodeBlob()
for it.Next(true) {
select {
case <-ctx.Done():
return ctx.Err()
default:
}
// ignore node if it is not along paths of interest
if !isWatchedPathPrefix(watchedAddressesLeafPaths, it.Path()) {
continue
}
if symdiff.FromA() { // Node exists in the old trie
if it.Leaf() {
var account types.StateAccount
if err := rlp.DecodeBytes(it.LeafBlob(), &account); err != nil {
return err
}
leafKey := make([]byte, len(it.LeafKey()))
copy(leafKey, it.LeafKey())
if symdiff.CommonPath() {
// If B also contains this leaf node, this is the old state of an updated account.
if update, ok := updates[string(leafKey)]; ok {
update.oldRoot = account.Root
} else {
updates[string(leafKey)] = &accountUpdate{oldRoot: account.Root}
}
} else {
// This node was removed, meaning the account was deleted. Emit empty
// "removed" records for the state node and all storage all storage slots.
err := sdb.processAccountDeletion(leafKey, account, nodeSink)
if err != nil {
return err
}
}
}
continue
}
// Node exists in the new trie (B)
if it.Leaf() {
accountW, err := sdb.decodeStateLeaf(it, prevBlob)
if err != nil {
return err
}
if symdiff.CommonPath() {
// If A also contains this leaf node, this is the new state of an updated account.
if update, ok := updates[string(accountW.LeafKey)]; ok {
update.new = *accountW
} else {
updates[string(accountW.LeafKey)] = &accountUpdate{new: *accountW}
}
} else { // account was created
err := sdb.processAccountCreation(accountW, ipldSink, nodeSink)
if err != nil {
return err
}
}
continue
}
// New inner trie nodes will be written to blockstore only.
// Reminder: this includes leaf nodes, since the geth iterator.Leaf() actually
// signifies a "value" node.
if it.Hash() == zeroHash {
continue
}
nodeVal := make([]byte, len(it.NodeBlob()))
copy(nodeVal, it.NodeBlob())
// if doing a selective diff, we need to ensure this is a watched path
if len(watchedAddressesLeafPaths) > 0 {
var elements []interface{}
if err := rlp.DecodeBytes(nodeVal, &elements); err != nil {
return err
}
ok, err := isLeaf(elements)
if err != nil {
return err
}
if ok {
partialPath := utils.CompactToHex(elements[0].([]byte))
valueNodePath := append(it.Path(), partialPath...)
if !isWatchedPath(watchedAddressesLeafPaths, valueNodePath) {
continue
}
}
}
if err := ipldSink(sdtypes.IPLD{
CID: ipld.Keccak256ToCid(ipld.MEthStateTrie, it.Hash().Bytes()).String(),
Content: nodeVal,
}); err != nil {
return err
}
prevBlob = nodeVal
}
for key, update := range updates {
var storageDiff []sdtypes.StorageLeafNode
err := sdb.processStorageUpdates(
update.oldRoot, update.new.Account.Root,
appender(&storageDiff), ipldSink,
)
if err != nil {
return fmt.Errorf("error processing incremental storage diffs for account with leafkey %x\r\nerror: %w", key, err)
}
if err = nodeSink(sdtypes.StateLeafNode{
AccountWrapper: update.new,
StorageDiff: storageDiff,
}); err != nil {
return err
}
}
return it.Error()
}
func (sdb *builder) processAccountDeletion(
leafKey []byte, account types.StateAccount, nodeSink sdtypes.StateNodeSink,
) error {
diff := sdtypes.StateLeafNode{
AccountWrapper: sdtypes.AccountWrapper{
LeafKey: leafKey,
CID: shared.RemovedNodeStateCID,
},
Removed: true,
}
err := sdb.processRemovedAccountStorage(account.Root, appender(&diff.StorageDiff))
if err != nil {
return fmt.Errorf("failed building storage diffs for removed state account with key %x\r\nerror: %w", leafKey, err)
}
return nodeSink(diff)
}
func (sdb *builder) processAccountCreation(
accountW *sdtypes.AccountWrapper, ipldSink sdtypes.IPLDSink, nodeSink sdtypes.StateNodeSink,
) error {
diff := sdtypes.StateLeafNode{
AccountWrapper: *accountW,
}
if !bytes.Equal(accountW.Account.CodeHash, nullCodeHash) {
// For contract creations, any storage node contained is a diff
err := sdb.processStorageCreations(accountW.Account.Root, appender(&diff.StorageDiff), ipldSink)
if err != nil {
return fmt.Errorf("failed building eventual storage diffs for node with leaf key %x\r\nerror: %w", accountW.LeafKey, err)
}
// emit codehash => code mappings for contract
codeHash := common.BytesToHash(accountW.Account.CodeHash)
code, err := sdb.stateCache.ContractCode(codeHash)
if err != nil {
return fmt.Errorf("failed to retrieve code for codehash %s\r\n error: %w", codeHash, err)
}
if err := ipldSink(sdtypes.IPLD{
CID: ipld.Keccak256ToCid(ipld.RawBinary, codeHash.Bytes()).String(),
Content: code,
}); err != nil {
return err
}
}
return nodeSink(diff)
}
// decodes account at leaf and encodes RLP data to CID
// reminder: it.Leaf() == true when the iterator is positioned at a "value node" (which is not something
// that actually exists in an MMPT), therefore we pass the parent node blob as the leaf RLP.
