// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Contains a batch of utility type declarations used by the tests. As the node // operates on unique types, a lot of them are needed to check various features. package statediff import ( "bytes" "encoding/hex" "fmt" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" "github.com/cerc-io/plugeth-statediff/adapt" "github.com/cerc-io/plugeth-statediff/indexer/database/metrics" "github.com/cerc-io/plugeth-statediff/indexer/ipld" "github.com/cerc-io/plugeth-statediff/indexer/shared" "github.com/cerc-io/plugeth-statediff/trie_helpers" sdtypes "github.com/cerc-io/plugeth-statediff/types" "github.com/cerc-io/plugeth-statediff/utils" "github.com/cerc-io/plugeth-statediff/utils/log" ) var ( emptyNode, _ = rlp.EncodeToBytes(&[]byte{}) emptyContractRoot = crypto.Keccak256Hash(emptyNode) nullCodeHash = crypto.Keccak256Hash([]byte{}).Bytes() zeroHash common.Hash ) // Builder interface exposes the method for building a state diff between two blocks type Builder interface { BuildStateDiffObject(args Args, params Params) (sdtypes.StateObject, error) WriteStateDiffObject(args Args, params Params, output sdtypes.StateNodeSink, ipldOutput sdtypes.IPLDSink) error } type StateDiffBuilder struct { StateCache adapt.StateView } type IterPair struct { Older, Newer trie.NodeIterator } func StateNodeAppender(nodes *[]sdtypes.StateLeafNode) sdtypes.StateNodeSink { return func(node sdtypes.StateLeafNode) error { *nodes = append(*nodes, node) return nil } } func StorageNodeAppender(nodes *[]sdtypes.StorageLeafNode) sdtypes.StorageNodeSink { return func(node sdtypes.StorageLeafNode) error { *nodes = append(*nodes, node) return nil } } func IPLDMappingAppender(iplds *[]sdtypes.IPLD) sdtypes.IPLDSink { return func(c sdtypes.IPLD) error { *iplds = append(*iplds, c) return nil } } // NewBuilder is used to create a statediff builder func NewBuilder(stateCache adapt.StateView) Builder { return &StateDiffBuilder{ StateCache: stateCache, // state cache is safe for concurrent reads } } // BuildStateDiffObject builds a statediff object from two blocks and the provided parameters func (sdb *StateDiffBuilder) BuildStateDiffObject(args Args, params Params) (sdtypes.StateObject, error) { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.BuildStateDiffObjectTimer) var stateNodes []sdtypes.StateLeafNode var iplds []sdtypes.IPLD err := sdb.WriteStateDiffObject(args, params, StateNodeAppender(&stateNodes), IPLDMappingAppender(&iplds)) if err != nil { return sdtypes.StateObject{}, err } return sdtypes.StateObject{ BlockHash: args.BlockHash, BlockNumber: args.BlockNumber, Nodes: stateNodes, IPLDs: iplds, }, nil } // WriteStateDiffObject writes a statediff object to output sinks func (sdb *StateDiffBuilder) WriteStateDiffObject(args Args, params Params, output sdtypes.StateNodeSink, ipldOutput sdtypes.IPLDSink) error { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.WriteStateDiffObjectTimer) // Load tries for old and new states oldTrie, err := sdb.StateCache.OpenTrie(args.OldStateRoot) if err != nil { return fmt.Errorf("error creating trie for oldStateRoot: %w", err) } newTrie, err := sdb.StateCache.OpenTrie(args.NewStateRoot) if err != nil { return fmt.Errorf("error creating trie for newStateRoot: %w", err) } // we do two state trie iterations: // one for new/updated nodes, // one for deleted/updated nodes; // prepare 2 iterator instances for each task iterPairs := []IterPair{ { Older: oldTrie.NodeIterator([]byte{}), Newer: newTrie.NodeIterator([]byte{}), }, { Older: oldTrie.NodeIterator([]byte{}), Newer: newTrie.NodeIterator([]byte{}), }, } logger := log.New("hash", args.BlockHash.String(), "number", args.BlockNumber) return