lotus/node/config/types.go
2022-09-30 16:45:04 +00:00

683 lines
28 KiB
Go

package config
import (
"github.com/ipfs/go-cid"
"github.com/filecoin-project/lotus/chain/types"
"github.com/filecoin-project/lotus/storage/sealer"
)
// // NOTE: ONLY PUT STRUCT DEFINITIONS IN THIS FILE
// //
// // After making edits here, run 'make cfgdoc-gen' (or 'make gen')
// Common is common config between full node and miner
type Common struct {
API API
Backup Backup
Logging Logging
Libp2p Libp2p
Pubsub Pubsub
}
// FullNode is a full node config
type FullNode struct {
Common
Client Client
Wallet Wallet
Fees FeeConfig
Chainstore Chainstore
Raft UserRaftConfig
}
// // Common
type Backup struct {
// When set to true disables metadata log (.lotus/kvlog). This can save disk
// space by reducing metadata redundancy.
//
// Note that in case of metadata corruption it might be much harder to recover
// your node if metadata log is disabled
DisableMetadataLog bool
}
// Logging is the logging system config
type Logging struct {
// SubsystemLevels specify per-subsystem log levels
SubsystemLevels map[string]string
}
// StorageMiner is a miner config
type StorageMiner struct {
Common
Subsystems MinerSubsystemConfig
Dealmaking DealmakingConfig
IndexProvider IndexProviderConfig
Proving ProvingConfig
Sealing SealingConfig
Storage SealerConfig
Fees MinerFeeConfig
Addresses MinerAddressConfig
DAGStore DAGStoreConfig
}
type DAGStoreConfig struct {
// Path to the dagstore root directory. This directory contains three
// subdirectories, which can be symlinked to alternative locations if
// need be:
// - ./transients: caches unsealed deals that have been fetched from the
// storage subsystem for serving retrievals.
// - ./indices: stores shard indices.
// - ./datastore: holds the KV store tracking the state of every shard
// known to the DAG store.
// Default value: <LOTUS_MARKETS_PATH>/dagstore (split deployment) or
// <LOTUS_MINER_PATH>/dagstore (monolith deployment)
RootDir string
// The maximum amount of indexing jobs that can run simultaneously.
// 0 means unlimited.
// Default value: 5.
MaxConcurrentIndex int
// The maximum amount of unsealed deals that can be fetched simultaneously
// from the storage subsystem. 0 means unlimited.
// Default value: 0 (unlimited).
MaxConcurrentReadyFetches int
// The maximum amount of unseals that can be processed simultaneously
// from the storage subsystem. 0 means unlimited.
// Default value: 0 (unlimited).
MaxConcurrentUnseals int
// The maximum number of simultaneous inflight API calls to the storage
// subsystem.
// Default value: 100.
MaxConcurrencyStorageCalls int
// The time between calls to periodic dagstore GC, in time.Duration string
// representation, e.g. 1m, 5m, 1h.
// Default value: 1 minute.
GCInterval Duration
}
type MinerSubsystemConfig struct {
EnableMining bool
EnableSealing bool
EnableSectorStorage bool
EnableMarkets bool
SealerApiInfo string // if EnableSealing == false
SectorIndexApiInfo string // if EnableSectorStorage == false
}
type DealmakingConfig struct {
// When enabled, the miner can accept online deals
ConsiderOnlineStorageDeals bool
// When enabled, the miner can accept offline deals
ConsiderOfflineStorageDeals bool
// When enabled, the miner can accept retrieval deals
ConsiderOnlineRetrievalDeals bool
// When enabled, the miner can accept offline retrieval deals
ConsiderOfflineRetrievalDeals bool
// When enabled, the miner can accept verified deals
ConsiderVerifiedStorageDeals bool
// When enabled, the miner can accept unverified deals
ConsiderUnverifiedStorageDeals bool
// A list of Data CIDs to reject when making deals
PieceCidBlocklist []cid.Cid
// Maximum expected amount of time getting the deal into a sealed sector will take
// This includes the time the deal will need to get transferred and published
// before being assigned to a sector
ExpectedSealDuration Duration
// Maximum amount of time proposed deal StartEpoch can be in future
MaxDealStartDelay Duration
// When a deal is ready to publish, the amount of time to wait for more
// deals to be ready to publish before publishing them all as a batch
PublishMsgPeriod Duration
// The maximum number of deals to include in a single PublishStorageDeals
// message
MaxDealsPerPublishMsg uint64
// The maximum collateral that the provider will put up against a deal,
// as a multiplier of the minimum collateral bound
MaxProviderCollateralMultiplier uint64
// The maximum allowed disk usage size in bytes of staging deals not yet
// passed to the sealing node by the markets service. 0 is unlimited.
