lotus/blockstore/splitstore/splitstore.go
2021-07-13 09:06:40 +03:00

1783 lines
41 KiB
Go

package splitstore
import (
"bytes"
"context"
"encoding/binary"
"errors"
"os"
"runtime"
"sort"
"sync"
"sync/atomic"
"time"
"go.uber.org/multierr"
"golang.org/x/sync/errgroup"
"golang.org/x/xerrors"
blocks "github.com/ipfs/go-block-format"
cid "github.com/ipfs/go-cid"
dstore "github.com/ipfs/go-datastore"
logging "github.com/ipfs/go-log/v2"
mh "github.com/multiformats/go-multihash"
cbg "github.com/whyrusleeping/cbor-gen"
"github.com/filecoin-project/go-state-types/abi"
bstore "github.com/filecoin-project/lotus/blockstore"
"github.com/filecoin-project/lotus/build"
"github.com/filecoin-project/lotus/chain/types"
"github.com/filecoin-project/lotus/metrics"
"go.opencensus.io/stats"
)
var (
// CompactionThreshold is the number of epochs that need to have elapsed
// from the previously compacted epoch to trigger a new compaction.
//
// |················· CompactionThreshold ··················|
// | |
// =======‖≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡‖------------------------»
// | | chain --> ↑__ current epoch
// | archived epochs ___↑
// ↑________ CompactionBoundary
//
// === :: cold (already archived)
// ≡≡≡ :: to be archived in this compaction
// --- :: hot
CompactionThreshold = 5 * build.Finality
// CompactionBoundary is the number of epochs from the current epoch at which
// we will walk the chain for live objects.
CompactionBoundary = 4 * build.Finality
// SyncGapTime is the time delay from a tipset's min timestamp before we decide
// there is a sync gap
SyncGapTime = time.Minute
)
var (
// baseEpochKey stores the base epoch (last compaction epoch) in the
// metadata store.
baseEpochKey = dstore.NewKey("/splitstore/baseEpoch")
// warmupEpochKey stores whether a hot store warmup has been performed.
// On first start, the splitstore will walk the state tree and will copy
// all active blocks into the hotstore.
warmupEpochKey = dstore.NewKey("/splitstore/warmupEpoch")
// markSetSizeKey stores the current estimate for the mark set size.
// this is first computed at warmup and updated in every compaction
markSetSizeKey = dstore.NewKey("/splitstore/markSetSize")
log = logging.Logger("splitstore")
// used to signal end of walk
errStopWalk = errors.New("stop walk")
// set this to true if you are debugging the splitstore to enable debug logging
enableDebugLog = false
// set this to true if you want to track origin stack traces in the write log
enableDebugLogWriteTraces = false
)
const (
batchSize = 16384
defaultColdPurgeSize = 7_000_000
)
type Config struct {
// MarkSetType is the type of mark set to use.
//
// Only current sane value is "map", but we may add an option for a disk-backed
// markset for memory-constrained situations.
MarkSetType string
// DiscardColdBlocks indicates whether to skip moving cold blocks to the coldstore.
// If the splitstore is running with a noop coldstore then this option is set to true
// which skips moving (as it is a noop, but still takes time to read all the cold objects)
// and directly purges cold blocks.
DiscardColdBlocks bool
}
// ChainAccessor allows the Splitstore to access the chain. It will most likely
// be a ChainStore at runtime.
type ChainAccessor interface {
GetTipsetByHeight(context.Context, abi.ChainEpoch, *types.TipSet, bool) (*types.TipSet, error)
GetHeaviestTipSet() *types.TipSet
SubscribeHeadChanges(change func(revert []*types.TipSet, apply []*types.TipSet) error)
}
// hotstore is the interface that must be satisfied by the hot blockstore; it is an extension
// of the Blockstore interface with the traits we need for compaction.
type hotstore interface {
bstore.Blockstore
bstore.BlockstoreIterator
}
type SplitStore struct {
compacting int32 // compaction (or warmp up) in progress
closing int32 // the splitstore is closing
cfg *Config
mx sync.Mutex
warmupEpoch abi.ChainEpoch // protected by mx
baseEpoch abi.ChainEpoch // protected by compaction lock
headChangeMx sync.Mutex
coldPurgeSize int
chain ChainAccessor
ds dstore.Datastore
cold bstore.Blockstore
hot hotstore
markSetEnv MarkSetEnv
markSetSize int64
ctx context.Context
cancel func()
debug *debugLog
// transactional protection for concurrent read/writes during compaction
txnLk sync.RWMutex
txnViewsMx sync.Mutex
txnViewsCond sync.Cond
txnViews int
txnViewsWaiting bool
txnActive bool
txnProtect MarkSet
txnRefsMx sync.Mutex
txnRefs map[cid.Cid]struct{}
txnMissing map[cid.Cid]struct{}
}
var _ bstore.Blockstore = (*SplitStore)(nil)
func init() {
if os.Getenv("LOTUS_SPLITSTORE_DEBUG_LOG") == "1" {
enableDebugLog = true
}
if os.Getenv("LOTUS_SPLITSTORE_DEBUG_LOG_WRITE_TRACES") == "1" {
enableDebugLogWriteTraces = true
}
}
// Open opens an existing splistore, or creates a new splitstore. The splitstore
// is backed by the provided hot and cold stores. The returned SplitStore MUST be
// attached to the ChainStore with Start in order to trigger compaction.
