package splitstore import ( "bytes" "errors" "runtime" "sort" "sync" "sync/atomic" "time" "golang.org/x/sync/errgroup" "golang.org/x/xerrors" blocks "github.com/ipfs/go-block-format" cid "github.com/ipfs/go-cid" cbg "github.com/whyrusleeping/cbor-gen" "github.com/filecoin-project/go-state-types/abi" bstore "github.com/filecoin-project/lotus/blockstore" "github.com/filecoin-project/lotus/build" "github.com/filecoin-project/lotus/chain/types" "github.com/filecoin-project/lotus/metrics" "go.opencensus.io/stats" ) var ( // CompactionThreshold is the number of epochs that need to have elapsed // from the previously compacted epoch to trigger a new compaction. // // |················· CompactionThreshold ··················| // | | // =======‖≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡‖------------------------» // | | chain --> ↑__ current epoch // | archived epochs ___↑ // ↑________ CompactionBoundary // // === :: cold (already archived) // ≡≡≡ :: to be archived in this compaction // --- :: hot CompactionThreshold = 5 * build.Finality // CompactionBoundary is the number of epochs from the current epoch at which // we will walk the chain for live objects. CompactionBoundary = 4 * build.Finality // SyncGapTime is the time delay from a tipset's min timestamp before we decide // there is a sync gap SyncGapTime = time.Minute ) var ( // used to signal end of walk errStopWalk = errors.New("stop walk") ) const ( batchSize = 16384 defaultColdPurgeSize = 7_000_000 ) func (s *SplitStore) HeadChange(_, apply []*types.TipSet) error { s.headChangeMx.Lock() defer s.headChangeMx.Unlock() // Revert only. if len(apply) == 0 { return nil } curTs := apply[len(apply)-1] epoch := curTs.Height() // NOTE: there is an implicit invariant assumption that HeadChange is invoked // synchronously and no other HeadChange can be invoked while one is in // progress. // this is guaranteed by the chainstore, and it is pervasive in all lotus // -- if that ever changes then all hell will break loose in general and // we will have a rance to protectTipSets here. // Reagrdless, we put a mutex in HeadChange just to be safe if !atomic.CompareAndSwapInt32(&s.compacting, 0, 1) { // we are currently compacting -- protect the new tipset(s) s.protectTipSets(apply) return nil } // check if we are actually closing first if atomic.LoadInt32(&s.closing) == 1 { atomic.StoreInt32(&s.compacting, 0) return nil } timestamp := time.Unix(int64(curTs.MinTimestamp()), 0) if time.Since(timestamp) > SyncGapTime { // don't attempt compaction before we have caught up syncing atomic.StoreInt32(&s.compacting, 0) return nil } if s.isNearUpgrade(epoch) { // we are near an upgrade epoch, suppress compaction atomic.StoreInt32(&s.compacting, 0) return nil } if epoch-s.baseEpoch > CompactionThreshold { // it's time to compact -- prepare the transaction and go! s.beginTxnProtect() go func() { defer atomic.StoreInt32(&s.compacting, 0) defer s.endTxnProtect() log.Info("compacting splitstore") start := time.Now() s.compact(curTs) log.Infow("compaction done", "took", time.Since(start)) }() } else { // no compaction necessary atomic.StoreInt32(&s.compacting, 0) } return nil } func (s *SplitStore) isNearUpgrade(epoch abi.ChainEpoch) bool { for _, upgrade := range s.upgrades { if epoch >= upgrade.start && epoch <= upgrade.end { return true } } return false } // transactionally protect incoming tipsets func (s *SplitStore) protectTipSets(apply []*types.TipSet) { s.txnLk.RLock() defer s.txnLk.RUnlock() if !s.txnActive { return } var cids []cid.Cid for _, ts := range apply { cids = append(cids, ts.Cids()...) } s.trackTxnRefMany(cids) } // transactionally protect a view func (s *SplitStore) protectView(c cid.Cid) { s.txnLk.RLock() defer s.txnLk.RUnlock() if s.txnActive { s.trackTxnRef(c) } s.txnViewsMx.Lock() s.txnViews++ s.txnViewsMx.Unlock() } func (s *SplitStore) viewDone() { s.txnViewsMx.Lock() defer s.txnViewsMx.Unlock() s.txnViews-- if s.txnViews == 0 && s.txnViewsWaiting { s.txnViewsCond.Broadcast() } } func (s *SplitStore) viewWait() { s.txnViewsMx.Lock() defer s.txnViewsMx.Unlock() s.txnViewsWaiting = true for s.txnViews > 0 { s.txnViewsCond.Wait() } s.txnViewsWaiting = false } // transactionally protect a reference to an object func (s *SplitStore) trackTxnRef(c cid.Cid) { if !s.txnActive { // not compacting return } if isUnitaryObject(c) { return } s.txnRefsMx.Lock() s.txnRefs[c] = struct{}{} s.txnRefsMx.Unlock() } // transactionally protect a batch of references func (s *SplitStore) trackTxnRefMany(cids []cid.Cid) { if !s.txnActive { // not compacting return } s.txnRefsMx.Lock() defer s.txnRefsMx.Unlock() for _, c := range cids { if isUnitaryObject(c) { continue } s.txnRefs[c] = struct{}{} } return } // protect all pending transactional references func (s *SplitStore) protectTxnRefs(markSet MarkSet) error { for { var txnRefs map[cid.Cid]struct{} s.txnRefsMx.Lock() if len(s.txnRefs) > 0 { txnRefs = s.txnRefs s.txnRefs = make(map[cid.Cid]struct{}) } s.txnRefsMx.Unlock() if len(txnRefs) == 0 { return nil } log.Infow("protecting transactional references", "refs", len(txnRefs)) count := 0 workch := make(chan cid.Cid, len(txnRefs)) startProtect := time.Now() for c := range txnRefs { mark, err := markSet.Has(c) if err != nil { return xerrors.Errorf("error checking markset: %w", err) } if mark { continue } workch <- c count++ } close(workch) if count == 0 { return nil } workers := runtime.NumCPU() / 2 if workers < 2 { workers = 2 } if workers > count { workers = count } worker := func() error { for c := range workch { err := s.doTxnProtect(c, markSet) if err != nil { return xerrors.Errorf("error protecting transactional references to %s: %w", c, err) } } return nil } g := new(errgroup.Group) for i := 0; i < workers; i++ { g.Go(worker) } if err := g.Wait(); err != nil { return err } log.Infow("protecting transactional refs done", "took", time.Since(startProtect), "protected", count) } } // transactionally protect a reference by walking the object and marking. // concurrent markings are short circuited by checking the markset. func (s *SplitStore) doTxnProtect(root cid.Cid, markSet MarkSet) error { if err := s.checkClosing(); err != nil { return err } // Note: cold objects are deleted heaviest first, so the consituents of an object // cannot be deleted before the object itself. return s.walkObjectIncomplete(root, newTmpVisitor(), func(c cid.Cid) error { if isUnitaryObject(c) { return errStopWalk } visit, err := markSet.Visit(c) if err != nil { return xerrors.Errorf("error visiting object: %w", err) } if !visit { return errStopWalk } return nil }, func(c cid.Cid) error { if s.txnMissing != nil { log.Warnf("missing object reference %s in %s", c, root) s.txnRefsMx.Lock() s.txnMissing[c] = struct{}{} s.txnRefsMx.Unlock() } return errStopWalk }) } func (s *SplitStore) applyProtectors() error { s.mx.Lock() defer s.mx.Unlock() count := 0 for _, protect := range s.protectors { err := protect(func(c cid.Cid) error { s.trackTxnRef(c) count++ return nil }) if err != nil { return xerrors.Errorf("error applynig protector: %w", err) } } if count > 0 { log.Infof("protected %d references through %d protectors", count, len(s.protectors)) } return nil } // --- Compaction --- // Compaction works transactionally with the following algorithm: // - We prepare a transaction, whereby all i/o referenced objects through the API are tracked. // - We walk the chain and mark reachable objects, keeping 4 finalities of state roots and messages and all headers all the way to genesis. // - Once the chain walk is complete, we begin full transaction protection with