MaxStagingDealsBytes int64
// The maximum number of parallel online data transfers for storage deals
SimultaneousTransfersForStorage uint64
// The maximum number of simultaneous data transfers from any single client
// for storage deals.
// Unset by default (0), and values higher than SimultaneousTransfersForStorage
// will have no effect; i.e. the total number of simultaneous data transfers
// across all storage clients is bound by SimultaneousTransfersForStorage
// regardless of this number.
SimultaneousTransfersForStoragePerClient uint64
// The maximum number of parallel online data transfers for retrieval deals
SimultaneousTransfersForRetrieval uint64
// Minimum start epoch buffer to give time for sealing of sector with deal.
StartEpochSealingBuffer uint64
// A command used for fine-grained evaluation of storage deals
// see https://lotus.filecoin.io/storage-providers/advanced-configurations/market/#using-filters-for-fine-grained-storage-and-retrieval-deal-acceptance for more details
Filter string
// A command used for fine-grained evaluation of retrieval deals
// see https://lotus.filecoin.io/storage-providers/advanced-configurations/market/#using-filters-for-fine-grained-storage-and-retrieval-deal-acceptance for more details
RetrievalFilter string
RetrievalPricing *RetrievalPricing
}
type IndexProviderConfig struct {
// Enable set whether to enable indexing announcement to the network and expose endpoints that
// allow indexer nodes to process announcements. Enabled by default.
Enable bool
// EntriesCacheCapacity sets the maximum capacity to use for caching the indexing advertisement
// entries. Defaults to 1024 if not specified. The cache is evicted using LRU policy. The
// maximum storage used by the cache is a factor of EntriesCacheCapacity, EntriesChunkSize and
// the length of multihashes being advertised. For example, advertising 128-bit long multihashes
// with the default EntriesCacheCapacity, and EntriesChunkSize means the cache size can grow to
// 256MiB when full.
EntriesCacheCapacity int
// EntriesChunkSize sets the maximum number of multihashes to include in a single entries chunk.
// Defaults to 16384 if not specified. Note that chunks are chained together for indexing
// advertisements that include more multihashes than the configured EntriesChunkSize.
EntriesChunkSize int
// TopicName sets the topic name on which the changes to the advertised content are announced.
// If not explicitly specified, the topic name is automatically inferred from the network name
// in following format: '/indexer/ingest/<network-name>'
// Defaults to empty, which implies the topic name is inferred from network name.
TopicName string
// PurgeCacheOnStart sets whether to clear any cached entries chunks when the provider engine
// starts. By default, the cache is rehydrated from previously cached entries stored in
// datastore if any is present.
PurgeCacheOnStart bool
}
type RetrievalPricing struct {
Strategy string // possible values: "default", "external"
Default *RetrievalPricingDefault
External *RetrievalPricingExternal
}
type RetrievalPricingExternal struct {
// Path of the external script that will be run to price a retrieval deal.
// This parameter is ONLY applicable if the retrieval pricing policy strategy has been configured to "external".
Path string
}
type RetrievalPricingDefault struct {
// VerifiedDealsFreeTransfer configures zero fees for data transfer for a retrieval deal
// of a payloadCid that belongs to a verified storage deal.
// This parameter is ONLY applicable if the retrieval pricing policy strategy has been configured to "default".
// default value is true
VerifiedDealsFreeTransfer bool
}
type ProvingConfig struct {
// Maximum number of sector checks to run in parallel. (0 = unlimited)
//
// WARNING: Setting this value too high may make the node crash by running out of stack
// WARNING: Setting this value too low may make sector challenge reading much slower, resulting in failed PoSt due
// to late submission.
//
// After changing this option, confirm that the new value works in your setup by invoking
// 'lotus-miner proving compute window-post 0'
ParallelCheckLimit int
// Disable Window PoSt computation on the lotus-miner process even if no window PoSt workers are present.
//
// WARNING: If no windowPoSt workers are connected, window PoSt WILL FAIL resulting in faulty sectors which will need
// to be recovered. Before enabling this option, make sure your PoSt workers work correctly.
