package lpwinning import ( "context" "crypto/rand" "encoding/binary" "github.com/filecoin-project/go-state-types/abi" "github.com/filecoin-project/lotus/build" "github.com/filecoin-project/lotus/chain/types" "github.com/filecoin-project/lotus/lib/harmony/harmonytask" "github.com/filecoin-project/lotus/lib/harmony/resources" logging "github.com/ipfs/go-log/v2" "os" "time" ) var log = logging.Logger("lpwinning") type WinPostTask struct { max abi.SectorNumber // lastWork holds the last MiningBase we built upon. lastWork *MiningBase api WinPostAPI } type WinPostAPI interface { ChainHead(context.Context) (*types.TipSet, error) ChainTipSetWeight(context.Context, types.TipSetKey) (types.BigInt, error) StateGetBeaconEntry(context.Context, abi.ChainEpoch) (*types.BeaconEntry, error) SyncSubmitBlock(context.Context, *types.BlockMsg) error } func NewWinPostTask(max abi.SectorNumber) *WinPostTask { // todo run warmup } func (t *WinPostTask) Do(taskID harmonytask.TaskID, stillOwned func() bool) (done bool, err error) { // TODO THIS WILL BASICALLY BE A mineOne() function //TODO implement me panic("implement me") } func (t *WinPostTask) CanAccept(ids []harmonytask.TaskID, engine *harmonytask.TaskEngine) (*harmonytask.TaskID, error) { //TODO implement me panic("implement me") } func (t *WinPostTask) TypeDetails() harmonytask.TaskTypeDetails { return harmonytask.TaskTypeDetails{ Name: "WinPost", Max: 10, // todo MaxFailures: 3, Follows: nil, Cost: resources.Resources{ Cpu: 1, // todo set to something for 32/64G sector sizes? Technically windowPoSt is happy on a CPU // but it will use a GPU if available Gpu: 0, Ram: 1 << 30, // todo arbitrary number }, } } func (t *WinPostTask) Adder(taskFunc harmonytask.AddTaskFunc) { //TODO implement me panic("implement me") } // MiningBase is the tipset on top of which we plan to construct our next block. // Refer to godocs on GetBestMiningCandidate. type MiningBase struct { TipSet *types.TipSet ComputeTime time.Time NullRounds abi.ChainEpoch } func (t *WinPostTask) mine(ctx context.Context) { var lastBase MiningBase // Start the main mining loop. for { // todo handle stop signals? var base *MiningBase // Look for the best mining candidate. for { prebase, err := t.GetBestMiningCandidate(ctx) if err != nil { log.Errorf("failed to get best mining candidate: %s", err) time.Sleep(5 * time.Second) continue } // Check if we have a new base or if the current base is still valid. if base != nil && base.TipSet.Height() == prebase.TipSet.Height() && base.NullRounds == prebase.NullRounds { // We have a valid base. base = prebase break } // TODO: need to change the orchestration here. the problem is that // we are waiting *after* we enter this loop and selecta mining // candidate, which is almost certain to change in multiminer // tests. Instead, we should block before entering the loop, so // that when the test 'MineOne' function is triggered, we pull our // best mining candidate at that time. // Wait until propagation delay period after block we plan to mine on { // if we're mining a block in the past via catch-up/rush mining, // such as when recovering from a network halt, this sleep will be // for a negative duration, and therefore **will return // immediately**. // // the result is that we WILL NOT wait, therefore fast-forwarding // and thus healing the chain by backfilling it with null rounds // rapidly. baseTs := prebase.TipSet.MinTimestamp() + build.PropagationDelaySecs baseT := time.Unix(int64(baseTs), 0) baseT = baseT.Add(randTimeOffset(time.Second)) time.Sleep(time.Until(baseT)) } // Ensure the beacon entry is available before finalizing the mining base. _, err = t.api.StateGetBeaconEntry(ctx, prebase.TipSet.Height()+prebase.NullRounds+1) if