sdb.BuildStateDiff(iterPairs, params, output, ipldOutput, logger, nil) } func (sdb *StateDiffBuilder) BuildStateDiff(iterPairs []IterPair, params Params, output sdtypes.StateNodeSink, ipldOutput sdtypes.IPLDSink, logger log.Logger, prefixPath []byte) error { logger.Trace("statediff BEGIN BuildStateDiff") defer metrics.ReportAndUpdateDuration("statediff END BuildStateDiff", time.Now(), logger, metrics.IndexerMetrics.BuildStateDiffTimer) // collect a slice of all the nodes that were touched and exist at B (B-A) // a map of their leafkey to all the accounts that were touched and exist at B // and a slice of all the paths for the nodes in both of the above sets diffAccountsAtB, err := sdb.createdAndUpdatedState( iterPairs[0].Older, iterPairs[0].Newer, params.watchedAddressesLeafPaths, ipldOutput, logger, prefixPath) if err != nil { return fmt.Errorf("error collecting createdAndUpdatedNodes: %w", err) } // collect a slice of all the nodes that existed at a path in A that doesn't exist in B // a map of their leafkey to all the accounts that were touched and exist at A diffAccountsAtA, err := sdb.deletedOrUpdatedState( iterPairs[1].Older, iterPairs[1].Newer, diffAccountsAtB, params.watchedAddressesLeafPaths, output, logger, prefixPath) if err != nil { return fmt.Errorf("error collecting deletedOrUpdatedNodes: %w", err) } // collect and sort the leafkey keys for both account mappings into a slice t := time.Now() createKeys := trie_helpers.SortKeys(diffAccountsAtB) deleteKeys := trie_helpers.SortKeys(diffAccountsAtA) logger.Debug("statediff BuildStateDiff sort", "duration", time.Since(t)) // and then find the intersection of these keys // these are the leafkeys for the accounts which exist at both A and B but are different // this also mutates the passed in createKeys and deleteKeys, removing the intersection keys // and leaving the truly created or deleted keys in place t = time.Now() updatedKeys := trie_helpers.FindIntersection(createKeys, deleteKeys) logger.Debug("statediff BuildStateDiff intersection", "count", len(updatedKeys), "duration", time.Since(t)) // build the diff nodes for the updated accounts using the mappings at both A and B as directed by the keys found as the intersection of the two err = sdb.buildAccountUpdates(diffAccountsAtB, diffAccountsAtA, updatedKeys, output, ipldOutput, logger) if err != nil { return fmt.Errorf("error building diff for updated accounts: %w", err) } // build the diff nodes for created accounts err = sdb.buildAccountCreations(diffAccountsAtB, output, ipldOutput, logger) if err != nil { return fmt.Errorf("error building diff for created accounts: %w", err) } return nil } // createdAndUpdatedState returns // a slice of all the intermediate nodes that exist in a different state at B than A // a mapping of their leafkeys to all the accounts that exist in a different state at B than A // and a slice of the paths for all of the nodes included in both func (sdb *StateDiffBuilder) createdAndUpdatedState(a, b trie.NodeIterator, watchedAddressesLeafPaths [][]byte, output sdtypes.IPLDSink, logger log.Logger, prefixPath []byte) (sdtypes.AccountMap, error) { logger.Trace("statediff BEGIN createdAndUpdatedState") defer metrics.ReportAndUpdateDuration("statediff END createdAndUpdatedState", time.Now(), logger, metrics.IndexerMetrics.CreatedAndUpdatedStateTimer) diffAccountsAtB := make(sdtypes.AccountMap) // cache the RLP of the previous node, so when we hit a leaf we have the parent (containing) node var prevBlob []byte it, itCount := trie.NewDifferenceIterator(a, b) for it.Next(true) { // ignore node if it is not along paths of interest if !isWatchedPathPrefix(watchedAddressesLeafPaths, it.Path()) { continue } // index values by leaf key if it.Leaf() { // if it is a "value" node, we will index the value by leaf key accountW, err := sdb.processStateValueNode(it, prevBlob) if err != nil { return nil, err } if accountW == nil { continue } // for now, just add it to diffAccountsAtB // we will compare to diffAccountsAtA to determine which diffAccountsAtB // were creations and which were updates and also identify accounts that were removed going A->B diffAccountsAtB[hex.EncodeToString(accountW.LeafKey)] = *accountW } else { // trie nodes will be written to blockstore only // reminder that this includes leaf nodes, since the geth iterator.Leaf() actually // signifies a "value" node if it.Hash() == zeroHash { continue } nodeVal := make([]byte, len(it.NodeBlob())) copy(nodeVal, it.NodeBlob()) // if doing a selective diff, we need to ensure this is a watched path if len(watchedAddressesLeafPaths) > 0 { var elements []interface{} if err := rlp.DecodeBytes(nodeVal, &elements); err != nil { return nil, err } ok, err := isLeaf(elements) if err != nil { return nil, err } partialPath := utils.CompactToHex(elements[0].([]byte)) valueNodePath := append(it.Path(), partialPath...) if ok && !isWatchedPath(watchedAddressesLeafPaths, valueNodePath) { continue } } if err := output(sdtypes.IPLD{ CID: ipld.Keccak256ToCid(ipld.MEthStateTrie, it.Hash().Bytes()).String(), Content: nodeVal, }); err != nil { return nil, err } prevBlob = nodeVal } } logger.Debug("statediff COUNTS createdAndUpdatedState", "it", itCount, "diffAccountsAtB", len(diffAccountsAtB)) metrics.IndexerMetrics.DifferenceIteratorCounter.Inc(int64(*itCount)) return diffAccountsAtB, it.Error() } // decodes account at leaf and encodes RLP data to CID // reminder: it.Leaf() == true when the iterator is positioned at a "value node" (which is not something // that actually exists in an MMPT), therefore we pass the parent node blob as the leaf RLP. func (sdb *StateDiffBuilder) processStateValueNode(it trie.NodeIterator, parentBlob []byte) (*sdtypes.AccountWrapper, error) { var account types.StateAccount if err := rlp.DecodeBytes(it.LeafBlob(), &account); err != nil { return nil, fmt.Errorf("error decoding account at leaf key %x: %w", it.LeafKey(), err) } return &sdtypes.AccountWrapper{ LeafKey: it.LeafKey(), Account: &account, CID: ipld.Keccak256ToCid(ipld.MEthStateTrie, crypto.Keccak256(parentBlob)).String(), }, nil } // deletedOrUpdatedState returns a slice of all the paths that are emptied at B // and a mapping of their leafkeys to all the accounts that exist in a different state at A than B func (sdb *StateDiffBuilder) deletedOrUpdatedState(a, b trie.NodeIterator, diffAccountsAtB sdtypes.AccountMap, watchedAddressesLeafPaths [][]byte, output sdtypes.StateNodeSink, logger log.Logger, prefixPath []byte) (sdtypes.AccountMap, error) { logger.Trace("statediff BEGIN deletedOrUpdatedState") defer metrics.ReportAndUpdateDuration("statediff END deletedOrUpdatedState", time.Now(), logger, metrics.IndexerMetrics.DeletedOrUpdatedStateTimer) diffAccountAtA := make(sdtypes.AccountMap) var prevBlob []byte it, _ := trie.NewDifferenceIterator(b, a) for it.Next(true) { if !isWatchedPathPrefix(watchedAddressesLeafPaths, it.Path()) { continue } if it.Leaf() { accountW, err := sdb.processStateValueNode(it, prevBlob) if err != nil { return nil, err } if accountW == nil { continue } leafKey := hex.EncodeToString(accountW.LeafKey) diffAccountAtA[leafKey] = *accountW // if this node's leaf key did not show up in diffAccountsAtB // that means the account was deleted // in that case, emit an empty "removed" diff state node // include empty "removed" diff storage nodes for all the storage slots if _, ok := diffAccountsAtB[leafKey]; !ok { diff := sdtypes.StateLeafNode{ AccountWrapper: sdtypes.AccountWrapper{ Account: nil, LeafKey: accountW.LeafKey, CID: shared.RemovedNodeStateCID, }, Removed: true, } storageDiff := make([]sdtypes.StorageLeafNode, 0) err := sdb.buildRemovedAccountStorageNodes(accountW.Account.Root, StorageNodeAppender(&storageDiff)) if err != nil { return nil, fmt.Errorf("failed building storage diffs for removed state account with key %x\r\nerror: %w", leafKey, err) } diff.StorageDiff = storageDiff if err := output(diff); err != nil { return nil, err } } } else { prevBlob = make([]byte, len(it.NodeBlob())) copy(prevBlob, it.NodeBlob()) } } return diffAccountAtA, it.Error() } // buildAccountUpdates uses the account diffs maps for A => B and B => A and the known intersection of their leafkeys // to generate the statediff node objects for all of the accounts that existed at both A and B but in different states // needs to be called before building account creations and deletions as this mutates // those account maps to remove the accounts which were updated func (sdb *StateDiffBuilder) buildAccountUpdates(creations, deletions sdtypes.AccountMap, updatedKeys []string, output sdtypes.StateNodeSink, ipldOutput sdtypes.IPLDSink, logger log.Logger) error { logger.Trace("statediff BEGIN buildAccountUpdates", "creations", len(creations), "deletions", len(deletions), "updated", len(updatedKeys)) defer metrics.ReportAndUpdateDuration("statediff END buildAccountUpdates ", time.Now(), logger, metrics.IndexerMetrics.BuildAccountUpdatesTimer) var err error for _, key := range updatedKeys { createdAcc := creations[key] deletedAcc := deletions[key] storageDiff := make([]sdtypes.StorageLeafNode, 0) if deletedAcc.Account != nil && createdAcc.Account != nil { err = sdb.buildStorageNodesIncremental( deletedAcc.Account.Root, createdAcc.Account.Root, StorageNodeAppender(&storageDiff), ipldOutput, ) if err != nil { return fmt.Errorf("failed building incremental storage diffs for account with leafkey %x\r\nerror: %w", key, err) } } if err = output(sdtypes.StateLeafNode{ AccountWrapper: createdAcc, Removed: false, StorageDiff: storageDiff, }); err != nil { return err } delete(creations, key) delete(deletions, key) } return nil } // buildAccountCreations returns the statediff node objects for all the accounts that exist at B but not at A // it also returns the code and codehash for created contract accounts func (sdb *StateDiffBuilder) buildAccountCreations(accounts sdtypes.AccountMap, output sdtypes.StateNodeSink, ipldOutput sdtypes.IPLDSink, logger log.Logger) error { logger.Trace("statediff BEGIN buildAccountCreations") defer metrics.ReportAndUpdateDuration("statediff END buildAccountCreations", time.Now(), logger, metrics.IndexerMetrics.BuildAccountCreationsTimer) for _, val := range accounts { diff := sdtypes.StateLeafNode{ AccountWrapper: val, Removed: false, } if !bytes.Equal(val.Account.CodeHash, nullCodeHash) { // For contract creations, any storage node contained is a diff storageDiff := make([]sdtypes.StorageLeafNode, 0) err := sdb.buildStorageNodesEventual(val.Account.Root, StorageNodeAppender(&storageDiff), ipldOutput) if err != nil { return fmt.Errorf("failed building eventual storage diffs for node with leaf key %x\r\nerror: %w", val.LeafKey, err) } diff.StorageDiff = storageDiff // emit codehash => code mappings for contract codeHash := common.BytesToHash(val.Account.CodeHash) code, err := sdb.StateCache.ContractCode(codeHash) if err != nil { return fmt.Errorf("failed to retrieve code for codehash %x\r\n error: %w", codeHash, err) } if err := ipldOutput(sdtypes.IPLD{ CID: ipld.Keccak256ToCid(ipld.RawBinary, codeHash.Bytes()).String(), Content: code, }); err != nil { return err } } if err := output(diff); err != nil { return err } } return nil } // buildStorageNodesEventual