func (sdb *builder) decodeStateLeaf(it trie.NodeIterator, parentBlob []byte) (*sdtypes.AccountWrapper, error) {
var account types.StateAccount
if err := rlp.DecodeBytes(it.LeafBlob(), &account); err != nil {
return nil, fmt.Errorf("error decoding account at leaf key %x: %w", it.LeafKey(), err)
}
leafKey := make([]byte, len(it.LeafKey()))
copy(leafKey, it.LeafKey())
return &sdtypes.AccountWrapper{
LeafKey: it.LeafKey(),
Account: &account,
CID: ipld.Keccak256ToCid(ipld.MEthStateTrie, crypto.Keccak256(parentBlob)).String(),
}, nil
}
// processStorageCreations processes the storage node records for a newly created account
// i.e. it returns all the storage nodes at this state, since there is no previous state.
func (sdb *builder) processStorageCreations(
sr common.Hash, storageSink sdtypes.StorageNodeSink, ipldSink sdtypes.IPLDSink,
) error {
defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.ProcessStorageCreationsTimer)
if sr == emptyContractRoot {
return nil
}
log.Debug("Storage root for eventual diff", "root", sr)
sTrie, err := sdb.stateCache.OpenTrie(sr)
if err != nil {
return fmt.Errorf("error opening storage trie for root %s: %w", sr, err)
}
var prevBlob []byte
it, err := sTrie.NodeIterator(nil)
if err != nil {
return fmt.Errorf("error creating iterator for storage trie with root %s: %w", sr, err)
}
for it.Next(true) {
if it.Leaf() {
storageLeafNode := sdb.decodeStorageLeaf(it, prevBlob)
if err := storageSink(storageLeafNode); err != nil {
return err
}
} else {
nodeVal := make([]byte, len(it.NodeBlob()))
copy(nodeVal, it.NodeBlob())
if err := ipldSink(sdtypes.IPLD{
CID: ipld.Keccak256ToCid(ipld.MEthStorageTrie, it.Hash().Bytes()).String(),
Content: nodeVal,
}); err != nil {
return err
}
prevBlob = nodeVal
}
}
return it.Error()
}
// processStorageUpdates builds the storage diff node objects for all nodes that exist in a
// different state at B than A
func (sdb *builder) processStorageUpdates(
oldroot common.Hash, newroot common.Hash,
storageSink sdtypes.StorageNodeSink,
ipldSink sdtypes.IPLDSink,
) error {
defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.ProcessStorageUpdatesTimer)
if newroot == oldroot {
return nil
}
log.Debug("Storage roots for incremental diff", "old", oldroot, "new", newroot)
oldTrie, err := sdb.stateCache.OpenTrie(oldroot)
if err != nil {
return err
}
newTrie, err := sdb.stateCache.OpenTrie(newroot)
if err != nil {
return err
}
var prevBlob []byte
a, err := oldTrie.NodeIterator(nil)
if err != nil {
return err
}
b, err := newTrie.NodeIterator(nil)
if err != nil {
return err
}
it := utils.NewSymmetricDifferenceIterator(a, b)
for it.Next(true) {
if it.FromA() {
if it.Leaf() && !it.CommonPath() {
// If this node's leaf key is absent from B, the storage slot was vacated.
