lotus/lib/consensus/raft/consensus.go
2022-09-22 16:27:15 -04:00

568 lines
15 KiB
Go

// Package raft implements a Consensus component for IPFS Cluster which uses
// Raft (go-libp2p-raft).
package consensus
import (
"context"
"errors"
"fmt"
"sort"
"time"
"github.com/google/uuid"
"golang.org/x/exp/slices"
addr "github.com/filecoin-project/go-address"
"github.com/filecoin-project/lotus/chain/types"
"github.com/filecoin-project/lotus/node/config"
//ds "github.com/ipfs/go-datastore"
logging "github.com/ipfs/go-log/v2"
consensus "github.com/libp2p/go-libp2p-consensus"
rpc "github.com/libp2p/go-libp2p-gorpc"
libp2praft "github.com/libp2p/go-libp2p-raft"
host "github.com/libp2p/go-libp2p/core/host"
peer "github.com/libp2p/go-libp2p/core/peer"
)
var logger = logging.Logger("raft")
type RaftState struct {
NonceMap map[addr.Address]uint64
MsgUuids map[uuid.UUID]*types.SignedMessage
}
func newRaftState() RaftState {
return RaftState{NonceMap: make(map[addr.Address]uint64),
MsgUuids: make(map[uuid.UUID]*types.SignedMessage)}
}
type ConsensusOp struct {
Nonce uint64 `codec:"nonce,omitempty"`
Uuid uuid.UUID `codec:"uuid,omitempty"`
Addr addr.Address `codec:"addr,omitempty"`
SignedMsg *types.SignedMessage `codec:"signedMsg,omitempty"`
}
func (c ConsensusOp) ApplyTo(state consensus.State) (consensus.State, error) {
s := state.(RaftState)
s.NonceMap[c.Addr] = c.Nonce
s.MsgUuids[c.Uuid] = c.SignedMsg
return s, nil
}
var _ consensus.Op = &ConsensusOp{}
// Consensus handles the work of keeping a shared-state between
// the peers of an IPFS Cluster, as well as modifying that state and
// applying any updates in a thread-safe manner.
type Consensus struct {
ctx context.Context
cancel func()
config *config.ClusterRaftConfig
host host.Host
consensus consensus.OpLogConsensus
actor consensus.Actor
raft *raftWrapper
state RaftState
rpcClient *rpc.Client
rpcReady chan struct{}
readyCh chan struct{}
peerSet []peer.ID
//shutdownLock sync.RWMutex
//shutdown bool
}
// NewConsensus builds a new ClusterConsensus component using Raft.
//
// Raft saves state snapshots regularly and persists log data in a bolt
// datastore. Therefore, unless memory usage is a concern, it is recommended
// to use an in-memory go-datastore as store parameter.
//
// The staging parameter controls if the Raft peer should start in
// staging mode (used when joining a new Raft peerset with other peers).
func NewConsensus(host host.Host, cfg *config.ClusterRaftConfig, staging bool) (*Consensus, error) {
err := ValidateConfig(cfg)
if err != nil {
return nil, err
}
ctx, cancel := context.WithCancel(context.Background())
logger.Debug("starting Consensus and waiting for a leader...")
state := newRaftState()
consensus := libp2praft.NewOpLog(state, &ConsensusOp{})
raft, err := newRaftWrapper(host, cfg, consensus.FSM(), staging)
if err != nil {
logger.Error("error creating raft: ", err)
cancel()
return nil, err
}
actor := libp2praft.NewActor(raft.raft)
consensus.SetActor(actor)
cc := &Consensus{
ctx: ctx,
cancel: cancel,
config: cfg,
host: host,
consensus: consensus,
actor: actor,
state: state,
raft: raft,
peerSet: cfg.InitPeerset,
rpcReady: make(chan struct{}, 1),
readyCh: make(chan struct{}, 1),
}
go cc.finishBootstrap()
return cc, nil
}
func NewConsensusWithRPCClient(staging bool) func(host host.Host,
cfg *config.ClusterRaftConfig,
rpcClient *rpc.Client,
) (*Consensus, error) {
return func(host host.Host, cfg *config.ClusterRaftConfig, rpcClient *rpc.Client) (*Consensus, error) {
cc, err := NewConsensus(host, cfg, staging)
if err != nil {
return nil, err
}
cc.SetClient(rpcClient)
return cc, nil
}
}
// WaitForSync waits for a leader and for the state to be up to date, then returns.