func Open(path string, ds dstore.Datastore, hot, cold bstore.Blockstore, cfg *Config) (*SplitStore, error) {
// hot blockstore must support the hotstore interface
hots, ok := hot.(hotstore)
if !ok {
// be specific about what is missing
if _, ok := hot.(bstore.BlockstoreIterator); !ok {
return nil, xerrors.Errorf("hot blockstore does not support efficient iteration: %T", hot)
}
return nil, xerrors.Errorf("hot blockstore does not support the necessary traits: %T", hot)
}
// the markset env
markSetEnv, err := OpenMarkSetEnv(path, cfg.MarkSetType)
if err != nil {
return nil, err
}
// and now we can make a SplitStore
ss := &SplitStore{
cfg: cfg,
ds: ds,
cold: cold,
hot: hots,
markSetEnv: markSetEnv,
coldPurgeSize: defaultColdPurgeSize,
}
ss.txnViewsCond.L = &ss.txnViewsMx
ss.ctx, ss.cancel = context.WithCancel(context.Background())
if enableDebugLog {
ss.debug, err = openDebugLog(path)
if err != nil {
return nil, err
}
}
return ss, nil
}
// Blockstore interface
func (s *SplitStore) DeleteBlock(_ cid.Cid) error {
// afaict we don't seem to be using this method, so it's not implemented
return errors.New("DeleteBlock not implemented on SplitStore; don't do this Luke!") //nolint
}
func (s *SplitStore) DeleteMany(_ []cid.Cid) error {
// afaict we don't seem to be using this method, so it's not implemented
return errors.New("DeleteMany not implemented on SplitStore; don't do this Luke!") //nolint
}
func (s *SplitStore) Has(cid cid.Cid) (bool, error) {
if isIdentiyCid(cid) {
return true, nil
}
s.txnLk.RLock()
defer s.txnLk.RUnlock()
has, err := s.hot.Has(cid)
if err != nil {
return has, err
}
if has {
s.trackTxnRef(cid)
return true, nil
}
return s.cold.Has(cid)
}
func (s *SplitStore) Get(cid cid.Cid) (blocks.Block, error) {
if isIdentiyCid(cid) {
data, err := decodeIdentityCid(cid)
if err != nil {
return nil, err
}
return blocks.NewBlockWithCid(data, cid)
}
s.txnLk.RLock()
defer s.txnLk.RUnlock()
blk, err := s.hot.Get(cid)
switch err {
case nil:
s.trackTxnRef(cid)
return blk, nil
case bstore.ErrNotFound:
if s.isWarm() {
s.debug.LogReadMiss(cid)
}
blk, err = s.cold.Get(cid)
if err == nil {
stats.Record(s.ctx, metrics.SplitstoreMiss.M(1))
}
return blk, err
default:
return nil, err
}
}
func (s *SplitStore) GetSize(cid cid.Cid) (int, error) {
if isIdentiyCid(cid) {
data, err := decodeIdentityCid(cid)
if err != nil {
return 0, err
}
return len(data), nil
}
s.txnLk.RLock()
defer s.txnLk.RUnlock()
size, err := s.hot.GetSize(cid)
switch err {
case nil:
s.trackTxnRef(cid)
return size, nil
case bstore.ErrNotFound:
if s.isWarm() {
s.debug.LogReadMiss(cid)
}
size, err = s.cold.GetSize(cid)
if err == nil {
stats.Record(s.ctx, metrics.SplitstoreMiss.M(1))
}
return size, err
default:
return 0, err
}
}
func (s *SplitStore) Put(blk blocks.Block) error {
if isIdentiyCid(blk.Cid()) {
return nil
}
s.txnLk.RLock()
defer s.txnLk.RUnlock()
err := s.hot.Put(blk)
if err != nil {
return err
}
s.debug.LogWrite(blk)
s.trackTxnRef(blk.Cid())
return nil
}
func (s *SplitStore) PutMany(blks []blocks.Block) error {
// filter identites
idcids := 0
for _, blk := range blks {
if isIdentiyCid(blk.Cid()) {
idcids++
}
}
if idcids > 0 {
if idcids == len(blks) {
// it's all identities
return nil
}
filtered := make([]blocks.Block, 0, len(blks)-idcids)
for _, blk := range blks {
if isIdentiyCid(blk.Cid()) {
continue
}
filtered = append(filtered, blk)
}
blks = filtered
}
batch := make([]cid.Cid, 0, len(blks))
for _, blk := range blks {
batch = append(batch, blk.Cid())
}
s.txnLk.RLock()
defer s.txnLk.RUnlock()
err := s.hot.PutMany(blks)
if err != nil {
return err
}
s.debug.LogWriteMany(blks)
s.trackTxnRefMany(batch)
return nil
}
func (s *SplitStore) AllKeysChan(ctx context.Context) (<-chan cid.Cid, error) {
ctx, cancel := context.WithCancel(ctx)
chHot, err := s.hot.AllKeysChan(ctx)
if err != nil {
cancel()
return nil, err
}
chCold, err := s.cold.AllKeysChan(ctx)
if err != nil {
cancel()
return nil, err
}
seen := cid.NewSet()
ch := make(chan cid.Cid, 8) // buffer is arbitrary, just enough to avoid context switches
go func() {
defer cancel()
defer close(ch)
for _, in := range []<-chan cid.Cid{chHot, chCold} {
for c := range in {
// ensure we only emit each key once
if !seen.Visit(c) {
continue
}
select {
case ch <- c:
case <-ctx.Done():
return
}
}
}
}()
return ch, nil
}
func (s *SplitStore) HashOnRead(enabled bool) {
s.hot.HashOnRead(enabled)
s.cold.HashOnRead(enabled)
}
func (s *SplitStore) View(cid cid.Cid, cb func([]byte) error) error {
if isIdentiyCid(cid) {
data, err := decodeIdentityCid(cid)
if err != nil {
return err
}
return cb(data)
}
// views are (optimistically) protected two-fold:
// - if there is an active transaction, then the reference is protected.