concurrent marking; we walk and mark all references created during the chain walk. On the same time, all I/O through the API concurrently marks objects as live references. // - We collect cold objects by iterating through the hotstore and checking the mark set; if an object is not marked, then it is candidate for purge. // - When running with a coldstore, we next copy all cold objects to the coldstore. // - At this point we are ready to begin purging: // - We sort cold objects heaviest first, so as to never delete the consituents of a DAG before the DAG itself (which would leave dangling references) // - We delete in small batches taking a lock; each batch is checked again for marks, from the concurrent transactional mark, so as to never delete anything live // - We then end the transaction and compact/gc the hotstore. func (s *SplitStore) compact(curTs *types.TipSet) { log.Info("waiting for active views to complete") start := time.Now() s.viewWait() log.Infow("waiting for active views done", "took", time.Since(start)) start = time.Now() err := s.doCompact(curTs) took := time.Since(start).Milliseconds() stats.Record(s.ctx, metrics.SplitstoreCompactionTimeSeconds.M(float64(took)/1e3)) if err != nil { log.Errorf("COMPACTION ERROR: %s", err) } } func (s *SplitStore) doCompact(curTs *types.TipSet) error { currentEpoch := curTs.Height() boundaryEpoch := currentEpoch - CompactionBoundary var inclMsgsEpoch abi.ChainEpoch inclMsgsRange := abi.ChainEpoch(s.cfg.HotStoreMessageRetention) * build.Finality if inclMsgsRange < boundaryEpoch { inclMsgsEpoch = boundaryEpoch - inclMsgsRange } log.Infow("running compaction", "currentEpoch", currentEpoch, "baseEpoch", s.baseEpoch, "boundaryEpoch", boundaryEpoch, "inclMsgsEpoch", inclMsgsEpoch, "compactionIndex", s.compactionIndex) markSet, err := s.markSetEnv.Create("live", s.markSetSize) if err != nil { return xerrors.Errorf("error creating mark set: %w", err) } defer markSet.Close() //nolint:errcheck defer s.debug.Flush() if err := s.checkClosing(); err != nil { return err } // we are ready for concurrent marking s.beginTxnMarking(markSet) // 0. track all protected references at beginning of compaction; anything added later should // be transactionally protected by the write log.Info("protecting references with registered protectors") err = s.applyProtectors() if err != nil { return err } // 1. mark reachable objects by walking the chain from the current epoch; we keep state roots // and messages until the boundary epoch. log.Info("marking reachable objects") startMark := time.Now() var count int64 err = s.walkChain(curTs, boundaryEpoch, inclMsgsEpoch, &noopVisitor{}, func(c cid.Cid) error { if isUnitaryObject(c) { return errStopWalk } visit, err := markSet.Visit(c) if err != nil { return xerrors.Errorf("error visiting object: %w", err) } if !visit { return errStopWalk } count++ return nil }) if err != nil { return xerrors.Errorf("error marking: %w", err) } s.markSetSize = count + count>>2 // overestimate a bit log.Infow("marking done", "took", time.Since(startMark), "marked", count) if err := s.checkClosing(); err != nil { return err } // 1.1 protect transactional refs err = s.protectTxnRefs(markSet) if err != nil { return xerrors.Errorf("error protecting transactional refs: %w", err) } if err := s.checkClosing(); err != nil { return err } // 2. iterate through the hotstore to collect cold objects log.Info("collecting cold objects") startCollect := time.Now() // some stats for logging var hotCnt, coldCnt int cold := make([]cid.Cid, 0, s.coldPurgeSize) err = s.hot.ForEachKey(func(c cid.Cid) error { // was it marked? mark, err := markSet.Has(c) if err != nil { return xerrors.Errorf("error checking mark set for %s: %w", c, err) } if mark { hotCnt++ return nil } // it's cold, mark it as candidate for