lotus/conformance/driver.go

176 lines
5.1 KiB
Go

package conformance
import (
"context"
"github.com/filecoin-project/go-state-types/crypto"
"github.com/filecoin-project/lotus/chain/stmgr"
"github.com/filecoin-project/lotus/chain/store"
"github.com/filecoin-project/lotus/chain/types"
"github.com/filecoin-project/lotus/chain/vm"
"github.com/filecoin-project/lotus/conformance/chaos"
"github.com/filecoin-project/lotus/extern/sector-storage/ffiwrapper"
"github.com/filecoin-project/lotus/lib/blockstore"
"github.com/filecoin-project/go-state-types/abi"
"github.com/filecoin-project/test-vectors/schema"
"github.com/filecoin-project/go-address"
"github.com/ipfs/go-cid"
ds "github.com/ipfs/go-datastore"
)
var (
// BaseFee to use in the VM.
// TODO make parametrisable through vector.
BaseFee = abi.NewTokenAmount(100)
)
type Driver struct {
ctx context.Context
selector schema.Selector
}
func NewDriver(ctx context.Context, selector schema.Selector) *Driver {
return &Driver{ctx: ctx, selector: selector}
}
type ExecuteTipsetResult struct {
ReceiptsRoot cid.Cid
PostStateRoot cid.Cid
// AppliedMessages stores the messages that were applied, in the order they
// were applied. It includes implicit messages (cron, rewards).
AppliedMessages []*types.Message
// AppliedResults stores the results of AppliedMessages, in the same order.
AppliedResults []*vm.ApplyRet
}
// ExecuteTipset executes the supplied tipset on top of the state represented
// by the preroot CID.
//
// parentEpoch is the last epoch in which an actual tipset was processed. This
// is used by Lotus for null block counting and cron firing.
//
// This method returns the the receipts root, the poststate root, and the VM
// message results. The latter _include_ implicit messages, such as cron ticks
// and reward withdrawal per miner.
func (d *Driver) ExecuteTipset(bs blockstore.Blockstore, ds ds.Batching, preroot cid.Cid, parentEpoch abi.ChainEpoch, tipset *schema.Tipset) (*ExecuteTipsetResult, error) {
var (
syscalls = mkFakedSigSyscalls(vm.Syscalls(ffiwrapper.ProofVerifier))
vmRand = new(testRand)
cs = store.NewChainStore(bs, ds, syscalls)
sm = stmgr.NewStateManager(cs)
)
blocks := make([]store.BlockMessages, 0, len(tipset.Blocks))
for _, b := range tipset.Blocks {
sb := store.BlockMessages{
Miner: b.MinerAddr,
WinCount: b.WinCount,
}
for _, m := range b.Messages {
msg, err := types.DecodeMessage(m)
if err != nil {
return nil, err
}
switch msg.From.Protocol() {
case address.SECP256K1:
sb.SecpkMessages = append(sb.SecpkMessages, toChainMsg(msg))
case address.BLS:
sb.BlsMessages = append(sb.BlsMessages, toChainMsg(msg))
default:
// sneak in messages originating from other addresses as both kinds.
// these should fail, as they are actually invalid senders.
sb.SecpkMessages = append(sb.SecpkMessages, msg)
sb.BlsMessages = append(sb.BlsMessages, msg)
}
}
blocks = append(blocks, sb)
}
var (
messages []*types.Message
results []*vm.ApplyRet
epoch = abi.ChainEpoch(tipset.Epoch)
basefee = abi.NewTokenAmount(tipset.BaseFee.Int64())
)
postcid, receiptsroot, err := sm.ApplyBlocks(context.Background(), parentEpoch, preroot, blocks, epoch, vmRand, func(_ cid.Cid, msg *types.Message, ret *vm.ApplyRet) error {
messages = append(messages, msg)
results = append(results, ret)
return nil
}, basefee, nil)
if err != nil {
return nil, err
}
ret := &ExecuteTipsetResult{
ReceiptsRoot: receiptsroot,
PostStateRoot: postcid,
AppliedMessages: messages,
AppliedResults: results,
}
return ret, nil
}
// ExecuteMessage executes a conformance test vector message in a temporary VM.
func (d *Driver) ExecuteMessage(bs blockstore.Blockstore, preroot cid.Cid, epoch abi.ChainEpoch, msg *types.Message) (*vm.ApplyRet, cid.Cid, error) {
vmOpts := &vm.VMOpts{
StateBase: preroot,
Epoch: epoch,
Rand: &testRand{}, // TODO always succeeds; need more flexibility.
Bstore: bs,
Syscalls: mkFakedSigSyscalls(vm.Syscalls(ffiwrapper.ProofVerifier)), // TODO always succeeds; need more flexibility.
CircSupplyCalc: nil,
BaseFee: BaseFee,
}
lvm, err := vm.NewVM(vmOpts)
if err != nil {
return nil, cid.Undef, err
}
invoker := vm.NewInvoker()
// register the chaos actor if required by the vector.
if chaosOn, ok := d.selector["chaos_actor"]; ok && chaosOn == "true" {
invoker.Register(chaos.ChaosActorCodeCID, chaos.Actor{}, chaos.State{})
}
lvm.SetInvoker(invoker)
ret, err := lvm.ApplyMessage(d.ctx, toChainMsg(msg))
if err != nil {
return nil, cid.Undef, err
}
root, err := lvm.Flush(d.ctx)
return ret, root, err
}
// toChainMsg injects a synthetic 0-filled signature of the right length to
// messages that originate from secp256k senders, leaving all
// others untouched.
// TODO: generate a signature in the DSL so that it's encoded in
// the test vector.
func toChainMsg(msg *types.Message) (ret types.ChainMsg) {
ret = msg
if msg.From.Protocol() == address.SECP256K1 {
ret = &types.SignedMessage{
Message: *msg,
Signature: crypto.Signature{
Type: crypto.SigTypeSecp256k1,
Data: make([]byte, 65),
},
}
}
return ret
}