// - if there is no active transaction, active views are tracked in a
// wait group and compaction is inhibited from starting until they
// have all completed. this is necessary to ensure that a (very) long-running
// view can't have its data pointer deleted, which would be catastrophic.
// Note that we can't just RLock for the duration of the view, as this could
// lead to deadlock with recursive views.
s.protectView(cid)
defer s.viewDone()
err := s.hot.View(cid, cb)
switch err {
case bstore.ErrNotFound:
if s.isWarm() {
s.debug.LogReadMiss(cid)
}
err = s.cold.View(cid, cb)
if err == nil {
stats.Record(s.ctx, metrics.SplitstoreMiss.M(1))
}
return err
default:
return err
}
}
func (s *SplitStore) isWarm() bool {
s.mx.Lock()
defer s.mx.Unlock()
return s.warmupEpoch > 0
}
// State tracking
func (s *SplitStore) Start(chain ChainAccessor) error {
s.chain = chain
curTs := chain.GetHeaviestTipSet()
// load base epoch from metadata ds
// if none, then use current epoch because it's a fresh start
bs, err := s.ds.Get(baseEpochKey)
switch err {
case nil:
s.baseEpoch = bytesToEpoch(bs)
case dstore.ErrNotFound:
if curTs == nil {
// this can happen in some tests
break
}
err = s.setBaseEpoch(curTs.Height())
if err != nil {
return xerrors.Errorf("error saving base epoch: %w", err)
}
default:
return xerrors.Errorf("error loading base epoch: %w", err)
}
// load warmup epoch from metadata ds
bs, err = s.ds.Get(warmupEpochKey)
switch err {
case nil:
s.warmupEpoch = bytesToEpoch(bs)
case dstore.ErrNotFound:
// the hotstore hasn't warmed up, start a concurrent warm up
err = s.warmup(curTs)
if err != nil {
return xerrors.Errorf("error warming up: %w", err)
}
default:
return xerrors.Errorf("error loading warmup epoch: %w", err)
}
// load markSetSize from metadata ds to provide a size hint for marksets
bs, err = s.ds.Get(markSetSizeKey)
switch err {
case nil:
s.markSetSize = bytesToInt64(bs)
case dstore.ErrNotFound:
default:
return xerrors.Errorf("error loading mark set size: %w", err)
}
log.Infow("starting splitstore", "baseEpoch", s.baseEpoch, "warmupEpoch", s.warmupEpoch)
// watch the chain
chain.SubscribeHeadChanges(s.HeadChange)
return nil
}
func (s *SplitStore) Close() error {
if !atomic.CompareAndSwapInt32(&s.closing, 0, 1) {
// already closing
return nil
}
if atomic.LoadInt32(&s.compacting) == 1 {
log.Warn("close with ongoing compaction in progress; waiting for it to finish...")
for atomic.LoadInt32(&s.compacting) == 1 {
time.Sleep(time.Second)
}
}
s.cancel()
return multierr.Combine(s.markSetEnv.Close(), s.debug.Close())
}
func (s *SplitStore) HeadChange(_, apply []*types.TipSet) error {
s.headChangeMx.Lock()
defer s.headChangeMx.Unlock()
// Revert only.
if len(apply) == 0 {
return nil
}
curTs := apply[len(apply)-1]
epoch := curTs.Height()
// NOTE: there is an implicit invariant assumption that HeadChange is invoked
// synchronously and no other HeadChange can be invoked while one is in
// progress.
// this is guaranteed by the chainstore, and it is pervasive in all lotus
// -- if that ever changes then all hell will break loose in general and
// we will have a rance to protectTipSets here.
// Reagrdless, we put a mutex in HeadChange just to be safe
if !atomic.CompareAndSwapInt32(&s.compacting, 0, 1) {
// we are currently compacting -- protect the new tipset(s)
s.protectTipSets(apply)
return nil
}
// check if we are actually closing first
if atomic.LoadInt32(&s.closing) == 1 {
atomic.StoreInt32(&s.compacting, 0)
return nil
}
timestamp := time.Unix(int64(curTs.MinTimestamp()), 0)
if time.Since(timestamp) > SyncGapTime {
// don't attempt compaction before we have caught up syncing
atomic.StoreInt32(&s.compacting, 0)
return nil
}
if epoch-s.baseEpoch > CompactionThreshold {
// it's time to compact -- prepare the transaction and go!
s.beginTxnProtect()
go func() {
defer atomic.StoreInt32(&s.compacting, 0)
defer s.endTxnProtect()
log.Info("compacting splitstore")
start := time.Now()
s.compact(curTs)
log.Infow("compaction done", "took", time.Since(start))
}()
} else {
// no compaction necessary
atomic.StoreInt32(&s.compacting, 0)
}
return nil
}
// transactionally protect incoming tipsets
func (s *SplitStore) protectTipSets(apply []*types.TipSet) {
s.txnLk.RLock()
defer s.txnLk.RUnlock()
if !s.txnActive {
return
}
var cids []cid.Cid
for _, ts := range apply {
cids = append(cids, ts.Cids()...)