move cold = append(cold, c) coldCnt++ return nil }) if err != nil { return xerrors.Errorf("error collecting cold objects: %w", err) } log.Infow("cold collection done", "took", time.Since(startCollect)) if coldCnt > 0 { s.coldPurgeSize = coldCnt + coldCnt>>2 // overestimate a bit } log.Infow("compaction stats", "hot", hotCnt, "cold", coldCnt) stats.Record(s.ctx, metrics.SplitstoreCompactionHot.M(int64(hotCnt))) stats.Record(s.ctx, metrics.SplitstoreCompactionCold.M(int64(coldCnt))) if err := s.checkClosing(); err != nil { return err } // now that we have collected cold objects, check for missing references from transactional i/o // and disable further collection of such references (they will not be acted upon as we can't // possibly delete objects we didn't have when we were collecting cold objects) s.waitForMissingRefs(markSet) if err := s.checkClosing(); err != nil { return err } // 3. copy the cold objects to the coldstore -- if we have one if !s.cfg.DiscardColdBlocks { log.Info("moving cold objects to the coldstore") startMove := time.Now() err = s.moveColdBlocks(cold) if err != nil { return xerrors.Errorf("error moving cold objects: %w", err) } log.Infow("moving done", "took", time.Since(startMove)) if err := s.checkClosing(); err != nil { return err } } // 4. sort cold objects so that the dags with most references are deleted first // this ensures that we can't refer to a dag with its consituents already deleted, ie // we lave no dangling references. log.Info("sorting cold objects") startSort := time.Now() err = s.sortObjects(cold) if err != nil { return xerrors.Errorf("error sorting objects: %w", err) } log.Infow("sorting done", "took", time.Since(startSort)) // 4.1 protect transactional refs once more // strictly speaking, this is not necessary as purge will do it before deleting each // batch. however, there is likely a largish number of references accumulated during // ths sort and this protects before entering pruge context. err = s.protectTxnRefs(markSet) if err != nil { return xerrors.Errorf("error protecting transactional refs: %w", err) } if err := s.checkClosing(); err != nil { return err } // 5. purge cold objects from the hotstore, taking protected references into account log.Info("purging cold objects from the hotstore") startPurge := time.Now() err = s.purge(cold, markSet) if err != nil { return xerrors.Errorf("error purging cold blocks: %w", err) } log.Infow("purging cold objects from hotstore done", "took", time.Since(startPurge)) // we are done; do some housekeeping s.endTxnProtect() s.gcHotstore() err = s.setBaseEpoch(boundaryEpoch) if err != nil { return xerrors.Errorf("error saving base epoch: %w", err) } err = s.ds.Put(s.ctx, markSetSizeKey, int64ToBytes(s.markSetSize)) if err != nil { return xerrors.Errorf("error saving mark set size: %w", err) } s.compactionIndex++ err = s.ds.Put(s.ctx, compactionIndexKey, int64ToBytes(s.compactionIndex)) if err != nil { return xerrors.Errorf("error saving compaction index: %w", err) } return nil } func (s *SplitStore) beginTxnProtect() { log.Info("preparing compaction transaction") s.txnLk.Lock() defer s.txnLk.Unlock() s.txnActive = true s.txnRefs = make(map[cid.Cid]struct{}) s.txnMissing = make(map[cid.Cid]struct{}) } func (s *SplitStore) beginTxnMarking(markSet MarkSet) { log.Info("beginning transactional marking") } func (s *SplitStore) endTxnProtect() { s.txnLk.Lock() defer s.txnLk.Unlock() if !s.txnActive { return } s.txnActive = false s.txnRefs = nil s.txnMissing = nil } func (s *SplitStore) walkChain(ts *types.TipSet, inclState, inclMsgs abi.ChainEpoch, visitor ObjectVisitor, f func(cid.Cid) error) error { var walked ObjectVisitor var mx sync.Mutex toWalk := ts.Cids() walkCnt := new(int64) scanCnt := new(int64) stopWalk := func(_ cid.Cid) error { return errStopWalk } walkBlock := func(c cid.Cid) error { visit, err := walked.Visit(c) if err != nil { return err } if !visit { return nil } atomic.AddInt64(walkCnt, 1) if err := f(c); err != nil { return err } var hdr types.BlockHeader err = s.view(c, func(data []byte) error { return hdr.UnmarshalCBOR(bytes.NewBuffer(data)) }) if err != nil { return xerrors.Errorf("error unmarshaling block header (cid: %s): %w", c, err) } // message are retained if within the inclMsgs boundary if hdr.Height >= inclMsgs && hdr.Height > 0 { if inclMsgs < inclState { // we need to use walkObjectIncomplete here, as messages/receipts may be missing early on if we // synced from snapshot and have a long HotStoreMessageRetentionPolicy. if err := s.walkObjectIncomplete(hdr.Messages, visitor, f, stopWalk); err != nil { return xerrors.Errorf("error walking messages (cid: %s): %w", hdr.Messages, err) } if err := s.walkObjectIncomplete(hdr.ParentMessageReceipts, visitor, f, stopWalk); err != nil { return xerrors.Errorf("error walking messages receipts (cid: %s): %w", hdr.ParentMessageReceipts, err) } } else { if err := s.walkObject(hdr.Messages, visitor, f); err != nil { return xerrors.Errorf("error walking messages (cid: %s): %w", hdr.Messages, err) } if err := s.walkObject(hdr.ParentMessageReceipts, visitor, f); err != nil { return xerrors.Errorf("error walking message receipts (cid: %s): %w", hdr.ParentMessageReceipts, err) } } } // state is only retained if within the inclState boundary, with the exception of genesis if hdr.Height >= inclState || hdr.Height == 0 { if err := s.walkObject(hdr.ParentStateRoot, visitor, f); err != nil { return xerrors.Errorf("error walking state root (cid: %s): %w", hdr.ParentStateRoot, err) } atomic.AddInt64(scanCnt, 1) } if hdr.Height > 0 { mx.Lock() toWalk = append(toWalk, hdr.Parents...) mx.Unlock() } return nil } for len(toWalk) > 0 { // walking can take a while, so check this with every opportunity if err := s.checkClosing(); err != nil { return err } // the walk is BFS, so we can reset the walked set in every iteration and avoid building up // a set that contains all blocks (1M epochs -> 5M blocks -> 200MB worth of memory and growing // over time) walked = newConcurrentVisitor() walking := toWalk toWalk = nil workers := len(walking) if workers > runtime.NumCPU()/2 { workers = runtime.NumCPU() / 2 } if workers < 2 { workers = 2 } workch := make(chan cid.Cid, len(walking)) for _, c := range walking { workch <- c } close(workch) g := new(errgroup.Group) for i := 0; i < workers; i++ { g.Go(func() error { for c := range workch { if err := walkBlock(c); err != nil { return xerrors.Errorf("error walking block (cid: %s): %w", c, err) } } return nil }) } if err := g.Wait(); err != nil { return err } } log.Infow("chain walk done", "walked", *walkCnt, "scanned", *scanCnt) return nil } func (s *SplitStore) walkObject(c cid.Cid, visitor ObjectVisitor, f func(cid.Cid) error) error { visit, err := visitor.Visit(c) if err != nil { return xerrors.Errorf("error visiting object: %w", err) } if !visit { return nil } if err := f(c); err != nil { if err == errStopWalk { return nil } return err } if c.Prefix().Codec != cid.DagCBOR { return nil } // check this before recursing if err := s.checkClosing(); err != nil { return err } var links []cid.Cid err = s.view(c, func(data []byte) error { return cbg.ScanForLinks(bytes.NewReader(data), func(c cid.Cid) { links = append(links, c) }) }) if err != nil { return xerrors.Errorf("error scanning linked block (cid: %s): %w", c, err) } for _, c := range links { err := s.walkObject(c, visitor, f) if err != nil { return xerrors.Errorf("error walking link (cid: %s): %w", c, err) } } return nil } // like walkObject, but the object may be potentially incomplete (references missing) func (s *SplitStore) walkObjectIncomplete(c