package messagepool import ( "context" "math/big" "math/rand" "sort" "time" "golang.org/x/xerrors" "github.com/filecoin-project/go-address" tbig "github.com/filecoin-project/go-state-types/big" "github.com/filecoin-project/lotus/build" "github.com/filecoin-project/lotus/chain/messagepool/gasguess" "github.com/filecoin-project/lotus/chain/types" "github.com/filecoin-project/lotus/chain/vm" ) var bigBlockGasLimit = big.NewInt(build.BlockGasLimit) var MaxBlockMessages = 16000 const MaxBlocks = 15 type msgChain struct { msgs []*types.SignedMessage gasReward *big.Int gasLimit int64 gasPerf float64 effPerf float64 bp float64 parentOffset float64 valid bool merged bool next *msgChain prev *msgChain } func (mp *MessagePool) SelectMessages(ts *types.TipSet, tq float64) (msgs []*types.SignedMessage, err error) { mp.curTsLk.Lock() defer mp.curTsLk.Unlock() mp.lk.Lock() defer mp.lk.Unlock() // if the ticket quality is high enough that the first block has higher probability // than any other block, then we don't bother with optimal selection because the // first block will always have higher effective performance if tq > 0.84 { msgs, err = mp.selectMessagesGreedy(mp.curTs, ts) } else { msgs, err = mp.selectMessagesOptimal(mp.curTs, ts, tq) } if err != nil { return nil, err } if len(msgs) > MaxBlockMessages { msgs = msgs[:MaxBlockMessages] } return msgs, nil } func (mp *MessagePool) selectMessagesOptimal(curTs, ts *types.TipSet, tq float64) ([]*types.SignedMessage, error) { start := time.Now() baseFee, err := mp.api.ChainComputeBaseFee(context.TODO(), ts) if err != nil { return nil, xerrors.Errorf("computing basefee: %w", err) } // 0. Load messages from the target tipset; if it is the same as the current tipset in // the mpool, then this is just the pending messages pending, err := mp.getPendingMessages(curTs, ts) if err != nil { return nil, err } if len(pending) == 0 { return nil, nil } // defer only here so if we have no pending messages we don't spam defer func() { log.Infow("message selection done", "took", time.Since(start)) }() // 0b. Select all priority messages that fit in the block minGas := int64(gasguess.MinGas) result, gasLimit := mp.selectPriorityMessages(pending, baseFee, ts) // have we filled the block? if gasLimit < minGas { return result, nil } // 1. Create a list of dependent message chains with maximal gas reward per limit consumed startChains := time.Now() var chains []*msgChain for actor, mset := range pending { next := mp.createMessageChains(actor, mset, baseFee, ts) chains = append(chains, next...) } if dt := time.Since(startChains); dt > time.Millisecond { log.Infow("create message chains done", "took", dt) } // 2. Sort the chains sort.Slice(chains, func(i, j int) bool { return chains[i].Before(chains[j]) }) if len(chains) != 0 && chains[0].gasPerf < 0 { log.Warnw("all messages in mpool have non-positive gas performance", "bestGasPerf", chains[0].gasPerf) return result, nil } // 3. Parition chains into blocks (without trimming) // we use the full blockGasLimit (as opposed to the residual gas limit from the // priority message selection) as we have to account for what other miners are doing nextChain := 0 partitions := make([][]*msgChain, MaxBlocks) for i := 0; i < MaxBlocks && nextChain < len(chains); i++ { gasLimit := int64(build.BlockGasLimit) for nextChain < len(chains) { chain := chains[nextChain] nextChain++ partitions[i] = append(partitions[i], chain) gasLimit -= chain.gasLimit if gasLimit < minGas { break } } } // 4. Compute effective performance for each chain, based on the partition they fall into // The effective performance is the gasPerf of the chain * block probability blockProb := mp.blockProbabilities(tq) effChains := 0 for i := 0; i < MaxBlocks; i++ { for _, chain := range partitions[i] { chain.SetEffectivePerf(blockProb[i]) } effChains += len(partitions[i]) } // nullify the effective performance of chains that don't fit in any partition for _, chain := range chains[effChains:] { chain.SetNullEffectivePerf() } // 5. Resort the chains based on effective performance