lotus/cmd/lotus-sim/simulation/step.go

258 lines
7.8 KiB
Go

package simulation
import (
"context"
"reflect"
"runtime"
"strings"
"github.com/filecoin-project/go-address"
"golang.org/x/xerrors"
"github.com/filecoin-project/go-state-types/abi"
"github.com/filecoin-project/lotus/build"
"github.com/filecoin-project/lotus/chain/actors/builtin/account"
"github.com/filecoin-project/lotus/chain/state"
"github.com/filecoin-project/lotus/chain/stmgr"
"github.com/filecoin-project/lotus/chain/store"
"github.com/filecoin-project/lotus/chain/types"
"github.com/filecoin-project/lotus/chain/vm"
)
const (
// The number of expected blocks in a tipset. We use this to determine how much gas a tipset
// has.
expectedBlocks = 5
// TODO: This will produce invalid blocks but it will accurately model the amount of gas
// we're willing to use per-tipset.
// A more correct approach would be to produce 5 blocks. We can do that later.
targetGas = build.BlockGasTarget * expectedBlocks
)
var baseFee = abi.NewTokenAmount(0)
// Step steps the simulation forward one step. This may move forward by more than one epoch.
func (sim *Simulation) Step(ctx context.Context) (*types.TipSet, error) {
state, err := sim.simState(ctx)
if err != nil {
return nil, err
}
ts, err := state.step(ctx)
if err != nil {
return nil, xerrors.Errorf("failed to step simulation: %w", err)
}
return ts, nil
}
// step steps the simulation state forward one step, producing and executing a new tipset.
func (ss *simulationState) step(ctx context.Context) (*types.TipSet, error) {
log.Infow("step", "epoch", ss.head.Height()+1)
messages, err := ss.popNextMessages(ctx)
if err != nil {
return nil, xerrors.Errorf("failed to select messages for block: %w", err)
}
head, err := ss.makeTipSet(ctx, messages)
if err != nil {
return nil, xerrors.Errorf("failed to make tipset: %w", err)
}
if err := ss.SetHead(head); err != nil {
return nil, xerrors.Errorf("failed to update head: %w", err)
}
return head, nil
}
type packFunc func(*types.Message) (full bool, err error)
// popNextMessages generates/picks a set of messages to be included in the next block.
//
// - This function is destructive and should only be called once per epoch.
// - This function does not store anything in the repo.
// - This function handles all gas estimation. The returned messages should all fit in a single
// block.
func (ss *simulationState) popNextMessages(ctx context.Context) ([]*types.Message, error) {
parentTs := ss.head
// First we make sure we don't have an upgrade at this epoch. If we do, we return no
// messages so we can just create an empty block at that epoch.
//
// This isn't what the network does, but it makes things easier. Otherwise, we'd need to run
// migrations before this epoch and I'd rather not deal with that.
nextHeight := parentTs.Height() + 1
prevVer := ss.StateManager.GetNtwkVersion(ctx, nextHeight-1)
nextVer := ss.StateManager.GetNtwkVersion(ctx, nextHeight)
if nextVer != prevVer {
log.Warnw("packing no messages for version upgrade block",
"old", prevVer,
"new", nextVer,
"epoch", nextHeight,
)
return nil, nil
}
// Next, we compute the state for the parent tipset. In practice, this will likely be
// cached.
parentState, _, err := ss.StateManager.TipSetState(ctx, parentTs)
if err != nil {
return nil, err
}
// Then we construct a VM to execute messages for gas estimation.
//
// Most parts of this VM are "real" except:
// 1. We don't charge a fee.
// 2. The runtime has "fake" proof logic.
// 3. We don't actually save any of the results.
r := store.NewChainRand(ss.StateManager.ChainStore(), parentTs.Cids())
vmopt := &vm.VMOpts{
StateBase: parentState,
Epoch: nextHeight,
Rand: r,
Bstore: ss.StateManager.ChainStore().StateBlockstore(),
Syscalls: ss.StateManager.ChainStore().VMSys(),
CircSupplyCalc: ss.StateManager.GetVMCirculatingSupply,
NtwkVersion: ss.StateManager.GetNtwkVersion,
BaseFee: abi.NewTokenAmount(0), // FREE!