//
// After changing this option, confirm that the new value works in your setup by invoking
// 'lotus-miner proving compute window-post 0'
DisableBuiltinWindowPoSt bool
// Disable Winning PoSt computation on the lotus-miner process even if no winning PoSt workers are present.
//
// WARNING: If no WinningPoSt workers are connected, Winning PoSt WILL FAIL resulting in lost block rewards.
// Before enabling this option, make sure your PoSt workers work correctly.
DisableBuiltinWinningPoSt bool
// Disable WindowPoSt provable sector readability checks.
//
// In normal operation, when preparing to compute WindowPoSt, lotus-miner will perform a round of reading challenges
// from all sectors to confirm that those sectors can be proven. Challenges read in this process are discarded, as
// we're only interested in checking that sector data can be read.
//
// When using builtin proof computation (no PoSt workers, and DisableBuiltinWindowPoSt is set to false), this process
// can save a lot of time and compute resources in the case that some sectors are not readable - this is caused by
// the builtin logic not skipping snark computation when some sectors need to be skipped.
//
// When using PoSt workers, this process is mostly redundant, with PoSt workers challenges will be read once, and
// if challenges for some sectors aren't readable, those sectors will just get skipped.
//
// Disabling sector pre-checks will slightly reduce IO load when proving sectors, possibly resulting in shorter
// time to produce window PoSt. In setups with good IO capabilities the effect of this option on proving time should
// be negligible.
//
// NOTE: It likely is a bad idea to disable sector pre-checks in setups with no PoSt workers.
//
// NOTE: Even when this option is enabled, recovering sectors will be checked before recovery declaration message is
// sent to the chain
//
// After changing this option, confirm that the new value works in your setup by invoking
// 'lotus-miner proving compute window-post 0'
DisableWDPoStPreChecks bool
// Maximum number of partitions to prove in a single SubmitWindowPoSt messace. 0 = network limit (10 in nv16)
//
// A single partition may contain up to 2349 32GiB sectors, or 2300 64GiB sectors.
//
// The maximum number of sectors which can be proven in a single PoSt message is 25000 in network version 16, which
// means that a single message can prove at most 10 partinions
//
// In some cases when submitting PoSt messages which are recovering sectors, the default network limit may still be
// too high to fit in the block gas limit; In those cases it may be necessary to set this value to something lower
// than 10; Note that setting this value lower may result in less efficient gas use - more messages will be sent,
// to prove each deadline, resulting in more total gas use (but each message will have lower gas limit)
//
// Setting this value above the network limit has no effect
MaxPartitionsPerPoStMessage int
// Maximum number of partitions to declare in a single DeclareFaultsRecovered message. 0 = no limit.
// In some cases when submitting DeclareFaultsRecovered messages,
// there may be too many recoveries to fit in a BlockGasLimit.
// In those cases it may be necessary to set this value to something low (eg 1);
// Note that setting this value lower may result in less efficient gas use - more messages will be sent than needed,
// resulting in more total gas use (but each message will have lower gas limit)
MaxPartitionsPerRecoveryMessage int
}
type SealingConfig struct {
// Upper bound on how many sectors can be waiting for more deals to be packed in it before it begins sealing at any given time.
// If the miner is accepting multiple deals in parallel, up to MaxWaitDealsSectors of new sectors will be created.
// If more than MaxWaitDealsSectors deals are accepted in parallel, only MaxWaitDealsSectors deals will be processed in parallel
// Note that setting this number too high in relation to deal ingestion rate may result in poor sector packing efficiency
// 0 = no limit
MaxWaitDealsSectors uint64
// Upper bound on how many sectors can be sealing+upgrading at the same time when creating new CC sectors (0 = unlimited)
MaxSealingSectors uint64
// Upper bound on how many sectors can be sealing+upgrading at the same time when creating new sectors with deals (0 = unlimited)
MaxSealingSectorsForDeals uint64
// Prefer creating new sectors even if there are sectors Available for upgrading.
// This setting combined with MaxUpgradingSectors set to a value higher than MaxSealingSectorsForDeals makes it
// possible to use fast sector upgrades to handle high volumes of storage deals, while still using the simple sealing
// flow when the volume of storage deals is lower.
