// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Contains a batch of utility type declarations used by the tests. As the node // operates on unique types, a lot of them are needed to check various features. package statediff import ( "bytes" "context" "fmt" "sync" "time" iterutils "github.com/cerc-io/eth-iterator-utils" "github.com/cerc-io/eth-iterator-utils/tracker" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" "golang.org/x/sync/errgroup" "github.com/cerc-io/plugeth-statediff/adapt" "github.com/cerc-io/plugeth-statediff/indexer/database/metrics" "github.com/cerc-io/plugeth-statediff/indexer/ipld" "github.com/cerc-io/plugeth-statediff/indexer/shared" sdtypes "github.com/cerc-io/plugeth-statediff/types" "github.com/cerc-io/plugeth-statediff/utils" "github.com/cerc-io/plugeth-statediff/utils/log" ) var ( emptyNode, _ = rlp.EncodeToBytes(&[]byte{}) emptyContractRoot = crypto.Keccak256Hash(emptyNode) nullCodeHash = crypto.Keccak256([]byte{}) zeroHash common.Hash defaultSubtrieWorkers uint = 1 ) // Builder interface exposes the method for building a state diff between two blocks type Builder interface { BuildStateDiffObject(Args, Params) (sdtypes.StateObject, error) WriteStateDiff(Args, Params, sdtypes.StateNodeSink, sdtypes.IPLDSink) error } type builder struct { // state cache is safe for concurrent reads stateCache adapt.StateView subtrieWorkers uint } type accountUpdate struct { new sdtypes.AccountWrapper oldRoot common.Hash } type accountUpdateMap map[string]*accountUpdate func appender[T any](to *[]T) func(T) error { return func(a T) error { *to = append(*to, a) return nil } } func syncedAppender[T any](to *[]T) func(T) error { var mtx sync.Mutex return func(a T) error { mtx.Lock() *to = append(*to, a) mtx.Unlock() return nil } } // NewBuilder is used to create a statediff builder func NewBuilder(stateCache adapt.StateView) *builder { return &builder{ stateCache: stateCache, subtrieWorkers: defaultSubtrieWorkers, } } // SetSubtrieWorkers sets the number of disjoint subtries to divide among parallel workers. // Passing 0 will reset this to the default value. func (sdb *builder) SetSubtrieWorkers(n uint) { if n == 0 { n = defaultSubtrieWorkers } sdb.subtrieWorkers = n } // BuildStateDiffObject builds a statediff object from two blocks and the provided parameters func (sdb *builder) BuildStateDiffObject(args Args, params Params) (sdtypes.StateObject, error) { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.BuildStateDiffObjectTimer) var stateNodes []sdtypes.StateLeafNode var iplds []sdtypes.IPLD err := sdb.WriteStateDiff(args, params, syncedAppender(&stateNodes), syncedAppender(&iplds)) if err != nil { return sdtypes.StateObject{}, err } return sdtypes.StateObject{ BlockHash: args.BlockHash, BlockNumber: args.BlockNumber, Nodes: stateNodes, IPLDs: iplds, }, nil } // WriteStateDiff writes a statediff object to output sinks func (sdb *builder) WriteStateDiff( args Args, params Params, nodeSink sdtypes.StateNodeSink, ipldSink sdtypes.IPLDSink, ) error { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.WriteStateDiffTimer) // Load tries for old and new states triea, err := sdb.stateCache.OpenTrie(args.OldStateRoot) if err != nil { return fmt.Errorf("error opening old state trie: %w", err) } trieb, err := sdb.stateCache.OpenTrie(args.NewStateRoot) if err != nil { return fmt.Errorf("error opening new state trie: %w", err) } subitersA, err := iterutils.SubtrieIterators(triea.NodeIterator, uint(sdb.subtrieWorkers)) if err != nil { return fmt.Errorf("error creating subtrie iterators for old state trie: %w", err) } subitersB, err := iterutils.SubtrieIterators(trieb.NodeIterator, uint(sdb.subtrieWorkers)) if err != nil { return fmt.Errorf("error creating subtrie iterators for new state trie: %w", err) } logger := log.New("hash", args.BlockHash, "number", args.BlockNumber) // errgroup will cancel if any group fails g, ctx := errgroup.WithContext(context.Background()) for i := uint(0); i < sdb.subtrieWorkers; i++ { func(subdiv uint) { g.Go(func() error { a, b := subitersA[subdiv], subitersB[subdiv] it := utils.NewSymmetricDifferenceIterator(a, b) return sdb.processAccounts(ctx, it, &it.SymmDiffState, params.watchedAddressesLeafPaths, nodeSink, ipldSink, logger, ) }) }(i) } return g.Wait() } // WriteStateDiff writes a statediff object to output sinks func (sdb *builder) WriteStateSnapshot( stateRoot