}
s.trackTxnRefMany(cids)
}
// transactionally protect a view
func (s *SplitStore) protectView(c cid.Cid) {
s.txnLk.RLock()
defer s.txnLk.RUnlock()
if s.txnActive {
s.trackTxnRef(c)
}
s.txnViewsMx.Lock()
s.txnViews++
s.txnViewsMx.Unlock()
}
func (s *SplitStore) viewDone() {
s.txnViewsMx.Lock()
defer s.txnViewsMx.Unlock()
s.txnViews--
if s.txnViews == 0 && s.txnViewsWaiting {
s.txnViewsCond.Signal()
}
}
func (s *SplitStore) viewWait() {
s.txnViewsMx.Lock()
defer s.txnViewsMx.Unlock()
s.txnViewsWaiting = true
for s.txnViews > 0 {
s.txnViewsCond.Wait()
}
s.txnViewsWaiting = false
}
// transactionally protect a reference to an object
func (s *SplitStore) trackTxnRef(c cid.Cid) {
if !s.txnActive {
// not compacting
return
}
if isUnitaryObject(c) {
return
}
if s.txnProtect != nil {
mark, err := s.txnProtect.Has(c)
if err != nil {
log.Warnf("error checking markset: %s", err)
// track it anyways
} else if mark {
return
}
}
s.txnRefsMx.Lock()
s.txnRefs[c] = struct{}{}
s.txnRefsMx.Unlock()
}
// transactionally protect a batch of references
func (s *SplitStore) trackTxnRefMany(cids []cid.Cid) {
if !s.txnActive {
// not compacting
return
}
s.txnRefsMx.Lock()
defer s.txnRefsMx.Unlock()
quiet := false
for _, c := range cids {
if isUnitaryObject(c) {
continue
}
if s.txnProtect != nil {
mark, err := s.txnProtect.Has(c)
if err != nil {
if !quiet {
quiet = true
log.Warnf("error checking markset: %s", err)
}
continue
}
if mark {
continue
}
}
s.txnRefs[c] = struct{}{}
}
return
}
// protect all pending transactional references
func (s *SplitStore) protectTxnRefs(markSet MarkSet) error {
for {
var txnRefs map[cid.Cid]struct{}
s.txnRefsMx.Lock()
if len(s.txnRefs) > 0 {
txnRefs = s.txnRefs
s.txnRefs = make(map[cid.Cid]struct{})
}
s.txnRefsMx.Unlock()
if len(txnRefs) == 0 {
return nil
}
log.Infow("protecting transactional references", "refs", len(txnRefs))
count := 0
workch := make(chan cid.Cid, len(txnRefs))
startProtect := time.Now()
for c := range txnRefs {
mark, err := markSet.Has(c)
if err != nil {
return xerrors.Errorf("error checking markset: %w", err)
}
if mark {
continue
}
workch <- c
count++
}
close(workch)
if count == 0 {
return nil
}
workers := runtime.NumCPU() / 2
if workers < 2 {
workers = 2
}
if workers > count {
workers = count
}
worker := func() error {
for c := range workch {
err := s.doTxnProtect(c, markSet)
if err != nil {
return xerrors.Errorf("error protecting transactional references to %s: %w", c, err)
}
}
return nil
}
g := new(errgroup.Group)
for i := 0; i < workers; i++ {
g.Go(worker)
}
if err := g.Wait(); err != nil {
return err
}
log.Infow("protecting transactional refs done", "took", time.Since(startProtect), "protected", count)
}
}
// transactionally protect a reference by walking the object and marking.
// concurrent markings are short circuited by checking the markset.
func (s *SplitStore) doTxnProtect(root cid.Cid, markSet MarkSet) error {
if err := s.checkClosing(); err != nil {
return err
}
// Note: cold objects are deleted heaviest first, so the consituents of an object
// cannot be deleted before the object itself.
return s.walkObjectIncomplete(root, cid.NewSet(),
func(c cid.Cid) error {
if isUnitaryObject(c) {
return errStopWalk
}
mark, err := markSet.Has(c)
if err != nil {
return xerrors.Errorf("error checking markset: %w", err)
}
// it's marked, nothing to do
if mark {
return errStopWalk
}
return markSet.Mark(c)
},
func(c cid.Cid) error {
if s.txnMissing != nil {
log.Warnf("missing object reference %s in %s", c, root)
s.txnRefsMx.Lock()
s.txnMissing[c] = struct{}{}
s.txnRefsMx.Unlock()
}
return errStopWalk
})
}
// warmup acuiqres the compaction lock and spawns a goroutine to warm up the hotstore;
// this is necessary when we sync from a snapshot or when we enable the splitstore
// on top of an existing blockstore (which becomes the coldstore).
func (s *SplitStore) warmup(curTs *types.TipSet) error {
if !atomic.CompareAndSwapInt32(&s.compacting, 0, 1) {
return xerrors.Errorf("error locking compaction")
}
go func() {
defer atomic.StoreInt32(&s.compacting, 0)
log.Info("warming up hotstore")
start := time.Now()
err := s.doWarmup(curTs)
if err != nil {
log.Errorf("error warming up hotstore: %s", err)
return
}
log.Infow("warm up done", "took", time.Since(start))
}()
return nil
}
// the actual warmup procedure; it walks the chain loading all state roots at the boundary
// and headers all the way up to genesis.