PreferNewSectorsForDeals bool
// Upper bound on how many sectors can be sealing+upgrading at the same time when upgrading CC sectors with deals (0 = MaxSealingSectorsForDeals)
MaxUpgradingSectors uint64
// When set to a non-zero value, minimum number of epochs until sector expiration required for sectors to be considered
// for upgrades (0 = DealMinDuration = 180 days = 518400 epochs)
//
// Note that if all deals waiting in the input queue have lifetimes longer than this value, upgrade sectors will be
// required to have expiration of at least the soonest-ending deal
MinUpgradeSectorExpiration uint64
// When set to a non-zero value, minimum number of epochs until sector expiration above which upgrade candidates will
// be selected based on lowest initial pledge.
//
// Target sector expiration is calculated by looking at the input deal queue, sorting it by deal expiration, and
// selecting N deals from the queue up to sector size. The target expiration will be Nth deal end epoch, or in case
// where there weren't enough deals to fill a sector, DealMaxDuration (540 days = 1555200 epochs)
//
// Setting this to a high value (for example to maximum deal duration - 1555200) will disable selection based on
// initial pledge - upgrade sectors will always be chosen based on longest expiration
MinTargetUpgradeSectorExpiration uint64
// CommittedCapacitySectorLifetime is the duration a Committed Capacity (CC) sector will
// live before it must be extended or converted into sector containing deals before it is
// terminated. Value must be between 180-540 days inclusive
CommittedCapacitySectorLifetime Duration
// Period of time that a newly created sector will wait for more deals to be packed in to before it starts to seal.
// Sectors which are fully filled will start sealing immediately
WaitDealsDelay Duration
// Whether to keep unsealed copies of deal data regardless of whether the client requested that. This lets the miner
// avoid the relatively high cost of unsealing the data later, at the cost of more storage space
AlwaysKeepUnsealedCopy bool
// Run sector finalization before submitting sector proof to the chain
FinalizeEarly bool
// Whether new sectors are created to pack incoming deals
// When this is set to false no new sectors will be created for sealing incoming deals
// This is useful for forcing all deals to be assigned as snap deals to sectors marked for upgrade
MakeNewSectorForDeals bool
// After sealing CC sectors, make them available for upgrading with deals
MakeCCSectorsAvailable bool
// Whether to use available miner balance for sector collateral instead of sending it with each message
CollateralFromMinerBalance bool
// Minimum available balance to keep in the miner actor before sending it with messages
AvailableBalanceBuffer types.FIL
// Don't send collateral with messages even if there is no available balance in the miner actor
DisableCollateralFallback bool
// enable / disable precommit batching (takes effect after nv13)
BatchPreCommits bool
// maximum precommit batch size - batches will be sent immediately above this size
MaxPreCommitBatch int
// how long to wait before submitting a batch after crossing the minimum batch size
PreCommitBatchWait Duration
// time buffer for forceful batch submission before sectors/deal in batch would start expiring
PreCommitBatchSlack Duration
// enable / disable commit aggregation (takes effect after nv13)
AggregateCommits bool
// minimum batched commit size - batches above this size will eventually be sent on a timeout
MinCommitBatch int
// maximum batched commit size - batches will be sent immediately above this size
MaxCommitBatch int
// how long to wait before submitting a batch after crossing the minimum batch size
CommitBatchWait Duration
// time buffer for forceful batch submission before sectors/deals in batch would start expiring
CommitBatchSlack Duration
// network BaseFee below which to stop doing precommit batching, instead
// sending precommit messages to the chain individually
BatchPreCommitAboveBaseFee types.FIL
// network BaseFee below which to stop doing commit aggregation, instead
// submitting proofs to the chain individually
AggregateAboveBaseFee types.FIL
TerminateBatchMax uint64
TerminateBatchMin uint64
TerminateBatchWait Duration
// Keep this many sectors in sealing pipeline, start CC if needed
// todo TargetSealingSectors uint64
// todo TargetSectors - stop auto-pleding new sectors after this many sectors are sealed, default CC upgrade for deals sectors if above
}
type SealerConfig struct {
ParallelFetchLimit int
AllowSectorDownload bool
AllowAddPiece bool
AllowPreCommit1 bool
AllowPreCommit2 bool
AllowCommit bool
AllowUnseal bool
AllowReplicaUpdate bool
AllowProveReplicaUpdate2 bool
AllowRegenSectorKey bool
// LocalWorkerName specifies a custom name for the builtin worker.
// If set to an empty string (default) os hostname will be used
LocalWorkerName string
// Assigner specifies the worker assigner to use when scheduling tasks.
// "utilization" (default) - assign tasks to workers with lowest utilization.