common.Hash, params Params, nodeSink sdtypes.StateNodeSink, ipldSink sdtypes.IPLDSink, tracker tracker.IteratorTracker, ) error { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.WriteStateDiffTimer) tree, err := sdb.stateCache.OpenTrie(stateRoot) if err != nil { return fmt.Errorf("error opening new state trie: %w", err) } subiters, _, err := tracker.Restore(tree.NodeIterator) if err != nil { return fmt.Errorf("error restoring iterators: %w", err) } if len(subiters) != 0 { // Completed iterators are not saved by the tracker, so restoring fewer than configured is ok, // but having too many is a problem. if len(subiters) > int(sdb.subtrieWorkers) { return fmt.Errorf("restored too many iterators: expected %d, got %d", sdb.subtrieWorkers, len(subiters)) } } else { subiters, err = iterutils.SubtrieIterators(tree.NodeIterator, uint(sdb.subtrieWorkers)) if err != nil { return fmt.Errorf("error creating subtrie iterators for trie: %w", err) } for i := range subiters { subiters[i] = tracker.Tracked(subiters[i]) } } // errgroup will cancel if any group fails g, ctx := errgroup.WithContext(context.Background()) for i := range subiters { func(subdiv uint) { g.Go(func() error { symdiff := utils.AlwaysBState() return sdb.processAccounts(ctx, subiters[subdiv], &symdiff, params.watchedAddressesLeafPaths, nodeSink, ipldSink, log.DefaultLogger, ) }) }(uint(i)) } return g.Wait() } // processAccounts processes account creations, deletions, and updates // the NodeIterator and SymmDiffIterator instances should refer to the same object, will only be used func (sdb *builder) processAccounts( ctx context.Context, it trie.NodeIterator, symdiff *utils.SymmDiffState, watchedAddressesLeafPaths [][]byte, nodeSink sdtypes.StateNodeSink, ipldSink sdtypes.IPLDSink, logger log.Logger, ) error { logger.Trace("statediff/processAccounts BEGIN") defer metrics.ReportAndUpdateDuration("statediff/processAccounts END", time.Now(), logger, metrics.IndexerMetrics.ProcessAccountsTimer) updates := make(accountUpdateMap) // Cache the RLP of the previous node. When we hit a value node this will be the parent blob. var prevBlob = it.NodeBlob() for it.Next(true) { select { case <-ctx.Done(): return ctx.Err() default: } // ignore node if it is not along paths of interest if !isWatchedPathPrefix(watchedAddressesLeafPaths, it.Path()) { continue } if symdiff.FromA() { // Node exists in the old trie if it.Leaf() { var account types.StateAccount if err := rlp.DecodeBytes(it.LeafBlob(), &account); err != nil { return err } leafKey := make([]byte, len(it.LeafKey())) copy(leafKey, it.LeafKey()) if symdiff.CommonPath() { // If B also contains this leaf node, this is the old state of an updated account. if update, ok := updates[string(leafKey)]; ok { update.oldRoot = account.Root } else { updates[string(leafKey)] = &accountUpdate{oldRoot: account.Root} } } else { // This node was removed, meaning the account was deleted. Emit empty // "removed" records for the state node and all storage all storage slots. err := sdb.processAccountDeletion(leafKey, account, nodeSink) if err != nil { return err } } } continue } // Node exists in the new trie (B) if it.Leaf() { accountW, err := sdb.decodeStateLeaf(it, prevBlob) if err != nil { return err } if symdiff.CommonPath() { // If A also contains this leaf node, this is the new state of an updated account. if update, ok := updates[string(accountW.LeafKey)]; ok { update.new = *accountW } else { updates[string(accountW.LeafKey)] = &accountUpdate{new: *accountW} } } else { // account was created err := sdb.processAccountCreation(accountW, ipldSink, nodeSink) if err != nil { return err } } continue } // New inner trie nodes will be written to blockstore only. // Reminder: this includes leaf nodes, since the geth iterator.Leaf() actually // signifies a "value" node. if it.Hash() == zeroHash { continue } nodeVal := make([]byte, len(it.NodeBlob())) copy(nodeVal, it.NodeBlob()) // if doing a selective diff, we need to ensure this is a watched path if len(watchedAddressesLeafPaths) > 0 { var elements []interface{} if err := rlp.DecodeBytes(nodeVal, &elements); err != nil { return err } ok, err := isLeaf(elements) if err != nil { return err } if ok { partialPath := utils.CompactToHex(elements[0].