package sealing import ( "context" "math/bits" "github.com/ipfs/go-cid" "golang.org/x/xerrors" "github.com/filecoin-project/go-address" "github.com/filecoin-project/go-state-types/abi" "github.com/filecoin-project/go-state-types/big" "github.com/filecoin-project/go-state-types/builtin/v9/miner" "github.com/filecoin-project/lotus/api" "github.com/filecoin-project/lotus/chain/types" "github.com/filecoin-project/lotus/storage/pipeline/sealiface" ) func fillersFromRem(in abi.UnpaddedPieceSize) ([]abi.UnpaddedPieceSize, error) { // Convert to in-sector bytes for easier math: // // Sector size to user bytes ratio is constant, e.g. for 1024B we have 1016B // of user-usable data. // // (1024/1016 = 128/127) // // Given that we can get sector size by simply adding 1/127 of the user // bytes // // (we convert to sector bytes as they are nice round binary numbers) toFill := uint64(in + (in / 127)) // We need to fill the sector with pieces that are powers of 2. Conveniently // computers store numbers in binary, which means we can look at 1s to get // all the piece sizes we need to fill the sector. It also means that number // of pieces is the number of 1s in the number of remaining bytes to fill out := make([]abi.UnpaddedPieceSize, bits.OnesCount64(toFill)) for i := range out { // Extract the next lowest non-zero bit next := bits.TrailingZeros64(toFill) psize := uint64(1) << next // e.g: if the number is 0b010100, psize will be 0b000100 // set that bit to 0 by XORing it, so the next iteration looks at the // next bit toFill ^= psize // Add the piece size to the list of pieces we need to create out[i] = abi.PaddedPieceSize(psize).Unpadded() } return out, nil } func (m *Sealing) ListSectors() ([]SectorInfo, error) { var sectors []SectorInfo if err := m.sectors.List(§ors); err != nil { return nil, err } return sectors, nil } func (m *Sealing) GetSectorInfo(sid abi.SectorNumber) (SectorInfo, error) { var out SectorInfo err := m.sectors.Get(uint64(sid)).Get(&out) return out, err } func collateralSendAmount(ctx context.Context, api interface { StateMinerAvailableBalance(context.Context, address.Address, types.TipSetKey) (big.Int, error) }, maddr address.Address, cfg sealiface.Config, collateral abi.TokenAmount) (abi.TokenAmount, error) { if cfg.CollateralFromMinerBalance { if cfg.DisableCollateralFallback { return big.Zero(), nil } avail, err := api.StateMinerAvailableBalance(ctx, maddr, types.EmptyTSK) if err != nil { return big.Zero(), xerrors.Errorf("getting available miner balance: %w", err) } avail = big.Sub(avail, cfg.AvailableBalanceBuffer) if avail.LessThan(big.Zero()) { avail = big.Zero() } collateral = big.Sub(collateral, avail) if collateral.LessThan(big.Zero()) { collateral = big.Zero() } } return collateral, nil } func simulateMsgGas(ctx context.Context, sa interface { GasEstimateMessageGas(context.Context, *types.Message, *api.MessageSendSpec, types.TipSetKey) (*types.Message, error) }, from, to address.Address, method abi.MethodNum, value, maxFee abi.TokenAmount, params []byte) (*types.Message, error) { msg := types.Message{ To: to, From: from, Value: value, Method: method, Params: params, } return sa.GasEstimateMessageGas(ctx, &msg, nil, types.EmptyTSK) } func sendMsg(ctx context.Context, sa interface { MpoolPushMessage(context.Context, *types.Message, *api.MessageSendSpec) (*types.SignedMessage, error) }, from, to address.Address, method abi.MethodNum, value, maxFee abi.TokenAmount, params []byte) (cid.Cid, error) { msg := types.Message{ To: to, From: from, Value: value, Method: method, Params: params, } smsg, err := sa.MpoolPushMessage(ctx, &msg, &api.MessageSendSpec{MaxFee: maxFee}) if err != nil { return cid.Undef, err } return smsg.Cid(), nil } func infoToPreCommitSectorParams(info *miner.SectorPreCommitInfo) *miner.PreCommitSectorParams { return &miner.PreCommitSectorParams{ SealProof: info.SealProof, SectorNumber: info.SectorNumber, SealedCID: info.SealedCID, SealRandEpoch: info.SealRandEpoch, DealIDs: info.DealIDs, Expiration: info.Expiration, } }