func (cc *Consensus) WaitForSync(ctx context.Context) error {
//ctx, span := trace.StartSpan(ctx, "consensus/WaitForSync")
//defer span.End()
leaderCtx, cancel := context.WithTimeout(
ctx,
time.Duration(cc.config.WaitForLeaderTimeout))
defer cancel()
// 1 - wait for leader
// 2 - wait until we are a Voter
// 3 - wait until last index is applied
// From raft docs:
// once a staging server receives enough log entries to be sufficiently
// caught up to the leader's log, the leader will invoke a membership
// change to change the Staging server to a Voter
// Thus, waiting to be a Voter is a guarantee that we have a reasonable
// up to date state. Otherwise, we might return too early (see
// https://github.com/ipfs-cluster/ipfs-cluster/issues/378)
_, err := cc.raft.WaitForLeader(leaderCtx)
if err != nil {
return errors.New("error waiting for leader: " + err.Error())
}
err = cc.raft.WaitForVoter(ctx)
if err != nil {
return errors.New("error waiting to become a Voter: " + err.Error())
}
err = cc.raft.WaitForUpdates(ctx)
if err != nil {
return errors.New("error waiting for consensus updates: " + err.Error())
}
return nil
}
// waits until there is a consensus leader and syncs the state
// to the tracker. If errors happen, this will return and never
// signal the component as Ready.
func (cc *Consensus) finishBootstrap() {
// wait until we have RPC to perform any actions.
select {
case <-cc.ctx.Done():
return
case <-cc.rpcReady:
}
// Sometimes bootstrap is a no-Op. It only applies when
// no state exists and staging=false.
_, err := cc.raft.Bootstrap()
if err != nil {
return
}
logger.Debugf("Bootstrap finished")
err = cc.WaitForSync(cc.ctx)
if err != nil {
return
}
logger.Debug("Raft state is now up to date")
logger.Debug("consensus ready")
cc.readyCh <- struct{}{}
}
// Shutdown stops the component so it will not process any
// more updates. The underlying consensus is permanently
// shutdown, along with the libp2p transport.
func (cc *Consensus) Shutdown(ctx context.Context) error {
//ctx, span := trace.StartSpan(ctx, "consensus/Shutdown")
//defer span.End()
//cc.shutdownLock.Lock()
//defer cc.shutdownLock.Unlock()
//if cc.shutdown {
// logger.Debug("already shutdown")
// return nil
//}
logger.Info("stopping Consensus component")
// Raft Shutdown
err := cc.raft.Shutdown(ctx)
if err != nil {
logger.Error(err)
}
if cc.config.HostShutdown {
cc.host.Close()
}
//cc.shutdown = true
cc.cancel()
close(cc.rpcReady)
return nil
}
// SetClient makes the component ready to perform RPC requets
func (cc *Consensus) SetClient(c *rpc.Client) {
cc.rpcClient = c
cc.rpcReady <- struct{}{}
}
// Ready returns a channel which is signaled when the Consensus
// algorithm has finished bootstrapping and is ready to use
func (cc *Consensus) Ready(ctx context.Context) <-chan struct{} {
//_, span := trace.StartSpan(ctx, "consensus/Ready")
//defer span.End()
return cc.readyCh
}
// IsTrustedPeer returns true. In Raft we trust all peers.
func (cc *Consensus) IsTrustedPeer(ctx context.Context, p peer.ID) bool {
return slices.Contains(cc.peerSet, p)
}
// Trust is a no-Op.
func (cc *Consensus) Trust(ctx context.Context, pid peer.ID) error { return nil }
// Distrust is a no-Op.
func (cc *Consensus) Distrust(ctx context.Context, pid peer.ID) error { return nil }
// returns true if the operation was redirected to the leader
// note that if the leader just dissappeared, the rpc call will
// fail because we haven't heard that it's gone.