// "spread" - assign tasks to as many distinct workers as possible.
Assigner string
// DisallowRemoteFinalize when set to true will force all Finalize tasks to
// run on workers with local access to both long-term storage and the sealing
// path containing the sector.
// --
// WARNING: Only set this if all workers have access to long-term storage
// paths. If this flag is enabled, and there are workers without long-term
// storage access, sectors will not be moved from them, and Finalize tasks
// will appear to be stuck.
// --
// If you see stuck Finalize tasks after enabling this setting, check
// 'lotus-miner sealing sched-diag' and 'lotus-miner storage find [sector num]'
DisallowRemoteFinalize bool
// ResourceFiltering instructs the system which resource filtering strategy
// to use when evaluating tasks against this worker. An empty value defaults
// to "hardware".
ResourceFiltering sealer.ResourceFilteringStrategy
}
type BatchFeeConfig struct {
Base types.FIL
PerSector types.FIL
}
type MinerFeeConfig struct {
MaxPreCommitGasFee types.FIL
MaxCommitGasFee types.FIL
// maxBatchFee = maxBase + maxPerSector * nSectors
MaxPreCommitBatchGasFee BatchFeeConfig
MaxCommitBatchGasFee BatchFeeConfig
MaxTerminateGasFee types.FIL
// WindowPoSt is a high-value operation, so the default fee should be high.
MaxWindowPoStGasFee types.FIL
MaxPublishDealsFee types.FIL
MaxMarketBalanceAddFee types.FIL
}
type MinerAddressConfig struct {
// Addresses to send PreCommit messages from
PreCommitControl []string
// Addresses to send Commit messages from
CommitControl []string
TerminateControl []string
DealPublishControl []string
// DisableOwnerFallback disables usage of the owner address for messages
// sent automatically
DisableOwnerFallback bool
// DisableWorkerFallback disables usage of the worker address for messages
// sent automatically, if control addresses are configured.
// A control address that doesn't have enough funds will still be chosen
// over the worker address if this flag is set.
DisableWorkerFallback bool
}
// API contains configs for API endpoint
type API struct {
// Binding address for the Lotus API
ListenAddress string
RemoteListenAddress string
Timeout Duration
}
// Libp2p contains configs for libp2p
type Libp2p struct {
// Binding address for the libp2p host - 0 means random port.
// Format: multiaddress; see https://multiformats.io/multiaddr/
ListenAddresses []string
// Addresses to explicitally announce to other peers. If not specified,
// all interface addresses are announced
// Format: multiaddress
AnnounceAddresses []string
// Addresses to not announce
// Format: multiaddress
NoAnnounceAddresses []string
BootstrapPeers []string
ProtectedPeers []string
// When not disabled (default), lotus asks NAT devices (e.g., routers), to
// open up an external port and forward it to the port lotus is running on.
// When this works (i.e., when your router supports NAT port forwarding),
// it makes the local lotus node accessible from the public internet
DisableNatPortMap bool
// ConnMgrLow is the number of connections that the basic connection manager
// will trim down to.
ConnMgrLow uint
// ConnMgrHigh is the number of connections that, when exceeded, will trigger
// a connection GC operation. Note: protected/recently formed connections don't
// count towards this limit.
ConnMgrHigh uint
// ConnMgrGrace is a time duration that new connections are immune from being
// closed by the connection manager.
ConnMgrGrace Duration
}
type Pubsub struct {
// Run the node in bootstrap-node mode
Bootstrapper bool
// DirectPeers specifies peers with direct peering agreements. These peers are
// connected outside of the mesh, with all (valid) message unconditionally
// forwarded to them. The router will maintain open connections to these peers.
// Note that the peering agreement should be reciprocal with direct peers
// symmetrically configured at both ends.
// Type: Array of multiaddress peerinfo strings, must include peerid (/p2p/12D3K...
DirectPeers []string
IPColocationWhitelist []string
RemoteTracer string
}
type Chainstore struct {
EnableSplitstore bool
Splitstore Splitstore
}
type Splitstore struct {
// ColdStoreType specifies the type of the coldstore.
// It can be "universal" (default) or "discard" for discarding cold blocks.
ColdStoreType string
// HotStoreType specifies the type of the hotstore.
// Only currently supported value is "badger".
HotStoreType string
// MarkSetType specifies the type of the markset.
// It can be "map" for in memory marking or "badger" (default) for on-disk marking.