([]byte)) valueNodePath := append(it.Path(), partialPath...) if !isWatchedPath(watchedAddressesLeafPaths, valueNodePath) { continue } } } if err := ipldSink(sdtypes.IPLD{ CID: ipld.Keccak256ToCid(ipld.MEthStateTrie, it.Hash().Bytes()).String(), Content: nodeVal, }); err != nil { return err } prevBlob = nodeVal } for key, update := range updates { var storageDiff []sdtypes.StorageLeafNode err := sdb.processStorageUpdates( update.oldRoot, update.new.Account.Root, appender(&storageDiff), ipldSink, ) if err != nil { return fmt.Errorf("error processing incremental storage diffs for account with leafkey %x\r\nerror: %w", key, err) } if err = nodeSink(sdtypes.StateLeafNode{ AccountWrapper: update.new, StorageDiff: storageDiff, }); err != nil { return err } } return it.Error() } func (sdb *builder) processAccountDeletion( leafKey []byte, account types.StateAccount, nodeSink sdtypes.StateNodeSink, ) error { diff := sdtypes.StateLeafNode{ AccountWrapper: sdtypes.AccountWrapper{ LeafKey: leafKey, CID: shared.RemovedNodeStateCID, }, Removed: true, } err := sdb.processRemovedAccountStorage(account.Root, appender(&diff.StorageDiff)) if err != nil { return fmt.Errorf("failed building storage diffs for removed state account with key %x\r\nerror: %w", leafKey, err) } return nodeSink(diff) } func (sdb *builder) processAccountCreation( accountW *sdtypes.AccountWrapper, ipldSink sdtypes.IPLDSink, nodeSink sdtypes.StateNodeSink, ) error { diff := sdtypes.StateLeafNode{ AccountWrapper: *accountW, } if !bytes.Equal(accountW.Account.CodeHash, nullCodeHash) { // For contract creations, any storage node contained is a diff err := sdb.processStorageCreations(accountW.Account.Root, appender(&diff.StorageDiff), ipldSink) if err != nil { return fmt.Errorf("failed building eventual storage diffs for node with leaf key %x\r\nerror: %w", accountW.LeafKey, err) } // emit codehash => code mappings for contract codeHash := common.BytesToHash(accountW.Account.CodeHash) code, err := sdb.stateCache.ContractCode(codeHash) if err != nil { return fmt.Errorf("failed to retrieve code for codehash %s\r\n error: %w", codeHash, err) } if err := ipldSink(sdtypes.IPLD{ CID: ipld.Keccak256ToCid(ipld.RawBinary, codeHash.Bytes()).String(), Content: code, }); err != nil { return err } } return nodeSink(diff) } // decodes account at leaf and encodes RLP data to CID // reminder: it.Leaf() == true when the iterator is positioned at a "value node" (which is not something // that actually exists in an MMPT), therefore we pass the parent node blob as the leaf RLP. func (sdb *builder) decodeStateLeaf(it trie.NodeIterator, parentBlob []byte) (*sdtypes.AccountWrapper, error) { var account types.StateAccount if err := rlp.DecodeBytes(it.LeafBlob(), &account); err != nil { return nil, fmt.Errorf("error decoding account at leaf key %x: %w", it.LeafKey(), err) } leafKey := make([]byte, len(it.LeafKey())) copy(leafKey, it.LeafKey()) return &sdtypes.AccountWrapper{ LeafKey: it.LeafKey(), Account: &account, CID: ipld.Keccak256ToCid(ipld.MEthStateTrie, crypto.Keccak256(parentBlob)).String(), }, nil } // processStorageCreations processes the storage node records for a newly created account // i.e. it returns all the storage nodes at this state, since there is no previous state. func (sdb *builder) processStorageCreations( sr common.Hash, storageSink sdtypes.StorageNodeSink, ipldSink sdtypes.IPLDSink, ) error { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.ProcessStorageCreationsTimer) if sr == emptyContractRoot { return nil } log.Debug("Storage root for eventual diff", "root", sr) sTrie, err := sdb.stateCache.OpenTrie(sr) if err != nil { return fmt.Errorf("error opening storage trie for root %s: %w", sr, err) } var prevBlob []byte it, err := sTrie.NodeIterator(nil) if err != nil { return fmt.Errorf("error creating iterator for storage trie with root %s: %w", sr, err) } for it.Next(true) { if it.Leaf() { storageLeafNode := sdb.decodeStorageLeaf(it, prevBlob) if err := storageSink(storageLeafNode); err != nil { return err } } else { nodeVal := make([]byte, len(it.NodeBlob())) copy(nodeVal, it.NodeBlob()) if err := ipldSink(sdtypes.IPLD{ CID: ipld.Keccak256ToCid(ipld.MEthStorageTrie, it.Hash().Bytes()).String(), Content: nodeVal, }); err != nil { return err } prevBlob = nodeVal } } return it.Error() } // processStorageUpdates builds the storage diff node objects for all nodes that exist in a // different state at B than A func (sdb *builder) processStorageUpdates( oldroot common.Hash, newroot