LookbackState: stmgr.LookbackStateGetterForTipset(ss.StateManager, parentTs),
}
vmi, err := vm.NewVM(ctx, vmopt)
if err != nil {
return nil, err
}
// Next we define a helper function for "pushing" messages. This is the function that will
// be passed to the "pack" functions.
//
// It.
//
// 1. Tries to execute the message on-top-of the already pushed message.
// 2. Is careful to revert messages on failure to avoid nasties like nonce-gaps.
// 3. Resolves IDs as necessary, fills in missing parts of the message, etc.
vmStore := vmi.ActorStore(ctx)
var gasTotal int64
var messages []*types.Message
tryPushMsg := func(msg *types.Message) (bool, error) {
if gasTotal >= targetGas {
return true, nil
}
// Copy the message before we start mutating it.
msgCpy := *msg
msg = &msgCpy
st := vmi.StateTree().(*state.StateTree)
actor, err := st.GetActor(msg.From)
if err != nil {
return false, err
}
msg.Nonce = actor.Nonce
if msg.From.Protocol() == address.ID {
state, err := account.Load(vmStore, actor)
if err != nil {
return false, err
}
msg.From, err = state.PubkeyAddress()
if err != nil {
return false, err
}
}
// TODO: Our gas estimation is broken for payment channels due to horrible hacks in
// gasEstimateGasLimit.
if msg.Value == types.EmptyInt {
msg.Value = abi.NewTokenAmount(0)
}
msg.GasPremium = abi.NewTokenAmount(0)
msg.GasFeeCap = abi.NewTokenAmount(0)
msg.GasLimit = build.BlockGasLimit
// We manually snapshot so we can revert nonce changes, etc. on failure.
st.Snapshot(ctx)
defer st.ClearSnapshot()
ret, err := vmi.ApplyMessage(ctx, msg)
if err != nil {
_ = st.Revert()
return false, err
}
if ret.ActorErr != nil {
_ = st.Revert()
return false, ret.ActorErr
}
// Sometimes there are bugs. Let's catch them.
if ret.GasUsed == 0 {
_ = st.Revert()
return false, xerrors.Errorf("used no gas",
"msg", msg,
"ret", ret,
)
}
// TODO: consider applying overestimation? We're likely going to "over pack" here by
// ~25% because we're too accurate.
// Did we go over? Yes, revert.
newTotal := gasTotal + ret.GasUsed
if newTotal > targetGas {
_ = st.Revert()
return true, nil
}
gasTotal = newTotal
// Update the gas limit.
msg.GasLimit = ret.GasUsed
messages = append(messages, msg)
return false, nil
}
// Finally, we generate a set of messages to be included in
if err := ss.packMessages(ctx, tryPushMsg); err != nil {
return nil, err
}
return messages, nil
}
// functionName extracts the name of given function.
func functionName(fn interface{}) string {
name := runtime.FuncForPC(reflect.ValueOf(fn).Pointer()).Name()
lastDot := strings.LastIndexByte(name, '.')
if lastDot >= 0 {
name = name[lastDot+1 : len(name)-3]
}
lastDash := strings.LastIndexByte(name, '-')
if lastDash > 0 {
name = name[:lastDash]
}
return name
}
// packMessages packs messages with the given packFunc until the block is full (packFunc returns
// true).
// TODO: Make this more configurable for other simulations.
func (ss *simulationState) packMessages(ctx context.Context, cb packFunc) error {
type messageGenerator func(ctx context.Context, cb packFunc) (full bool, err error)
// We pack messages in-order:
// 1. Any window posts. We pack window posts as soon as the deadline opens to ensure we only
// miss them if/when we run out of chain bandwidth.
// 2. Prove commits. We do this eagerly to ensure they don't expire.
// 3. Finally, we fill the rest of the space with pre-commits.
messageGenerators := []messageGenerator{
ss.packWindowPoSts,
ss.packProveCommits,
ss.packPreCommits,
}
for _, mgen := range messageGenerators {
// We're intentionally ignoring the "full" signal so we can try to pack a few more
// messages.
_, err := mgen(ctx, cb)
if err != nil {
return xerrors.Errorf("when packing messages with %s: %w", functionName(mgen), err)
}
}
return nil
}