err != nil { log.Errorf("failed getting beacon entry: %s", err) time.Sleep(time.Second) continue } base = prebase } // Check for repeated mining candidates and handle sleep for the next round. if base.TipSet.Equals(lastBase.TipSet) && lastBase.NullRounds == base.NullRounds { log.Warnf("BestMiningCandidate from the previous round: %s (nulls:%d)", lastBase.TipSet.Cids(), lastBase.NullRounds) time.Sleep(time.Duration(build.BlockDelaySecs) * time.Second) continue } // Attempt to mine a block. b, err := m.mineOne(ctx, base) if err != nil { log.Errorf("mining block failed: %+v", err) time.Sleep(time.Second) continue } lastBase = *base // todo figure out this whole bottom section // we won't know if we've mined a block here, we just submit a task // making attempts to mine one // Process the mined block. if b != nil { btime := time.Unix(int64(b.Header.Timestamp), 0) now := build.Clock.Now() // Handle timing for broadcasting the block. switch { case btime == now: // block timestamp is perfectly aligned with time. case btime.After(now): // Wait until it's time to broadcast the block. if !m.niceSleep(build.Clock.Until(btime)) { log.Warnf("received interrupt while waiting to broadcast block, will shutdown after block is sent out") build.Clock.Sleep(build.Clock.Until(btime)) } default: // Log if the block was mined in the past. log.Warnw("mined block in the past", "block-time", btime, "time", build.Clock.Now(), "difference", build.Clock.Since(btime)) } // Check for slash filter conditions. if os.Getenv("LOTUS_MINER_NO_SLASHFILTER") != "_yes_i_know_i_can_and_probably_will_lose_all_my_fil_and_power_" && !build.IsNearUpgrade(base.TipSet.Height(), build.UpgradeWatermelonFixHeight) { witness, fault, err := m.sf.MinedBlock(ctx, b.Header, base.TipSet.Height()+base.NullRounds) if err != nil { log.Errorf(" SLASH FILTER ERRORED: %s", err) // Continue here, because it's _probably_ wiser to not submit this block continue } if fault { log.Errorf(" SLASH FILTER DETECTED FAULT due to blocks %s and %s", b.Header.Cid(), witness) continue } } // Submit the newly mined block. if err := t.api.SyncSubmitBlock(ctx, b); err != nil { log.Errorf("failed to submit newly mined block: %+v", err) } } else { // If no block was mined, increase the null rounds and wait for the next epoch. base.NullRounds++ // Calculate the time for the next round. nextRound := time.Unix(int64(base.TipSet.MinTimestamp()+build.BlockDelaySecs*uint64(base.NullRounds))+int64(build.PropagationDelaySecs), 0) // Wait for the next round. time.Sleep(time.Until(nextRound)) } } } // GetBestMiningCandidate implements the fork choice rule from a miner's // perspective. // // It obtains the current chain head (HEAD), and compares it to the last tipset // we selected as our mining base (LAST). If HEAD's weight is larger than // LAST's weight, it selects HEAD to build on. Else, it selects LAST. func (t *WinPostTask) GetBestMiningCandidate(ctx context.Context) (*MiningBase, error) { bts, err := t.api.ChainHead(ctx) if err != nil { return nil, err } if t.lastWork != nil { if t.lastWork.TipSet.Equals(bts) { return t.lastWork, nil } btsw, err := t.api.ChainTipSetWeight(ctx, bts.Key()) if err != nil { return nil, err } ltsw, err := t.api.ChainTipSetWeight(ctx, t.lastWork.TipSet.Key()) if err != nil { t.lastWork = nil return nil, err } if types.BigCmp(btsw, ltsw) <= 0 { return t.lastWork, nil } } t.lastWork = &MiningBase{TipSet: bts, ComputeTime: time.Now()} return t.lastWork, nil } func randTimeOffset(width time.Duration) time.Duration { buf := make([]byte, 8) rand.Reader.Read(buf) //nolint:errcheck val := time.Duration(binary.BigEndian.Uint64(buf) % uint64(width)) return val - (width / 2) } var _ harmonytask.TaskInterface = &WinPostTask{}