func (cc *Consensus) RedirectToLeader(method string, arg interface{}, ret interface{}) (bool, error) {
//ctx, span := trace.StartSpan(cc.ctx, "consensus/RedirectToLeader")
//defer span.End()
ctx := cc.ctx
var finalErr error
// Retry redirects
for i := 0; i <= cc.config.CommitRetries; i++ {
logger.Debugf("redirect try %d", i)
leader, err := cc.Leader(ctx)
// No leader, wait for one
if err != nil {
logger.Warn("there seems to be no leader. Waiting for one")
rctx, cancel := context.WithTimeout(
ctx,
time.Duration(cc.config.WaitForLeaderTimeout),
)
defer cancel()
pidstr, err := cc.raft.WaitForLeader(rctx)
// means we timed out waiting for a leader
// we don't retry in this case
if err != nil {
return false, fmt.Errorf("timed out waiting for leader: %s", err)
}
leader, err = peer.Decode(pidstr)
if err != nil {
return false, err
}
}
logger.Infof("leader: %s, curr host: %s, peerSet: %s", leader, cc.host.ID(), cc.peerSet)
// We are the leader. Do not redirect
if leader == cc.host.ID() {
return false, nil
}
logger.Debugf("redirecting %s to leader: %s", method, leader.Pretty())
finalErr = cc.rpcClient.CallContext(
ctx,
leader,
"Consensus",
method,
arg,
ret,
)
if finalErr != nil {
logger.Errorf("retrying to redirect request to leader: %s", finalErr)
time.Sleep(2 * cc.config.RaftConfig.HeartbeatTimeout)
continue
}
break
}
// We tried to redirect, but something happened
return true, finalErr
}
// commit submits a cc.consensus commit. It retries upon failures.
func (cc *Consensus) Commit(ctx context.Context, op *ConsensusOp) error {
//ctx, span := trace.StartSpan(ctx, "consensus/commit")
//defer span.End()
//
//if cc.config.Tracing {
// // required to cross the serialized boundary
// Op.SpanCtx = span.SpanContext()
// tagmap := tag.FromContext(ctx)
// if tagmap != nil {
// Op.TagCtx = tag.Encode(tagmap)
// }
//}
var finalErr error
for i := 0; i <= cc.config.CommitRetries; i++ {
logger.Debugf("attempt #%d: committing %+v", i, op)
// this means we are retrying
if finalErr != nil {
logger.Errorf("retrying upon failed commit (retry %d): %s ",
i, finalErr)
}
// try to send it to the leader
// RedirectToLeader has it's own retry loop. If this fails
// we're done here.
//ok, err := cc.RedirectToLeader(rpcOp, redirectArg, struct{}{})
//if err != nil || ok {
// return err
//}
// Being here means we are the LEADER. We can commit.
// now commit the changes to our state
//cc.shutdownLock.RLock() // do not shut down while committing
_, finalErr = cc.consensus.CommitOp(op)
//cc.shutdownLock.RUnlock()
if finalErr != nil {
goto RETRY
}
RETRY:
time.Sleep(time.Duration(cc.config.CommitRetryDelay))
}
return finalErr
}
// AddPeer adds a new peer to participate in this consensus. It will
// forward the operation to the leader if this is not it.
func (cc *Consensus) AddPeer(ctx context.Context, pid peer.ID) error {
//ctx, span := trace.StartSpan(ctx, "consensus/AddPeer")
//defer span.End()
var finalErr error
for i := 0; i <= cc.config.CommitRetries; i++ {
logger.Debugf("attempt #%d: AddPeer %s", i, pid.Pretty())
if finalErr != nil {
logger.Errorf("retrying to add peer. Attempt #%d failed: %s", i, finalErr)
}
ok, err := cc.RedirectToLeader("AddPeer", pid, struct{}{})
if err != nil || ok {
return err
}
// Being here means we are the leader and can commit
//cc.shutdownLock.RLock() // do not shutdown while committing
//finalErr = cc.raft.AddPeer(ctx, peer.Encode(pid))
finalErr = cc.raft.AddPeer(ctx, pid)
//cc.shutdownLock.RUnlock()
if finalErr != nil {
time.Sleep(time.Duration(cc.config.CommitRetryDelay))
continue
}
logger.Infof("peer added to Raft: %s", pid.Pretty())
break
}
return finalErr
}
// RmPeer removes a peer from this consensus. It will
// forward the operation to the leader if this is not it.
