lotus/chain/vm/gas.go

152 lines
5.8 KiB
Go

package vm
import (
"fmt"
"github.com/filecoin-project/go-address"
addr "github.com/filecoin-project/go-address"
"github.com/filecoin-project/specs-actors/actors/abi"
"github.com/filecoin-project/specs-actors/actors/crypto"
"github.com/filecoin-project/specs-actors/actors/runtime"
vmr "github.com/filecoin-project/specs-actors/actors/runtime"
"github.com/ipfs/go-cid"
)
// Pricelist provides prices for operations in the VM.
//
// Note: this interface should be APPEND ONLY since last chain checkpoint
type Pricelist interface {
// OnChainMessage returns the gas used for storing a message of a given size in the chain.
OnChainMessage(msgSize int) int64
// OnChainReturnValue returns the gas used for storing the response of a message in the chain.
OnChainReturnValue(dataSize int) int64
// OnMethodInvocation returns the gas used when invoking a method.
OnMethodInvocation(value abi.TokenAmount, methodNum abi.MethodNum) int64
// OnIpldGet returns the gas used for storing an object
OnIpldGet(dataSize int) int64
// OnIpldPut returns the gas used for storing an object
OnIpldPut(dataSize int) int64
// OnCreateActor returns the gas used for creating an actor
OnCreateActor() int64
// OnDeleteActor returns the gas used for deleting an actor
OnDeleteActor() int64
OnVerifySignature(sigType crypto.SigType, planTextSize int) (int64, error)
OnHashing(dataSize int) int64
OnComputeUnsealedSectorCid(proofType abi.RegisteredProof, pieces []abi.PieceInfo) int64
OnVerifySeal(info abi.SealVerifyInfo) int64
OnVerifyPost(info abi.WindowPoStVerifyInfo) int64
OnVerifyConsensusFault() int64
}
var prices = map[abi.ChainEpoch]Pricelist{
abi.ChainEpoch(0): &pricelistV0{
onChainMessageBase: 0,
onChainMessagePerByte: 2,
onChainReturnValuePerByte: 8,
sendBase: 5,
sendTransferFunds: 5,
sendInvokeMethod: 10,
ipldGetBase: 10,
ipldGetPerByte: 1,
ipldPutBase: 20,
ipldPutPerByte: 2,
createActorBase: 40, // IPLD put + 20
createActorExtra: 500,
deleteActor: -500, // -createActorExtra
// Dragons: this cost is not persistable, create a LinearCost{a,b} struct that has a `.Cost(x) -> ax + b`
verifySignature: map[crypto.SigType]func(int64) int64{
crypto.SigTypeBLS: func(x int64) int64 { return 3*x + 2 },
crypto.SigTypeSecp256k1: func(x int64) int64 { return 3*x + 2 },
},
hashingBase: 5,
hashingPerByte: 2,
computeUnsealedSectorCidBase: 100,
verifySealBase: 2000,
verifyPostBase: 700,
verifyConsensusFault: 10,
},
}
// PricelistByEpoch finds the latest prices for the given epoch
func PricelistByEpoch(epoch abi.ChainEpoch) Pricelist {
// since we are storing the prices as map or epoch to price
// we need to get the price with the highest epoch that is lower or equal to the `epoch` arg
bestEpoch := abi.ChainEpoch(0)
bestPrice := prices[bestEpoch]
for e, pl := range prices {
// if `e` happened after `bestEpoch` and `e` is earlier or equal to the target `epoch`
if e > bestEpoch && e <= epoch {
bestEpoch = e
bestPrice = pl
}
}
if bestPrice == nil {
panic(fmt.Sprintf("bad setup: no gas prices available for epoch %d", epoch))
}
return bestPrice
}
type pricedSyscalls struct {
under vmr.Syscalls
pl Pricelist
chargeGas func(int64)
}
// Verifies that a signature is valid for an address and plaintext.
func (ps pricedSyscalls) VerifySignature(signature crypto.Signature, signer addr.Address, plaintext []byte) error {
c, err := ps.pl.OnVerifySignature(signature.Type, len(plaintext))
if err != nil {
return err
}
ps.chargeGas(c)
return ps.under.VerifySignature(signature, signer, plaintext)
}
// Hashes input data using blake2b with 256 bit output.
func (ps pricedSyscalls) HashBlake2b(data []byte) [32]byte {
ps.chargeGas(ps.pl.OnHashing(len(data)))
return ps.under.HashBlake2b(data)
}
// Computes an unsealed sector CID (CommD) from its constituent piece CIDs (CommPs) and sizes.
func (ps pricedSyscalls) ComputeUnsealedSectorCID(reg abi.RegisteredProof, pieces []abi.PieceInfo) (cid.Cid, error) {
ps.chargeGas(ps.pl.OnComputeUnsealedSectorCid(reg, pieces))
return ps.under.ComputeUnsealedSectorCID(reg, pieces)
}
// Verifies a sector seal proof.
func (ps pricedSyscalls) VerifySeal(vi abi.SealVerifyInfo) error {
ps.chargeGas(ps.pl.OnVerifySeal(vi))
return ps.under.VerifySeal(vi)
}
// Verifies a proof of spacetime.
func (ps pricedSyscalls) VerifyPoSt(vi abi.WindowPoStVerifyInfo) error {
ps.chargeGas(ps.pl.OnVerifyPost(vi))
return ps.under.VerifyPoSt(vi)
}
// Verifies that two block headers provide proof of a consensus fault:
// - both headers mined by the same actor
// - headers are different
// - first header is of the same or lower epoch as the second
// - at least one of the headers appears in the current chain at or after epoch `earliest`
// - the headers provide evidence of a fault (see the spec for the different fault types).
// The parameters are all serialized block headers. The third "extra" parameter is consulted only for
// the "parent grinding fault", in which case it must be the sibling of h1 (same parent tipset) and one of the
// blocks in the parent of h2 (i.e. h2's grandparent).
// Returns nil and an error if the headers don't prove a fault.
func (ps pricedSyscalls) VerifyConsensusFault(h1 []byte, h2 []byte, extra []byte) (*runtime.ConsensusFault, error) {
ps.chargeGas(ps.pl.OnVerifyConsensusFault())
return ps.under.VerifyConsensusFault(h1, h2, extra)
}
func (ps pricedSyscalls) BatchVerifySeals(inp map[address.Address][]abi.SealVerifyInfo) (map[address.Address][]bool, error) {
ps.chargeGas(0) // TODO: this is only called by the cron actor. Should we even charge gas?
return ps.under.BatchVerifySeals(inp)
}