// objects are written in batches so as to minimize overhead.
func (s *SplitStore) doWarmup(curTs *types.TipSet) error {
epoch := curTs.Height()
batchHot := make([]blocks.Block, 0, batchSize)
count := int64(0)
xcount := int64(0)
missing := int64(0)
err := s.walkChain(curTs, epoch, false,
func(c cid.Cid) error {
if isUnitaryObject(c) {
return errStopWalk
}
count++
has, err := s.hot.Has(c)
if err != nil {
return err
}
if has {
return nil
}
blk, err := s.cold.Get(c)
if err != nil {
if err == bstore.ErrNotFound {
missing++
return nil
}
return err
}
xcount++
batchHot = append(batchHot, blk)
if len(batchHot) == batchSize {
err = s.hot.PutMany(batchHot)
if err != nil {
return err
}
batchHot = batchHot[:0]
}
return nil
})
if err != nil {
return err
}
if len(batchHot) > 0 {
err = s.hot.PutMany(batchHot)
if err != nil {
return err
}
}
log.Infow("warmup stats", "visited", count, "warm", xcount, "missing", missing)
s.markSetSize = count + count>>2 // overestimate a bit
err = s.ds.Put(markSetSizeKey, int64ToBytes(s.markSetSize))
if err != nil {
log.Warnf("error saving mark set size: %s", err)
}
// save the warmup epoch
err = s.ds.Put(warmupEpochKey, epochToBytes(epoch))
if err != nil {
return xerrors.Errorf("error saving warm up epoch: %w", err)
}
s.mx.Lock()
s.warmupEpoch = epoch
s.mx.Unlock()
return nil
}
// --- Compaction ---
// Compaction works transactionally with the following algorithm:
// - We prepare a transaction, whereby all i/o referenced objects through the API are tracked.
// - We walk the chain and mark reachable objects, keeping 4 finalities of state roots and messages and all headers all the way to genesis.
// - Once the chain walk is complete, we begin full transaction protection with concurrent marking; we walk and mark all references created during the chain walk. On the same time, all I/O through the API concurrently marks objects as live references.
// - We collect cold objects by iterating through the hotstore and checking the mark set; if an object is not marked, then it is candidate for purge.
// - When running with a coldstore, we next copy all cold objects to the coldstore.
// - At this point we are ready to begin purging:
// - We sort cold objects heaviest first, so as to never delete the consituents of a DAG before the DAG itself (which would leave dangling references)
// - We delete in small batches taking a lock; each batch is checked again for marks, from the concurrent transactional mark, so as to never delete anything live
// - We then end the transaction and compact/gc the hotstore.
func (s *SplitStore) compact(curTs *types.TipSet) {
log.Info("waiting for active views to complete")
start := time.Now()
s.viewWait()
log.Infow("waiting for active views done", "took", time.Since(start))
start = time.Now()
err := s.doCompact(curTs)
took := time.Since(start).Milliseconds()
stats.Record(s.ctx, metrics.SplitstoreCompactionTimeSeconds.M(float64(took)/1e3))
if err != nil {
log.Errorf("COMPACTION ERROR: %s", err)
}
}
func (s *SplitStore) doCompact(curTs *types.TipSet) error {
currentEpoch := curTs.Height()
boundaryEpoch := currentEpoch - CompactionBoundary
log.Infow("running compaction", "currentEpoch", currentEpoch, "baseEpoch", s.baseEpoch, "boundaryEpoch", boundaryEpoch)
markSet, err := s.markSetEnv.Create("live", s.markSetSize)
if err != nil {
return xerrors.Errorf("error creating mark set: %w", err)
}
defer markSet.Close() //nolint:errcheck
defer s.debug.Flush()
if err := s.checkClosing(); err != nil {
return err
}
// we are ready for concurrent marking
s.beginTxnMarking(markSet)
// 1. mark reachable objects by walking the chain from the current epoch; we keep state roots
// and messages until the boundary epoch.
log.Info("marking reachable objects")
startMark := time.Now()
var count int64
err = s.walkChain(curTs, boundaryEpoch, true,
func(c cid.Cid) error {
if isUnitaryObject(c) {
return errStopWalk
}
count++
return markSet.Mark(c)
})
if err != nil {
return xerrors.Errorf("error marking: %w", err)
}
s.markSetSize = count + count>>2 // overestimate a bit
log.Infow("marking done", "took", time.Since(startMark), "marked", count)
if err := s.checkClosing(); err != nil {
return err
}
// 1.1 protect transactional refs
err = s.protectTxnRefs(markSet)
if err != nil {
return xerrors.Errorf("error protecting transactional refs: %w", err)
}
if err := s.checkClosing(); err != nil {
return err
}
// 2. iterate through the hotstore to collect cold objects
log.Info("collecting cold objects")
startCollect := time.Now()
// some stats for logging
var hotCnt, coldCnt int
cold := make([]cid.Cid, 0, s.coldPurgeSize)
err = s.hot.ForEachKey(func(c cid.Cid) error {
// was it marked?
mark, err := markSet.Has(c)
if err != nil {
return xerrors.Errorf("error checking mark set for %s: %w", c, err)
}
if mark {
hotCnt++
return nil
}
// it's cold, mark it as candidate for move
cold = append(cold, c)
coldCnt++
return nil
})
if err != nil {
return xerrors.Errorf("error collecting cold objects: %w", err)
}
log.Infow("cold collection done", "took", time.Since(startCollect))
if coldCnt > 0 {
s.coldPurgeSize = coldCnt + coldCnt>>2 // overestimate a bit
}
log.Infow("compaction stats", "hot", hotCnt, "cold", coldCnt)
stats.Record(s.ctx, metrics.SplitstoreCompactionHot.M(int64(hotCnt)))
stats.Record(s.ctx, metrics.SplitstoreCompactionCold.M(int64(coldCnt)))
if err := s.checkClosing(); err != nil {
return err
}
// now that we have collected cold objects, check for missing references from transactional i/o
// and disable further collection of such references (they will not be acted upon as we can't
// possibly delete objects we didn't have when we were collecting cold objects)
s.waitForMissingRefs(markSet)
if err := s.checkClosing(); err != nil {
return err
}
// 3. copy the cold objects to the coldstore -- if we have one
if !s.cfg.DiscardColdBlocks {
log.Info("moving cold objects to the coldstore")
startMove := time.Now()
err = s.moveColdBlocks(cold)
if err != nil {
return xerrors.Errorf("error moving cold objects: %w", err)
}
log.Infow("moving done", "took", time.Since(startMove))
if err := s.checkClosing(); err != nil {
return err
}
}
// 4. sort cold objects so that the dags with most references are deleted first
// this ensures that we can't refer to a dag with its consituents already deleted, ie
// we lave no dangling references.