sort.Slice(chains, func(i, j int) bool { return chains[i].BeforeEffective(chains[j]) }) // 6. Merge the head chains to produce the list of messages selected for inclusion // subject to the residual gas limit // When a chain is merged in, all its previous dependent chains *must* also be // merged in or we'll have a broken block startMerge := time.Now() last := len(chains) for i, chain := range chains { // did we run out of performing chains? if chain.gasPerf < 0 { break } // has it already been merged? if chain.merged { continue } // compute the dependencies that must be merged and the gas limit including deps chainGasLimit := chain.gasLimit var chainDeps []*msgChain for curChain := chain.prev; curChain != nil && !curChain.merged; curChain = curChain.prev { chainDeps = append(chainDeps, curChain) chainGasLimit += curChain.gasLimit } // does it all fit in the block? if chainGasLimit <= gasLimit { // include it together with all dependencies for i := len(chainDeps) - 1; i >= 0; i-- { curChain := chainDeps[i] curChain.merged = true result = append(result, curChain.msgs...) } chain.merged = true // adjust the effective pefromance for all subsequent chains if next := chain.next; next != nil && next.effPerf > 0 { next.effPerf += next.parentOffset for next = next.next; next != nil && next.effPerf > 0; next = next.next { next.setEffPerf() } } result = append(result, chain.msgs...) gasLimit -= chainGasLimit // resort to account for already merged chains and effective performance adjustments // the sort *must* be stable or we end up getting negative gasPerfs pushed up. sort.SliceStable(chains[i+1:], func(i, j int) bool { return chains[i].BeforeEffective(chains[j]) }) continue } // we can't fit this chain and its dependencies because of block gasLimit -- we are // at the edge last = i break } if dt := time.Since(startMerge); dt > time.Millisecond { log.Infow("merge message chains done", "took", dt) } // 7. We have reached the edge of what can fit wholesale; if we still hae available // gasLimit to pack some more chains, then trim the last chain and push it down. // Trimming invalidaates subsequent dependent chains so that they can't be selected // as their dependency cannot be (fully) included. // We do this in a loop because the blocker might have been inordinately large and // we might have to do it multiple times to satisfy tail packing startTail := time.Now() tailLoop: for gasLimit >= minGas && last < len(chains) { // trim if necessary if chains[last].gasLimit > gasLimit { chains[last].Trim(gasLimit, mp, baseFee) } // push down if it hasn't been invalidated if chains[last].valid { for i := last; i < len(chains)-1; i++ { if chains[i].BeforeEffective(chains[i+1]) { break } chains[i], chains[i+1] = chains[i+1], chains[i] } } // select the next (valid and fitting) chain and its dependencies for inclusion for i, chain := range chains[last:] { // has the chain been invalidated? if !chain.valid { continue } // has it already been merged? if chain.merged { continue } // if gasPerf < 0 we have no more profitable chains if chain.gasPerf < 0 { break tailLoop } // compute the dependencies that must be merged and the gas limit including deps chainGasLimit := chain.gasLimit depGasLimit := int64(0) var chainDeps []*msgChain for curChain := chain.prev; curChain != nil && !curChain.merged; curChain = curChain.prev { chainDeps = append(chainDeps, curChain) chainGasLimit += curChain.gasLimit depGasLimit += curChain.gasLimit } // does it all fit in the bock if chainGasLimit <= gasLimit { // include it together with all dependencies for i := len(chainDeps) - 1; i >= 0; i-- { curChain := chainDeps[i] curChain.merged = true result = append(result, curChain.msgs...) } chain.merged = true result = append(result, chain.msgs...) gasLimit -= chainGasLimit continue } // it doesn't all fit; now we have to take into account the dependent chains before // making a decision about trimming or invalidating. // if the dependencies exceed the gas limit, then we must invalidate the chain // as it can never be included. // Otherwise we can just trim and