cid.Cid, visitor ObjectVisitor, f, missing func(cid.Cid) error) error { visit, err := visitor.Visit(c) if err != nil { return xerrors.Errorf("error visiting object: %w", err) } if !visit { return nil } // occurs check -- only for DAGs if c.Prefix().Codec == cid.DagCBOR { has, err := s.has(c) if err != nil { return xerrors.Errorf("error occur checking %s: %w", c, err) } if !has { err = missing(c) if err == errStopWalk { return nil } return err } } if err := f(c); err != nil { if err == errStopWalk { return nil } return err } if c.Prefix().Codec != cid.DagCBOR { return nil } // check this before recursing if err := s.checkClosing(); err != nil { return err } var links []cid.Cid err = s.view(c, func(data []byte) error { return cbg.ScanForLinks(bytes.NewReader(data), func(c cid.Cid) { links = append(links, c) }) }) if err != nil { return xerrors.Errorf("error scanning linked block (cid: %s): %w", c, err) } for _, c := range links { err := s.walkObjectIncomplete(c, visitor, f, missing) if err != nil { return xerrors.Errorf("error walking link (cid: %s): %w", c, err) } } return nil } // internal version used by walk func (s *SplitStore) view(c cid.Cid, cb func([]byte) error) error { if isIdentiyCid(c) { data, err := decodeIdentityCid(c) if err != nil { return err } return cb(data) } err := s.hot.View(s.ctx, c, cb) switch err { case bstore.ErrNotFound: return s.cold.View(s.ctx, c, cb) default: return err } } func (s *SplitStore) has(c cid.Cid) (bool, error) { if isIdentiyCid(c) { return true, nil } has, err := s.hot.Has(s.ctx, c) if has || err != nil { return has, err } return s.cold.Has(s.ctx, c) } func (s *SplitStore) moveColdBlocks(cold []cid.Cid) error { batch := make([]blocks.Block, 0, batchSize) for _, c := range cold { if err := s.checkClosing(); err != nil { return err } blk, err := s.hot.Get(s.ctx, c) if err != nil { if err == bstore.ErrNotFound { log.Warnf("hotstore missing block %s", c) continue } return xerrors.Errorf("error retrieving block %s from hotstore: %w", c, err) } batch = append(batch, blk) if len(batch) == batchSize { err = s.cold.PutMany(s.ctx, batch) if err != nil { return xerrors.Errorf("error putting batch to coldstore: %w", err) } batch = batch[:0] } } if len(batch) > 0 { err := s.cold.PutMany(s.ctx, batch) if err != nil { return xerrors.Errorf("error putting batch to coldstore: %w", err) } } return nil } // sorts a slice of objects heaviest first -- it's a little expensive but worth the // guarantee that we don't leave dangling references behind, e.g. if we die in the middle // of a purge. func (s *SplitStore) sortObjects(cids []cid.Cid) error { // we cache the keys to avoid making a gazillion of strings keys := make(map[cid.Cid]string) key := func(c cid.Cid) string { s, ok := keys[c] if !ok { s = string(c.Hash()) keys[c] = s } return s } // compute sorting weights as the cumulative number of DAG links weights := make(map[string]int) for _, c := range cids { // this can take quite a while, so check for shutdown with every opportunity if err := s.checkClosing(); err != nil { return err } w := s.getObjectWeight(c, weights, key) weights[key(c)] = w } // sort! sort.Slice(cids, func(i, j int) bool { wi := weights[key(cids[i])] wj := weights[key(cids[j])] if wi == wj { return bytes.Compare(cids[i].Hash(), cids[j].Hash()) > 0 } return wi > wj }) return nil } func (s *SplitStore) getObjectWeight(c cid.Cid, weights map[string]int, key func(cid.Cid) string) int { w, ok := weights[key(c)] if ok { return w } // we treat block headers specially to avoid walking the entire chain var hdr types.BlockHeader err := s.view(c, func(data []byte) error { return hdr.UnmarshalCBOR(bytes.NewBuffer(data)) }) if err == nil { w1 := s.getObjectWeight(hdr.ParentStateRoot, weights, key) weights[key(hdr.ParentStateRoot)] = w1 w2 := s.getObjectWeight(hdr.Messages, weights, key) weights[key(hdr.Messages)] = w2 return 1 + w1 + w2 } var links []cid.Cid err = s.view(c, func(data []byte) error { return cbg.ScanForLinks(bytes.NewReader(data), func(c cid.Cid) { links = append(links, c) }) }) if err != nil { return 1 } w = 1 for _, c := range links { // these are internal refs, so dags will be dags if c.Prefix().Codec != cid.DagCBOR { w++ continue } wc := s.getObjectWeight(c, weights, key) weights[key(c)] = wc w += wc } return w } func (s *SplitStore) purgeBatch(cids []cid.Cid, deleteBatch func([]cid.Cid) error) error { if len(cids) == 0 { return nil } // we don't delete one giant batch of millions of objects, but rather do smaller batches // so that we don't stop the world for an extended period of time done := false for i := 0; !done; i++ { start := i * batchSize end := start + batchSize if end >= len(cids) { end = len(cids) done = true } err := deleteBatch(cids[start:end]) if err != nil { return xerrors.Errorf("error deleting batch: %w", err) } } return nil } func (s *SplitStore) purge(cids []cid.Cid, markSet MarkSet) error { deadCids := make([]cid.Cid, 0, batchSize) var purgeCnt, liveCnt int defer func() { log.Infow("purged cold objects", "purged", purgeCnt, "live", liveCnt) }() return s.purgeBatch(cids, func(cids []cid.Cid) error { deadCids := deadCids[:0] for { if err := s.checkClosing(); err != nil { return err } s.txnLk.Lock() if len(s.txnRefs) == 0 { // keep the lock! break } // unlock and protect s.txnLk.Unlock() err := s.protectTxnRefs(markSet) if err != nil { return xerrors.Errorf("error protecting transactional refs: %w", err) } } defer s.txnLk.Unlock() for _, c := range cids { live, err := markSet.Has(c) if err != nil { return xerrors.Errorf("error checking for liveness: %w", err) } if live { liveCnt++ continue } deadCids = append(deadCids, c) } err := s.hot.DeleteMany(s.ctx, deadCids) if err != nil { return xerrors.Errorf("error purging cold objects: %w", err) } s.debug.LogDelete(deadCids) purgeCnt += len(deadCids) return nil }) } // I really don't like having this code, but we seem to have some occasional DAG references with // missing constituents. During testing in mainnet *some* of these references *sometimes* appeared // after a little bit. // We need to figure out where they are coming from and eliminate that vector, but until then we // have this gem[TM]. // My best guess is that they are parent message receipts or yet to be computed state roots; magik // thinks the cause may be block validation. func (s *SplitStore) waitForMissingRefs(markSet MarkSet) { s.txnLk.Lock() missing := s.txnMissing s.txnMissing = nil s.txnLk.Unlock() if len(missing) == 0 { return } log.Info("waiting for missing references") start := time.Now() count := 0 defer func() { log.Infow("waiting for missing references done", "took", time.Since(start), "marked", count) }() for i := 0; i < 3 && len(missing) > 0; i++ { if err := s.checkClosing(); err != nil { return } wait := time.Duration(i) * time.Minute log.Infof("retrying for %d missing references in %s (attempt: %d)", len(missing), wait, i+1) if wait > 0 { time.Sleep(wait) } towalk := missing visitor := newTmpVisitor() missing = make(map[cid.Cid]struct{}) for c := range towalk { err := s.walkObjectIncomplete(c, visitor, func(c cid.Cid) error { if isUnitaryObject(c) { return errStopWalk } visit, err := markSet.Visit(c) if err != nil { return xerrors.Errorf("error visiting object: %w", err) } if !visit { return errStopWalk } count++ return nil }, func(c cid.Cid) error { missing[c] = struct{}{} return errStopWalk }) if err != nil { log.Warnf("error marking: %s", err) } } } if len(missing) > 0 { log.Warnf("still missing %d references", len(missing)) for c := range missing { log.Warnf("unresolved missing reference: %s", c) } } }