log.Info("sorting cold objects")
startSort := time.Now()
err = s.sortObjects(cold)
if err != nil {
return xerrors.Errorf("error sorting objects: %w", err)
}
log.Infow("sorting done", "took", time.Since(startSort))
// 4.1 protect transactional refs once more
// strictly speaking, this is not necessary as purge will do it before deleting each
// batch. however, there is likely a largish number of references accumulated during
// ths sort and this protects before entering pruge context.
err = s.protectTxnRefs(markSet)
if err != nil {
return xerrors.Errorf("error protecting transactional refs: %w", err)
}
if err := s.checkClosing(); err != nil {
return err
}
// 5. purge cold objects from the hotstore, taking protected references into account
log.Info("purging cold objects from the hotstore")
startPurge := time.Now()
err = s.purge(cold, markSet)
if err != nil {
return xerrors.Errorf("error purging cold blocks: %w", err)
}
log.Infow("purging cold objects from hotstore done", "took", time.Since(startPurge))
// we are done; do some housekeeping
s.endTxnProtect()
s.gcHotstore()
err = s.setBaseEpoch(boundaryEpoch)
if err != nil {
return xerrors.Errorf("error saving base epoch: %w", err)
}
err = s.ds.Put(markSetSizeKey, int64ToBytes(s.markSetSize))
if err != nil {
return xerrors.Errorf("error saving mark set size: %w", err)
}
return nil
}
func (s *SplitStore) beginTxnProtect() {
log.Info("preparing compaction transaction")
s.txnLk.Lock()
defer s.txnLk.Unlock()
s.txnActive = true
s.txnRefs = make(map[cid.Cid]struct{})
s.txnMissing = make(map[cid.Cid]struct{})
}
func (s *SplitStore) beginTxnMarking(markSet MarkSet) {
markSet.SetConcurrent()
s.txnLk.Lock()
s.txnProtect = markSet
s.txnLk.Unlock()
}
func (s *SplitStore) endTxnProtect() {
s.txnLk.Lock()
defer s.txnLk.Unlock()
if !s.txnActive {
return
}
// release markset memory
if s.txnProtect != nil {
_ = s.txnProtect.Close()
}
s.txnActive = false
s.txnProtect = nil
s.txnRefs = nil
s.txnMissing = nil
}
func (s *SplitStore) walkChain(ts *types.TipSet, boundary abi.ChainEpoch, inclMsgs bool,
f func(cid.Cid) error) error {
visited := cid.NewSet()
walked := cid.NewSet()
toWalk := ts.Cids()
walkCnt := 0
scanCnt := 0
walkBlock := func(c cid.Cid) error {
if !visited.Visit(c) {
return nil
}
walkCnt++
if err := f(c); err != nil {
return err
}
var hdr types.BlockHeader
err := s.view(c, func(data []byte) error {
return hdr.UnmarshalCBOR(bytes.NewBuffer(data))
})
if err != nil {
return xerrors.Errorf("error unmarshaling block header (cid: %s): %w", c, err)
}
// we only scan the block if it is at or above the boundary
if hdr.Height >= boundary || hdr.Height == 0 {
scanCnt++
if inclMsgs && hdr.Height > 0 {
if err := s.walkObject(hdr.Messages, walked, f); err != nil {
return xerrors.Errorf("error walking messages (cid: %s): %w", hdr.Messages, err)
}
if err := s.walkObject(hdr.ParentMessageReceipts, walked, f); err != nil {
return xerrors.Errorf("error walking message receipts (cid: %s): %w", hdr.ParentMessageReceipts, err)
}
}
if err := s.walkObject(hdr.ParentStateRoot, walked, f); err != nil {
return xerrors.Errorf("error walking state root (cid: %s): %w", hdr.ParentStateRoot, err)
}
}
if hdr.Height > 0 {
toWalk = append(toWalk, hdr.Parents...)