continue if depGasLimit > gasLimit { chain.Invalidate() last += i + 1 continue tailLoop } // dependencies fit, just trim it chain.Trim(gasLimit-depGasLimit, mp, baseFee) last += i continue tailLoop } // the merge loop ended after processing all the chains and we we probably have still // gas to spare; end the loop. break } if dt := time.Since(startTail); dt > time.Millisecond { log.Infow("pack tail chains done", "took", dt) } // if we have gasLimit to spare, pick some random (non-negative) chains to fill the block // we pick randomly so that we minimize the probability of duplication among all miners if gasLimit >= minGas { randomCount := 0 startRandom := time.Now() shuffleChains(chains) for _, chain := range chains { // have we filled the block if gasLimit < minGas { break } // has it been merged or invalidated? if chain.merged || !chain.valid { continue } // is it negative? if chain.gasPerf < 0 { continue } // compute the dependencies that must be merged and the gas limit including deps chainGasLimit := chain.gasLimit depGasLimit := int64(0) var chainDeps []*msgChain for curChain := chain.prev; curChain != nil && !curChain.merged; curChain = curChain.prev { chainDeps = append(chainDeps, curChain) chainGasLimit += curChain.gasLimit depGasLimit += curChain.gasLimit } // do the deps fit? if the deps won't fit, invalidate the chain if depGasLimit > gasLimit { chain.Invalidate() continue } // do they fit as is? if it doesn't, trim to make it fit if possible if chainGasLimit > gasLimit { chain.Trim(gasLimit-depGasLimit, mp, baseFee) if !chain.valid { continue } } // include it together with all dependencies for i := len(chainDeps) - 1; i >= 0; i-- { curChain := chainDeps[i] curChain.merged = true result = append(result, curChain.msgs...) randomCount += len(curChain.msgs) } chain.merged = true result = append(result, chain.msgs...) randomCount += len(chain.msgs) gasLimit -= chainGasLimit } if dt := time.Since(startRandom); dt > time.Millisecond { log.Infow("pack random tail chains done", "took", dt) } if randomCount > 0 { log.Warnf("optimal selection failed to pack a block; picked %d messages with random selection", randomCount) } } return result, nil } func (mp *MessagePool) selectMessagesGreedy(curTs, ts *types.TipSet) ([]*types.SignedMessage, error) { start := time.Now() baseFee, err := mp.api.ChainComputeBaseFee(context.TODO(), ts) if err != nil { return nil, xerrors.Errorf("computing basefee: %w", err) } // 0. Load messages for the target tipset; if it is the same as the current tipset in the mpool // then this is just the pending messages pending, err := mp.getPendingMessages(curTs, ts) if err != nil { return nil, err } if len(pending) == 0 { return nil, nil } // defer only here so if we have no pending messages we don't spam defer func() { log.Infow("message selection done", "took", time.Since(start)) }() // 0b. Select all priority messages that fit in the block minGas := int64(gasguess.MinGas) result, gasLimit := mp.selectPriorityMessages(pending, baseFee, ts) // have we filled the block? if gasLimit < minGas { return result, nil } // 1. Create a list of dependent message chains with maximal gas reward per limit consumed startChains := time.Now() var chains []*msgChain for actor, mset := range pending { next := mp.createMessageChains(actor, mset, baseFee, ts) chains = append(chains, next...) } if dt := time.Since(startChains); dt > time.Millisecond { log.Infow("create message chains done", "took", dt) } // 2. Sort the chains sort.Slice(chains, func(i, j int) bool { return chains[i].Before(chains[j]) }) if len(chains) != 0 && chains[0].gasPerf < 0 { log.Warnw("all messages in mpool have non-positive gas performance", "bestGasPerf", chains[0].gasPerf) return result, nil } // 3. Merge the head chains to produce the list of messages selected for inclusion, subject to // the block gas limit. startMerge := time.Now() last := len(chains) for i, chain := range chains { // did we run out of performing chains? if chain.gasPerf < 0 { break } // does it fit in the block? if chain.gasLimit <= gasLimit { gasLimit -= chain.gasLimit result = append(result, chain.msgs...) continue } // we can't fit this chain because of block gasLimit -- we are at the edge last = i break } if dt := time.Since(startMerge); dt > time.Millisecond { log.Infow("merge message chains done", "took", dt) } // 4. We have reached the edge of what we can fit wholesale; if we still have available gasLimit // to pack some more chains, then trim the last chain and push it down. // Trimming invalidates subsequent dependent chains so that they can't be selected as their // dependency cannot be (fully) included. // We do this in a loop because the blocker might have been inordinately large and we might // have to do it multiple times to satisfy tail packing. startTail := time.Now() tailLoop: for gasLimit >= minGas && last < len(chains) { // trim chains[last].Trim(gasLimit, mp, baseFee) // push down if it hasn't been invalidated if chains[last].valid { for i := last; i < len(chains)-1; i++ { if chains[i].Before(chains[i+1]) { break } chains[i], chains[i+1] = chains[i+1], chains[i] } } // select the next (valid and fitting) chain for inclusion for i, chain := range chains[last:] { // has the chain been invalidated? if !chain.valid { continue } // if gasPerf < 0 we have no more profitable chains if chain.gasPerf < 0 { break tailLoop } // does it fit in the bock? if chain.gasLimit <= gasLimit { gasLimit -= chain.gasLimit result = append(result, chain.msgs...) continue } // this chain needs to be trimmed last += i continue tailLoop } // the merge loop ended after processing all the chains and we probably still have // gas to spare; end the loop break } if dt := time.Since(startTail); dt > time.Millisecond { log.Infow("pack tail chains done", "took", dt) } return result, nil } func (mp *MessagePool) selectPriorityMessages(pending map[address.Address]map[uint64]*types.SignedMessage, baseFee types.BigInt, ts *types.TipSet) ([]*types.SignedMessage, int64) { start := time.Now() defer func() { if dt := time.Since(start); dt > time.Millisecond { log.Infow("select priority messages done", "took", dt) } }() mpCfg := mp.getConfig() result := make([]*types.SignedMessage, 0, mpCfg.SizeLimitLow) gasLimit := int64(build.BlockGasLimit) minGas := int64(gasguess.MinGas) // 1. Get priority actor chains var chains []*msgChain priority := mpCfg.PriorityAddrs for _, actor := range priority { mset, ok := pending[actor] if ok { // remove actor from pending set as we are already processed these messages delete(pending, actor) // create chains for the priority actor next := mp.createMessageChains(actor, mset, baseFee, ts) chains = append(chains, next...) } } if len(chains) == 0 { return nil, gasLimit } // 2. Sort the chains sort.Slice(chains, func(i, j int) bool { return chains[i].Before(chains[j]) }) if len(chains) != 0 && chains[0].gasPerf < 0 { log.Warnw("all priority messages in mpool have negative gas performance", "bestGasPerf", chains[0].gasPerf) return nil, gasLimit } // 3. Merge chains until the block limit, as long as they have non-negative gas performance last := len(chains) for i, chain := range chains { if chain.gasPerf < 0 { break } if chain.gasLimit <= gasLimit { gasLimit -= chain.gasLimit result = append(result, chain.msgs...) continue } // we can't fit this chain because of block gasLimit -- we are at the edge last = i break } tailLoop: for gasLimit >= minGas && last < len(chains) { // trim, discarding negative performing messages chains[last].Trim(gasLimit, mp, baseFee) // push down if it hasn't been invalidated if chains[last].valid { for i := last; i < len(chains)-1; i++ { if chains[i].Before(chains[i+1]) { break } chains[i], chains[i+1] = chains[i+1], chains[i] } } // select the next (valid and fitting) chain for inclusion for i, chain := range chains[last:] { // has the chain been invalidated if !chain.valid { continue } // if gasPerf < 0 we have no more profitable chains if chain.gasPerf < 0 { break tailLoop } // does it fit in the bock? if chain.gasLimit <= gasLimit { gasLimit -= chain.gasLimit result = append(result, chain.msgs...) continue } // this