// In that case, emit an empty "removed" storage node record.
if err := storageSink(sdtypes.StorageLeafNode{
CID: shared.RemovedNodeStorageCID,
Removed: true,
LeafKey: []byte(it.LeafKey()),
Value: []byte{},
}); err != nil {
return err
}
}
continue
}
if it.Leaf() {
storageLeafNode := sdb.decodeStorageLeaf(it, prevBlob)
if err := storageSink(storageLeafNode); err != nil {
return err
}
} else {
if it.Hash() == zeroHash {
continue
}
nodeVal := make([]byte, len(it.NodeBlob()))
copy(nodeVal, it.NodeBlob())
if err := ipldSink(sdtypes.IPLD{
CID: ipld.Keccak256ToCid(ipld.MEthStorageTrie, it.Hash().Bytes()).String(),
Content: nodeVal,
}); err != nil {
return err
}
prevBlob = nodeVal
}
}
return it.Error()
}
// processRemovedAccountStorage builds the "removed" diffs for all the storage nodes for a destroyed account
func (sdb *builder) processRemovedAccountStorage(
sr common.Hash, storageSink sdtypes.StorageNodeSink,
) error {
defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.ProcessRemovedAccountStorageTimer)
if sr == emptyContractRoot {
return nil
}
log.Debug("Storage root for removed diffs", "root", sr)
sTrie, err := sdb.stateCache.OpenTrie(sr)
if err != nil {
return fmt.Errorf("error opening storage trie for root %s: %w", sr, err)
}
it, err := sTrie.NodeIterator(nil)
if err != nil {
return fmt.Errorf("error creating iterator for storage trie with root %s: %w", sr, err)
}
for it.Next(true) {
if it.Leaf() { // only leaf values are indexed, don't need to demarcate removed intermediate nodes
leafKey := make([]byte, len(it.LeafKey()))
copy(leafKey, it.LeafKey())
if err := storageSink(sdtypes.StorageLeafNode{
CID: shared.RemovedNodeStorageCID,
Removed: true,
LeafKey: leafKey,
Value: []byte{},
}); err != nil {
return err
}
}
}
return it.Error()
}
// decodes slot at leaf and encodes RLP data to CID
// reminder: it.Leaf() == true when the iterator is positioned at a "value node" (which is not something
// that actually exists in an MMPT), therefore we pass the parent node blob as the leaf RLP.
func (sdb *builder) decodeStorageLeaf(it trie.NodeIterator, parentBlob []byte) sdtypes.StorageLeafNode {
leafKey := make([]byte, len(it.LeafKey()))
copy(leafKey, it.LeafKey())
value := make([]byte, len(it.LeafBlob()))
copy(value, it.LeafBlob())
return sdtypes.StorageLeafNode{
LeafKey: leafKey,
Value: value,
CID: ipld.Keccak256ToCid(ipld.MEthStorageTrie, crypto.Keccak256(parentBlob)).String(),
}
}
// isWatchedPathPrefix checks if a node path is a prefix (ancestor) to one of the watched addresses.
// An empty watch list means all paths are watched.
func isWatchedPathPrefix(watchedLeafPaths [][]byte, path []byte) bool {
if len(watchedLeafPaths) == 0 {
return true
}
for _, watched := range watchedLeafPaths {
if bytes.HasPrefix(watched, path) {
return true
}
}
return false
}
// isWatchedPath checks if a node path corresponds to one of the watched addresses
func isWatchedPath(watchedLeafPaths [][]byte, leafPath []byte) bool {
defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.IsWatchedAddressTimer)
for _, watched := range watchedLeafPaths {
if bytes.Equal(watched, leafPath) {
return true
}
}
return false
}
// isLeaf checks if the node we are at is a leaf
func isLeaf(elements []interface{}) (bool, error) {
if len(elements) > 2 {
return false, nil
}
if len(elements) < 2 {
return false, fmt.Errorf("node cannot be less than two elements in length")
}
switch elements[0].([]byte)[0] / 16 {
case '\x00':
return false, nil
case '\x01':
return false, nil
case '\x02':
return true, nil
case '\x03':
return true, nil
default:
return false, fmt.Errorf("unknown hex prefix")
}
}