}
return nil
}
for len(toWalk) > 0 {
// walking can take a while, so check this with every opportunity
if err := s.checkClosing(); err != nil {
return err
}
walking := toWalk
toWalk = nil
for _, c := range walking {
if err := walkBlock(c); err != nil {
return xerrors.Errorf("error walking block (cid: %s): %w", c, err)
}
}
}
log.Infow("chain walk done", "walked", walkCnt, "scanned", scanCnt)
return nil
}
func (s *SplitStore) walkObject(c cid.Cid, walked *cid.Set, f func(cid.Cid) error) error {
if !walked.Visit(c) {
return nil
}
if err := f(c); err != nil {
if err == errStopWalk {
return nil
}
return err
}
if c.Prefix().Codec != cid.DagCBOR {
return nil
}
// check this before recursing
if err := s.checkClosing(); err != nil {
return err
}
var links []cid.Cid
err := s.view(c, func(data []byte) error {
return cbg.ScanForLinks(bytes.NewReader(data), func(c cid.Cid) {
links = append(links, c)
})
})
if err != nil {
return xerrors.Errorf("error scanning linked block (cid: %s): %w", c, err)
}
for _, c := range links {
err := s.walkObject(c, walked, f)
if err != nil {
return xerrors.Errorf("error walking link (cid: %s): %w", c, err)
}
}
return nil
}
// like walkObject, but the object may be potentially incomplete (references missing)
func (s *SplitStore) walkObjectIncomplete(c cid.Cid, walked *cid.Set, f, missing func(cid.Cid) error) error {
if !walked.Visit(c) {
return nil
}
// occurs check -- only for DAGs
if c.Prefix().Codec == cid.DagCBOR {
has, err := s.has(c)
if err != nil {
return xerrors.Errorf("error occur checking %s: %w", c, err)
}
if !has {
err = missing(c)
if err == errStopWalk {
return nil
}
return err
}
}
if err := f(c); err != nil {
if err == errStopWalk {
return nil
}
return err
}
if c.Prefix().Codec != cid.DagCBOR {
return nil
}
// check this before recursing
if err := s.checkClosing(); err != nil {
return err
}
var links []cid.Cid
err := s.view(c, func(data []byte) error {
return cbg.ScanForLinks(bytes.NewReader(data), func(c cid.Cid) {
links = append(links, c)
})
})
if err != nil {
return xerrors.Errorf("error scanning linked block (cid: %s): %w", c, err)
}
for _, c := range links {
err := s.walkObjectIncomplete(c, walked, f, missing)
if err != nil {
return xerrors.Errorf("error walking link (cid: %s): %w", c, err)
}
}
return nil
}
// internal version used by walk
func (s *SplitStore) view(c cid.Cid, cb func([]byte) error) error {
if isIdentiyCid(c) {
data, err := decodeIdentityCid(c)
if err != nil {
return err
}
return cb(data)
}
err := s.hot.View(c, cb)
switch err {
case bstore.ErrNotFound:
return s.cold.View(c, cb)
default:
return err
}
}
func (s *SplitStore) has(c cid.Cid) (bool, error) {
if isIdentiyCid(c) {
return true, nil
}
has, err := s.hot.Has(c)
if has || err != nil {
return has, err
}
return s.cold.Has(c)
}
func (s *SplitStore) checkClosing() error {
if atomic.LoadInt32(&s.closing) == 1 {
log.Info("splitstore is closing; aborting compaction")
return xerrors.Errorf("compaction aborted")
}
return nil
}
func (s *SplitStore) moveColdBlocks(cold []cid.Cid) error {
batch := make([]blocks.Block, 0, batchSize)
for _, c := range cold {
if err := s.checkClosing(); err != nil {
return err
}
blk, err := s.hot.Get(c)
if err != nil {
if err == bstore.ErrNotFound {
log.Warnf("hotstore missing block %s", c)
continue
}
return xerrors.Errorf("error retrieving block %s from hotstore: %w", c, err)
}
batch = append(batch, blk)
if len(batch) == batchSize {
err = s.cold.PutMany(batch)
if err != nil {
return xerrors.Errorf("error putting batch to coldstore: %w", err)
}
batch = batch[:0]
}
}
if len(batch) > 0 {
err := s.cold.PutMany(batch)
if err != nil {
return xerrors.Errorf("error putting batch to coldstore: %w", err)
}
}
return nil
}
// sorts a slice of objects heaviest first -- it's a little expensive but worth the
// guarantee that we don't leave dangling references behind, e.g. if we die in the middle
// of a purge.
func (s *SplitStore) sortObjects(cids []cid.Cid) error {
// we cache the keys to avoid making a gazillion of strings
keys := make(map[cid.Cid]string)
key := func(c cid.Cid) string {
s, ok := keys[c]
if !ok {
s = string(c.Hash())
keys[c] = s
}
return s
}
// compute sorting weights as the cumulative number of DAG links
weights := make(map[string]int)
for _, c := range cids {
// this can take quite a while, so check for shutdown with every opportunity
if err := s.checkClosing(); err != nil {
return err
}
w := s.getObjectWeight(c, weights, key)
weights[key(c)] = w
}
// sort!
sort.Slice(cids, func(i, j int) bool {
wi := weights[key(cids[i])]
wj := weights[key(cids[j])]
if wi == wj {
return bytes.Compare(cids[i].Hash(), cids[j].Hash()) > 0
}
return wi > wj
})
return nil
}
func (s *SplitStore) getObjectWeight(c cid.Cid, weights map[string]int, key func(cid.Cid) string) int {
w, ok := weights[key(c)]
if ok {
return w
}
// we treat block headers specially to avoid walking the entire chain
var hdr types.BlockHeader
err := s.view(c, func(data []byte) error {
return hdr.UnmarshalCBOR(bytes.NewBuffer(data))
})
if err == nil {
w1 := s.getObjectWeight(hdr.ParentStateRoot, weights, key)
weights[key(hdr.ParentStateRoot)] = w1
w2 := s.getObjectWeight(hdr.Messages, weights, key)
weights[key(hdr.Messages)] = w2
return 1 + w1 + w2
}
var links []cid.Cid
err = s.view(c, func(data []byte) error {
return cbg.ScanForLinks(bytes.NewReader(data), func(c cid.Cid) {
links = append(links, c)
})
})
if err != nil {
return 1
}
w = 1
for _, c := range links {
// these are internal refs, so dags will be dags
if c.Prefix().Codec != cid.DagCBOR {
w++
continue
}
wc := s.getObjectWeight(c, weights, key)
weights[key(c)] = wc
w += wc
}
return w
}
func (s *SplitStore) purgeBatch(cids []cid.Cid, deleteBatch func([]cid.Cid) error) error {
if len(cids) == 0 {
return nil
}
// we don't delete one giant batch of millions of objects, but rather do smaller batches
// so that we don't stop the world for an extended period of time
done := false
for i := 0; !done; i++ {
start := i * batchSize
end := start + batchSize
if end >= len(cids) {
end = len(cids)
done = true
}
err := deleteBatch(cids[start:end])
if err != nil {
return xerrors.Errorf("error deleting batch: %w", err)
}
}
return nil
}
func (s *SplitStore) purge(cids []cid.Cid, markSet MarkSet) error {
deadCids := make([]cid.Cid, 0, batchSize)
var purgeCnt, liveCnt int
defer func() {
log.Infow("purged cold objects", "purged", purgeCnt, "live", liveCnt)
}()
return s.purgeBatch(cids,
func(cids []cid.Cid) error {
deadCids := deadCids[:0]
for {
if err := s.checkClosing(); err != nil {
return err
}
s.txnLk.Lock()
if len(s.txnRefs) == 0 {
// keep the lock!