MarkSetType string
// HotStoreMessageRetention specifies the retention policy for messages, in finalities beyond
// the compaction boundary; default is 0.
HotStoreMessageRetention uint64
// HotStoreFullGCFrequency specifies how often to perform a full (moving) GC on the hotstore.
// A value of 0 disables, while a value 1 will do full GC in every compaction.
// Default is 20 (about once a week).
HotStoreFullGCFrequency uint64
// EnableColdStoreAutoPrune turns on compaction of the cold store i.e. pruning
// where hotstore compaction occurs every finality epochs pruning happens every 3 finalities
// Default is false
EnableColdStoreAutoPrune bool
// ColdStoreFullGCFrequency specifies how often to performa a full (moving) GC on the coldstore.
// Only applies if auto prune is enabled. A value of 0 disables while a value of 1 will do
// full GC in every prune.
// Default is 7 (about once every a week)
ColdStoreFullGCFrequency uint64
// ColdStoreRetention specifies the retention policy for data reachable from the chain, in
// finalities beyond the compaction boundary, default is 0, -1 retains everything
ColdStoreRetention int64
}
// // Full Node
type Client struct {
UseIpfs bool
IpfsOnlineMode bool
IpfsMAddr string
IpfsUseForRetrieval bool
// The maximum number of simultaneous data transfers between the client
// and storage providers for storage deals
SimultaneousTransfersForStorage uint64
// The maximum number of simultaneous data transfers between the client
// and storage providers for retrieval deals
SimultaneousTransfersForRetrieval uint64
// Require that retrievals perform no on-chain operations. Paid retrievals
// without existing payment channels with available funds will fail instead
// of automatically performing on-chain operations.
OffChainRetrieval bool
}
type Wallet struct {
RemoteBackend string
EnableLedger bool
DisableLocal bool
}
type FeeConfig struct {
DefaultMaxFee types.FIL
}
//// ClusterRaftConfig allows to configure the Raft Consensus component for the node cluster.
//type ClusterRaftConfig struct {
// // config to enabled node cluster with raft consensus
// ClusterModeEnabled bool
// // will shutdown libp2p host on shutdown. Useful for testing
// HostShutdown bool
// // A folder to store Raft's data.
// DataFolder string
// // InitPeerset provides the list of initial cluster peers for new Raft
// // peers (with no prior state). It is ignored when Raft was already
// // initialized or when starting in staging mode.
// InitPeerset []peer.ID
// // LeaderTimeout specifies how long to wait for a leader before
// // failing an operation.
// WaitForLeaderTimeout Duration
// // NetworkTimeout specifies how long before a Raft network
// // operation is timed out
// NetworkTimeout Duration
// // CommitRetries specifies how many times we retry a failed commit until
// // we give up.
// CommitRetries int
// // How long to wait between retries
// CommitRetryDelay Duration
// // BackupsRotate specifies the maximum number of Raft's DataFolder
// // copies that we keep as backups (renaming) after cleanup.
// BackupsRotate int
// // Namespace to use when writing keys to the datastore
// DatastoreNamespace string
//
// // A Hashicorp Raft's configuration object.
// RaftConfig *hraft.Config
//
// // Tracing enables propagation of contexts across binary boundaries.
// Tracing bool
//}
type UserRaftConfig struct {
// config to enabled node cluster with raft consensus
ClusterModeEnabled bool
// will shutdown libp2p host on shutdown. Useful for testing
HostShutdown bool
// A folder to store Raft's data.
DataFolder string
// InitPeersetMultiAddr provides the list of initial cluster peers for new Raft
// peers (with no prior state). It is ignored when Raft was already
// initialized or when starting in staging mode.
InitPeersetMultiAddr []string
// LeaderTimeout specifies how long to wait for a leader before
// failing an operation.
WaitForLeaderTimeout Duration
// NetworkTimeout specifies how long before a Raft network
// operation is timed out
NetworkTimeout Duration
// CommitRetries specifies how many times we retry a failed commit until
// we give up.
CommitRetries int
// How long to wait between retries
CommitRetryDelay Duration
// BackupsRotate specifies the maximum number of Raft's DataFolder
// copies that we keep as backups (renaming) after cleanup.
BackupsRotate int
// Namespace to use when writing keys to the datastore
DatastoreNamespace string
// A Hashicorp Raft's configuration object.
//RaftConfig *hraft.Config
// Tracing enables propagation of contexts across binary boundaries.
Tracing bool
}