builds the storage diff node objects for a created account // i.e. it returns all the storage nodes at this state, since there is no previous state func (sdb *StateDiffBuilder) buildStorageNodesEventual(sr common.Hash, output sdtypes.StorageNodeSink, ipldOutput sdtypes.IPLDSink) error { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.BuildStorageNodesEventualTimer) if sr == emptyContractRoot { return nil } log.Debug("Storage root for eventual diff", "root", sr.String()) sTrie, err := sdb.StateCache.OpenTrie(sr) if err != nil { log.Info("error in build storage diff eventual", "error", err) return err } it := sTrie.NodeIterator(make([]byte, 0)) return sdb.buildStorageNodesFromTrie(it, output, ipldOutput) } // buildStorageNodesFromTrie returns all the storage diff node objects in the provided node iterator func (sdb *StateDiffBuilder) buildStorageNodesFromTrie(it trie.NodeIterator, output sdtypes.StorageNodeSink, ipldOutput sdtypes.IPLDSink) error { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.BuildStorageNodesFromTrieTimer) var prevBlob []byte for it.Next(true) { if it.Leaf() { storageLeafNode := sdb.processStorageValueNode(it, prevBlob) if err := output(storageLeafNode); err != nil { return err } } else { nodeVal := make([]byte, len(it.NodeBlob())) copy(nodeVal, it.NodeBlob()) if err := ipldOutput(sdtypes.IPLD{ CID: ipld.Keccak256ToCid(ipld.MEthStorageTrie, it.Hash().Bytes()).String(), Content: nodeVal, }); err != nil { return err } prevBlob = nodeVal } } return it.Error() } // decodes account at leaf and encodes RLP data to CID // reminder: it.Leaf() == true when the iterator is positioned at a "value node" (which is not something // that actually exists in an MMPT), therefore we pass the parent node blob as the leaf RLP. func (sdb *StateDiffBuilder) processStorageValueNode(it trie.NodeIterator, parentBlob []byte) sdtypes.StorageLeafNode { leafKey := make([]byte, len(it.LeafKey())) copy(leafKey, it.LeafKey()) value := make([]byte, len(it.LeafBlob())) copy(value, it.LeafBlob()) return sdtypes.StorageLeafNode{ LeafKey: leafKey, Value: value, CID: ipld.Keccak256ToCid(ipld.MEthStorageTrie, crypto.Keccak256(parentBlob)).String(), } } // buildRemovedAccountStorageNodes builds the "removed" diffs for all the storage nodes for a destroyed account func (sdb *StateDiffBuilder) buildRemovedAccountStorageNodes(sr common.Hash, output sdtypes.StorageNodeSink) error { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.BuildRemovedAccountStorageNodesTimer) if sr == emptyContractRoot { return nil } log.Debug("Storage root for removed diffs", "root", sr.String()) sTrie, err := sdb.StateCache.OpenTrie(sr) if err != nil { log.Info("error in build removed account storage diffs", "error", err) return err } it := sTrie.NodeIterator(make([]byte, 0)) return sdb.buildRemovedStorageNodesFromTrie(it, output) } // buildRemovedStorageNodesFromTrie returns diffs for all the storage nodes in the provided node interator func (sdb *StateDiffBuilder) buildRemovedStorageNodesFromTrie(it trie.NodeIterator, output sdtypes.StorageNodeSink) error { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.BuildRemovedStorageNodesFromTrieTimer) for it.Next(true) { if it.Leaf() { // only leaf values are indexed, don't need to demarcate removed intermediate nodes leafKey := make([]byte, len(it.LeafKey())) copy(leafKey, it.LeafKey()) if err := output(sdtypes.StorageLeafNode{ CID: shared.RemovedNodeStorageCID, Removed: true, LeafKey: leafKey, Value: []byte{}, }); err != nil { return err } } } return it.Error() } // buildStorageNodesIncremental builds the storage diff node objects for all nodes that exist in a different state at B than A func (sdb *StateDiffBuilder) buildStorageNodesIncremental(oldroot