func (cc *Consensus) RmPeer(ctx context.Context, pid peer.ID) error {
//ctx, span := trace.StartSpan(ctx, "consensus/RmPeer")
//defer span.End()
var finalErr error
for i := 0; i <= cc.config.CommitRetries; i++ {
logger.Debugf("attempt #%d: RmPeer %s", i, pid.Pretty())
if finalErr != nil {
logger.Errorf("retrying to remove peer. Attempt #%d failed: %s", i, finalErr)
}
ok, err := cc.RedirectToLeader("RmPeer", pid, struct{}{})
if err != nil || ok {
return err
}
// Being here means we are the leader and can commit
//cc.shutdownLock.RLock() // do not shutdown while committing
finalErr = cc.raft.RemovePeer(ctx, peer.Encode(pid))
//cc.shutdownLock.RUnlock()
if finalErr != nil {
time.Sleep(time.Duration(cc.config.CommitRetryDelay))
continue
}
logger.Infof("peer removed from Raft: %s", pid.Pretty())
break
}
return finalErr
}
// RaftState retrieves the current consensus RaftState. It may error if no RaftState has
// been agreed upon or the state is not consistent. The returned RaftState is the
// last agreed-upon RaftState known by this node. No writes are allowed, as all
// writes to the shared state should happen through the Consensus component
// methods.
func (cc *Consensus) State(ctx context.Context) (consensus.State, error) {
//_, span := trace.StartSpan(ctx, "consensus/RaftState")
//defer span.End()
st, err := cc.consensus.GetLogHead()
if err == libp2praft.ErrNoState {
return newRaftState(), nil
}
if err != nil {
return nil, err
}
state, ok := st.(RaftState)
if !ok {
return nil, errors.New("wrong state type")
}
return state, nil
}
// Leader returns the peerID of the Leader of the
// cluster. It returns an error when there is no leader.
func (cc *Consensus) Leader(ctx context.Context) (peer.ID, error) {
//_, span := trace.StartSpan(ctx, "consensus/Leader")
//defer span.End()
// Note the hard-dependency on raft here...
raftactor := cc.actor.(*libp2praft.Actor)
return raftactor.Leader()
}
// Clean removes the Raft persisted state.
func (cc *Consensus) Clean(ctx context.Context) error {
//_, span := trace.StartSpan(ctx, "consensus/Clean")
//defer span.End()
//cc.shutdownLock.RLock()
//defer cc.shutdownLock.RUnlock()
//if !cc.shutdown {
// return errors.New("consensus component is not shutdown")
//}
//return CleanupRaft(cc.config)
return nil
}
//Rollback replaces the current agreed-upon
//state with the state provided. Only the consensus leader
//can perform this operation.
//func (cc *Consensus) Rollback(state RaftState) error {
// // This is unused. It *might* be used for upgrades.
// // There is rather untested magic in libp2p-raft's FSM()
// // to make this possible.
// return cc.consensus.Rollback(state)
//}
// Peers return the current list of peers in the consensus.
// The list will be sorted alphabetically.
func (cc *Consensus) Peers(ctx context.Context) ([]peer.ID, error) {
//ctx, span := trace.StartSpan(ctx, "consensus/Peers")
//defer span.End()
//cc.shutdownLock.RLock() // prevent shutdown while here
//defer cc.shutdownLock.RUnlock()
//
//if cc.shutdown { // things hang a lot in this case
// return nil, errors.New("consensus is shutdown")
//}
peers := []peer.ID{}
raftPeers, err := cc.raft.Peers(ctx)
if err != nil {
return nil, fmt.Errorf("cannot retrieve list of peers: %s", err)
}
sort.Strings(raftPeers)
for _, p := range raftPeers {
id, err := peer.Decode(p)
if err != nil {
panic("could not decode peer")
}
peers = append(peers, id)
}
return peers, nil
}
func (cc *Consensus) IsLeader(ctx context.Context) bool {
leader, _ := cc.Leader(ctx)
return leader == cc.host.ID()
}
// OfflineState state returns a cluster state by reading the Raft data and
// writing it to the given datastore which is then wrapped as a state.RaftState.
// Usually an in-memory datastore suffices. The given datastore should be
// thread-safe.
//func OfflineState(cfg *Config, store ds.Datastore) (state.RaftState, error) {
// r, snapExists, err := LastStateRaw(cfg)
// if err != nil {
// return nil, err
// }
//
// st, err := dsstate.New(context.Background(), store, cfg.DatastoreNamespace, dsstate.DefaultHandle())
// if err != nil {
// return nil, err
// }
// if !snapExists {
// return st, nil
// }
//
// err = st.Unmarshal(r)
// if err != nil {
// return nil, err
// }
// return st, nil
//}