common.Hash, storageSink sdtypes.StorageNodeSink, ipldSink sdtypes.IPLDSink, ) error { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.ProcessStorageUpdatesTimer) if newroot == oldroot { return nil } log.Debug("Storage roots for incremental diff", "old", oldroot, "new", newroot) oldTrie, err := sdb.stateCache.OpenTrie(oldroot) if err != nil { return err } newTrie, err := sdb.stateCache.OpenTrie(newroot) if err != nil { return err } var prevBlob []byte a, err := oldTrie.NodeIterator(nil) if err != nil { return err } b, err := newTrie.NodeIterator(nil) if err != nil { return err } it := utils.NewSymmetricDifferenceIterator(a, b) for it.Next(true) { if it.FromA() { if it.Leaf() && !it.CommonPath() { // If this node's leaf key is absent from B, the storage slot was vacated. // In that case, emit an empty "removed" storage node record. if err := storageSink(sdtypes.StorageLeafNode{ CID: shared.RemovedNodeStorageCID, Removed: true, LeafKey: []byte(it.LeafKey()), Value: []byte{}, }); err != nil { return err } } continue } if it.Leaf() { storageLeafNode := sdb.decodeStorageLeaf(it, prevBlob) if err := storageSink(storageLeafNode); err != nil { return err } } else { if it.Hash() == zeroHash { continue } nodeVal := make([]byte, len(it.NodeBlob())) copy(nodeVal, it.NodeBlob()) if err := ipldSink(sdtypes.IPLD{ CID: ipld.Keccak256ToCid(ipld.MEthStorageTrie, it.Hash().Bytes()).String(), Content: nodeVal, }); err != nil { return err } prevBlob = nodeVal } } return it.Error() } // processRemovedAccountStorage builds the "removed" diffs for all the storage nodes for a destroyed account func (sdb *builder) processRemovedAccountStorage( sr common.Hash, storageSink sdtypes.StorageNodeSink, ) error { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.ProcessRemovedAccountStorageTimer) if sr == emptyContractRoot { return nil } log.Debug("Storage root for removed diffs", "root", sr) sTrie, err := sdb.stateCache.OpenTrie(sr) if err != nil { return fmt.Errorf("error opening storage trie for root %s: %w", sr, err) } it, err := sTrie.NodeIterator(nil) if err != nil { return fmt.Errorf("error creating iterator for storage trie with root %s: %w", sr, err) } for it.Next(true) { if it.Leaf() { // only leaf values are indexed, don't need to demarcate removed intermediate nodes leafKey := make([]byte, len(it.LeafKey())) copy(leafKey, it.LeafKey()) if err := storageSink(sdtypes.StorageLeafNode{ CID: shared.RemovedNodeStorageCID, Removed: true, LeafKey: leafKey, Value: []byte{}, }); err != nil { return err } } } return it.Error() } // decodes slot at leaf and encodes RLP data to CID // reminder: it.Leaf() == true when the iterator is positioned at a "value node" (which is not something // that actually exists in an MMPT), therefore we pass the parent node blob as the leaf RLP. func (sdb *builder) decodeStorageLeaf(it trie.NodeIterator, parentBlob []byte) sdtypes.StorageLeafNode { leafKey := make([]byte, len(it.LeafKey())) copy(leafKey, it.LeafKey()) value := make([]byte, len(it.LeafBlob())) copy(value, it.LeafBlob()) return sdtypes.StorageLeafNode{ LeafKey: leafKey, Value: value, CID: ipld.Keccak256ToCid(ipld.MEthStorageTrie, crypto.Keccak256(parentBlob)).String(), } } // isWatchedPathPrefix checks if a node path is a prefix (ancestor) to one of the watched addresses. // An empty watch list means all paths are watched. func isWatchedPathPrefix(watchedLeafPaths [][]byte, path []byte) bool { if len(watchedLeafPaths) == 0 { return true } for _, watched := range watchedLeafPaths { if bytes.HasPrefix(watched, path) { return true } } return false } // isWatchedPath checks if a node path corresponds to one of the watched addresses func isWatchedPath(watchedLeafPaths [][]byte, leafPath []byte) bool { defer metrics.UpdateDuration(time.Now(), metrics.IndexerMetrics.IsWatchedAddressTimer) for _, watched := range watchedLeafPaths { if bytes.Equal(watched, leafPath) { return true } } return false } // isLeaf checks if the node we are at is a leaf func isLeaf(elements []interface{}) (bool, error) { if len(elements) > 2 { return false, nil } if len(elements) < 2 { return false, fmt.Errorf("node cannot be less than two elements in length") } switch elements[0].([]byte)[0] / 16 { case '\x00': return false, nil case '\x01': return false, nil case '\x02': return true, nil case '\x03': return true, nil default: return false, fmt.Errorf("unknown hex prefix") } }