break
}
// unlock and protect
s.txnLk.Unlock()
err := s.protectTxnRefs(markSet)
if err != nil {
return xerrors.Errorf("error protecting transactional refs: %w", err)
}
}
defer s.txnLk.Unlock()
for _, c := range cids {
live, err := markSet.Has(c)
if err != nil {
return xerrors.Errorf("error checking for liveness: %w", err)
}
if live {
liveCnt++
continue
}
deadCids = append(deadCids, c)
}
err := s.hot.DeleteMany(deadCids)
if err != nil {
return xerrors.Errorf("error purging cold objects: %w", err)
}
s.debug.LogDelete(deadCids)
purgeCnt += len(deadCids)
return nil
})
}
// I really don't like having this code, but we seem to have some occasional DAG references with
// missing constituents. During testing in mainnet *some* of these references *sometimes* appeared
// after a little bit.
// We need to figure out where they are coming from and eliminate that vector, but until then we
// have this gem[TM].
// My best guess is that they are parent message receipts or yet to be computed state roots; magik
// thinks the cause may be block validation.
func (s *SplitStore) waitForMissingRefs(markSet MarkSet) {
s.txnLk.Lock()
missing := s.txnMissing
s.txnMissing = nil
s.txnLk.Unlock()
if len(missing) == 0 {
return
}
log.Info("waiting for missing references")
start := time.Now()
count := 0
defer func() {
log.Infow("waiting for missing references done", "took", time.Since(start), "marked", count)
}()
for i := 0; i < 3 && len(missing) > 0; i++ {
if err := s.checkClosing(); err != nil {
return
}
wait := time.Duration(i) * time.Minute
log.Infof("retrying for %d missing references in %s (attempt: %d)", len(missing), wait, i+1)
if wait > 0 {
time.Sleep(wait)
}
towalk := missing
walked := cid.NewSet()
missing = make(map[cid.Cid]struct{})
for c := range towalk {
err := s.walkObjectIncomplete(c, walked,
func(c cid.Cid) error {
if isUnitaryObject(c) {
return errStopWalk
}
mark, err := markSet.Has(c)
if err != nil {
return xerrors.Errorf("error checking markset for %s: %w", c, err)
}
if mark {
return errStopWalk
}
count++
return markSet.Mark(c)
},
func(c cid.Cid) error {
missing[c] = struct{}{}
return errStopWalk
})
if err != nil {
log.Warnf("error marking: %s", err)
}
}
}
if len(missing) > 0 {
log.Warnf("still missing %d references", len(missing))
for c := range missing {
log.Warnf("unresolved missing reference: %s", c)
}
}
}
func (s *SplitStore) gcHotstore() {
if compact, ok := s.hot.(interface{ Compact() error }); ok {
log.Infof("compacting hotstore")
startCompact := time.Now()
err := compact.Compact()
if err != nil {
log.Warnf("error compacting hotstore: %s", err)
return
}
log.Infow("hotstore compaction done", "took", time.Since(startCompact))
}
if gc, ok := s.hot.(interface{ CollectGarbage() error }); ok {
log.Infof("garbage collecting hotstore")
startGC := time.Now()
err := gc.CollectGarbage()
if err != nil {
log.Warnf("error garbage collecting hotstore: %s", err)
return
}
log.Infow("hotstore garbage collection done", "took", time.Since(startGC))
}
}
func (s *SplitStore) setBaseEpoch(epoch abi.ChainEpoch) error {
s.baseEpoch = epoch
return s.ds.Put(baseEpochKey, epochToBytes(epoch))
}
func epochToBytes(epoch abi.ChainEpoch) []byte {
return uint64ToBytes(uint64(epoch))
}
func bytesToEpoch(buf []byte) abi.ChainEpoch {
return abi.ChainEpoch(bytesToUint64(buf))
}
func int64ToBytes(i int64) []byte {
return uint64ToBytes(uint64(i))
}
func bytesToInt64(buf []byte) int64 {
return int64(bytesToUint64(buf))
}
func uint64ToBytes(i uint64) []byte {
buf := make([]byte, 16)
n := binary.PutUvarint(buf, i)
return buf[:n]
}
func bytesToUint64(buf []byte) uint64 {
i, _ := binary.Uvarint(buf)
return i
}
func isUnitaryObject(c cid.Cid) bool {
pre := c.Prefix()
switch pre.Codec {
case cid.FilCommitmentSealed, cid.FilCommitmentUnsealed:
return true
default:
return pre.MhType == mh.IDENTITY
}
}
func isIdentiyCid(c cid.Cid) bool {
return c.Prefix().MhType == mh.IDENTITY
}
func decodeIdentityCid(c cid.Cid) ([]byte, error) {
dmh, err := mh.Decode(c.Hash())
if err != nil {
return nil, xerrors.Errorf("error decoding identity cid %s: %w", c, err)
}
// sanity check
if dmh.Code != mh.IDENTITY {
return nil, xerrors.Errorf("error decoding identity cid %s: hash type is not identity", c)
}
return dmh.Digest, nil
}