chain needs to be trimmed last += i continue tailLoop } // the merge loop ended after processing all the chains and we probably still have gas to spare; // end the loop break } return result, gasLimit } func (mp *MessagePool) getPendingMessages(curTs, ts *types.TipSet) (map[address.Address]map[uint64]*types.SignedMessage, error) { start := time.Now() result := make(map[address.Address]map[uint64]*types.SignedMessage) defer func() { if dt := time.Since(start); dt > time.Millisecond { log.Infow("get pending messages done", "took", dt) } }() // are we in sync? inSync := false if curTs.Height() == ts.Height() && curTs.Equals(ts) { inSync = true } // first add our current pending messages for a, mset := range mp.pending { if inSync { // no need to copy the map result[a] = mset.msgs } else { // we need to copy the map to avoid clobbering it as we load more messages msetCopy := make(map[uint64]*types.SignedMessage, len(mset.msgs)) for nonce, m := range mset.msgs { msetCopy[nonce] = m } result[a] = msetCopy } } // we are in sync, that's the happy path if inSync { return result, nil } if err := mp.runHeadChange(curTs, ts, result); err != nil { return nil, xerrors.Errorf("failed to process difference between mpool head and given head: %w", err) } return result, nil } func (*MessagePool) getGasReward(msg *types.SignedMessage, baseFee types.BigInt) *big.Int { maxPremium := types.BigSub(msg.Message.GasFeeCap, baseFee) if types.BigCmp(maxPremium, msg.Message.GasPremium) > 0 { maxPremium = msg.Message.GasPremium } gasReward := tbig.Mul(maxPremium, types.NewInt(uint64(msg.Message.GasLimit))) if gasReward.Sign() == -1 { // penalty multiplier gasReward = tbig.Mul(gasReward, types.NewInt(3)) } return gasReward.Int } func (*MessagePool) getGasPerf(gasReward *big.Int, gasLimit int64) float64 { // gasPerf = gasReward * build.BlockGasLimit / gasLimit a := new(big.Rat).SetInt(new(big.Int).Mul(gasReward, bigBlockGasLimit)) b := big.NewRat(1, gasLimit) c := new(big.Rat).Mul(a, b) r, _ := c.Float64() return r } func (mp *MessagePool) createMessageChains(actor address.Address, mset map[uint64]*types.SignedMessage, baseFee types.BigInt, ts *types.TipSet) []*msgChain { // collect all messages msgs := make([]*types.SignedMessage, 0, len(mset)) for _, m := range mset { msgs = append(msgs, m) } // sort by nonce sort.Slice(msgs, func(i, j int) bool { return msgs[i].Message.Nonce < msgs[j].Message.Nonce }) // sanity checks: // - there can be no gaps in nonces, starting from the current actor nonce // if there is a gap, drop messages after the gap, we can't include them // - all messages must have minimum gas and the total gas for the candidate messages // cannot exceed the block limit; drop all messages that exceed the limit // - the total gasReward cannot exceed the actor's balance; drop all messages that exceed // the balance a, err := mp.api.GetActorAfter(actor, ts) if err != nil { log.Errorf("failed to load actor state, not building chain for %s: %v", actor, err) return nil } curNonce := a.Nonce balance := a.Balance.Int gasLimit := int64(0) skip := 0 i := 0 rewards := make([]*big.Int, 0, len(msgs)) for i = 0; i < len(msgs); i++ { m := msgs[i] if m.Message.Nonce < curNonce { log.Warnf("encountered message from actor %s with nonce (%d) less than the current nonce (%d)", actor, m.Message.Nonce, curNonce) skip++ continue } if m.Message.Nonce != curNonce { break } curNonce++ minGas := vm.PricelistByEpoch(ts.Height()).OnChainMessage(m.ChainLength()).Total() if m.Message.GasLimit < minGas { break } gasLimit += m.Message.GasLimit if gasLimit > build.BlockGasLimit { break } required := m.Message.RequiredFunds().Int if balance.Cmp(required) < 0 { break } balance = new(big.Int).Sub(balance, required) value := m.Message.Value.Int balance = new(big.Int).Sub(balance, value) gasReward := mp.getGasReward(m, baseFee) rewards = append(rewards, gasReward) } // check we have a sane set of messages to construct the chains if i > skip { msgs = msgs[skip:i] } else { return nil } // ok, now we can construct the chains using the messages we have // invariant: each chain has a bigger gasPerf than the next -- otherwise they can be merged // and increase the gasPerf of the first chain // We do this in two passes: // - in the first pass we create chains that aggreagate messages with non-decreasing gasPerf // - in the second pass we merge chains to maintain the invariant. var chains []*msgChain var curChain *msgChain newChain := func(m *types.SignedMessage, i int) *msgChain { chain := new(msgChain) chain.msgs = []*types.SignedMessage{m} chain.gasReward = rewards[i] chain.gasLimit = m.Message.GasLimit chain.gasPerf = mp.getGasPerf(chain.gasReward, chain.gasLimit) chain.valid = true return chain } // create the individual chains for i, m := range msgs { if curChain == nil { curChain = newChain(m, i) continue } gasReward := new(big.Int).Add(curChain.gasReward, rewards[i]) gasLimit := curChain.gasLimit + m.Message.GasLimit gasPerf := mp.getGasPerf(gasReward, gasLimit) // try to add the message to the current chain -- if it decreases the gasPerf, then make a // new chain if gasPerf < curChain.gasPerf { chains = append(chains, curChain) curChain = newChain(m, i) } else { curChain.msgs = append(curChain.msgs, m) curChain.gasReward = gasReward curChain.gasLimit = gasLimit curChain.gasPerf = gasPerf } } chains = append(chains, curChain) // merge chains to maintain the invariant for { merged := 0 for i := len(chains) - 1; i > 0; i-- { if chains[i].gasPerf >= chains[i-1].gasPerf { chains[i-1].msgs = append(chains[i-1].msgs, chains[i].msgs...) chains[i-1].gasReward = new(big.Int).Add(chains[i-1].gasReward, chains[i].gasReward) chains[i-1].gasLimit += chains[i].gasLimit chains[i-1].gasPerf = mp.getGasPerf(chains[i-1].gasReward, chains[i-1].gasLimit) chains[i].valid = false merged++ } } if merged == 0 { break } // drop invalidated chains newChains := make([]*msgChain, 0, len(chains)-merged) for _, c := range chains { if c.valid { newChains = append(newChains, c) } } chains = newChains } // link dependent chains for i := 0; i < len(chains)-1; i++ { chains[i].next = chains[i+1] } for i := len(chains) - 1; i > 0; i-- { chains[i].prev = chains[i-1] } return chains } func (mc *msgChain) Before(other *msgChain) bool { return mc.gasPerf > other.gasPerf || (mc.gasPerf == other.gasPerf && mc.gasReward.Cmp(other.gasReward) > 0) } func (mc *msgChain) Trim(gasLimit int64, mp *MessagePool, baseFee types.BigInt) { i := len(mc.msgs) - 1 for i >= 0 && (mc.gasLimit > gasLimit || mc.gasPerf < 0) { gasReward := mp.getGasReward(mc.msgs[i], baseFee) mc.gasReward = new(big.Int).Sub(mc.gasReward, gasReward) mc.gasLimit -= mc.msgs[i].Message.GasLimit if mc.gasLimit > 0 { mc.gasPerf = mp.getGasPerf(mc.gasReward, mc.gasLimit) if mc.bp != 0 { mc.setEffPerf() } } else { mc.gasPerf = 0 mc.effPerf = 0 } i-- } if i < 0 { mc.msgs = nil mc.valid = false } else { mc.msgs = mc.msgs[:i+1] } if mc.next != nil { mc.next.Invalidate() mc.next = nil } } func (mc *msgChain) Invalidate() { mc.valid = false mc.msgs = nil if mc.next != nil { mc.next.Invalidate() mc.next = nil } } func (mc *msgChain) SetEffectivePerf(bp float64) { mc.bp = bp mc.setEffPerf() } func (mc *msgChain) setEffPerf() { effPerf := mc.gasPerf * mc.bp if effPerf > 0 && mc.prev != nil { effPerfWithParent := (effPerf*float64(mc.gasLimit) + mc.prev.effPerf*float64(mc.prev.gasLimit)) / float64(mc.gasLimit+mc.prev.gasLimit) mc.parentOffset = effPerf - effPerfWithParent effPerf = effPerfWithParent } mc.effPerf = effPerf } func (mc *msgChain) SetNullEffectivePerf() { if mc.gasPerf < 0 { mc.effPerf = mc.gasPerf } else { mc.effPerf = 0 } } func (mc *msgChain) BeforeEffective(other *msgChain) bool { // move merged chains to the front so we can discard them earlier return (mc.merged && !other.merged) || (mc.gasPerf >= 0 && other.gasPerf < 0) || mc.effPerf > other.effPerf || (mc.effPerf == other.effPerf && mc.gasPerf > other.gasPerf) || (mc.effPerf == other.effPerf && mc.gasPerf == other.gasPerf && mc.gasReward.Cmp(other.gasReward) > 0) } func shuffleChains(lst []*msgChain) { for i := range lst { j := rand.Intn(i + 1) lst[i], lst[j] = lst[j], lst[i] } }