common.Hash, newroot common.Hash, output sdtypes.StorageNodeSink, ipldOutput sdtypes.IPLDSink) error { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.BuildStorageNodesIncrementalTimer) if newroot == oldroot { return nil } log.Trace("Storage roots for incremental diff", "old", oldroot.String(), "new", newroot.String()) oldTrie, err := sdb.StateCache.OpenTrie(oldroot) if err != nil { return err } newTrie, err := sdb.StateCache.OpenTrie(newroot) if err != nil { return err } diffSlotsAtB, err := sdb.createdAndUpdatedStorage( oldTrie.NodeIterator([]byte{}), newTrie.NodeIterator([]byte{}), output, ipldOutput) if err != nil { return err } return sdb.deletedOrUpdatedStorage(oldTrie.NodeIterator([]byte{}), newTrie.NodeIterator([]byte{}), diffSlotsAtB, output) } func (sdb *StateDiffBuilder) createdAndUpdatedStorage(a, b trie.NodeIterator, output sdtypes.StorageNodeSink, ipldOutput sdtypes.IPLDSink) (map[string]bool, error) { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.CreatedAndUpdatedStorageTimer) diffSlotsAtB := make(map[string]bool) var prevBlob []byte it, _ := trie.NewDifferenceIterator(a, b) for it.Next(true) { if it.Leaf() { storageLeafNode := sdb.processStorageValueNode(it, prevBlob) if err := output(storageLeafNode); err != nil { return nil, err } diffSlotsAtB[hex.EncodeToString(storageLeafNode.LeafKey)] = true } else { if it.Hash() == zeroHash { continue } nodeVal := make([]byte, len(it.NodeBlob())) copy(nodeVal, it.NodeBlob()) nodeHash := make([]byte, len(it.Hash().Bytes())) copy(nodeHash, it.Hash().Bytes()) if err := ipldOutput(sdtypes.IPLD{ CID: ipld.Keccak256ToCid(ipld.MEthStorageTrie, nodeHash).String(), Content: nodeVal, }); err != nil { return nil, err } prevBlob = nodeVal } } return diffSlotsAtB, it.Error() } func (sdb *StateDiffBuilder) deletedOrUpdatedStorage(a, b trie.NodeIterator, diffSlotsAtB map[string]bool, output sdtypes.StorageNodeSink) error { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.DeletedOrUpdatedStorageTimer) it, _ := trie.NewDifferenceIterator(b, a) for it.Next(true) { if it.Leaf() { leafKey := make([]byte, len(it.LeafKey())) copy(leafKey, it.LeafKey()) // if this node's leaf key did not show up in diffSlotsAtB // that means the storage slot was vacated // in that case, emit an empty "removed" diff storage node if _, ok := diffSlotsAtB[hex.EncodeToString(leafKey)]; !ok { if err := output(sdtypes.StorageLeafNode{ CID: shared.RemovedNodeStorageCID, Removed: true, LeafKey: leafKey, Value: []byte{}, }); err != nil { return err } } } } return it.Error() } // isWatchedPathPrefix checks if a node path is a prefix (ancestor) to one of the watched addresses. // An empty watch list means all paths are watched. func isWatchedPathPrefix(watchedLeafPaths [][]byte, path []byte) bool { if len(watchedLeafPaths) == 0 { return true } for _, watched := range watchedLeafPaths { if bytes.HasPrefix(watched, path) { return true } } return false } // isWatchedPath checks if a node path corresponds to one of the watched addresses func isWatchedPath(watchedLeafPaths [][]byte, leafPath []byte) bool { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.IsWatchedAddressTimer) for _, watched := range watchedLeafPaths { if bytes.Equal(watched, leafPath) { return true } } return false } // isLeaf checks if the node we are at is a leaf func isLeaf(elements []interface{}) (bool, error) { if len(elements) > 2 { return false, nil } if len(elements) < 2 { return false, fmt.Errorf("node cannot be less than two elements in length") } switch elements[0].([]byte)[0] / 16 { case '\x00': return false, nil case '\x01': return false, nil case '\x02': return true, nil case '\x03': return true, nil default: return false, fmt.Errorf("unknown hex prefix") } }