package vm import ( "bytes" "context" "time" "github.com/ipfs/go-cid" "github.com/filecoin-project/go-address" "github.com/filecoin-project/lotus/chain/actors/aerrors" "github.com/filecoin-project/lotus/chain/actors/policy" "github.com/filecoin-project/go-state-types/network" "github.com/filecoin-project/go-state-types/big" "github.com/filecoin-project/lotus/build" "github.com/filecoin-project/lotus/chain/state" cbor "github.com/ipfs/go-ipld-cbor" "github.com/filecoin-project/go-state-types/abi" "github.com/filecoin-project/go-state-types/exitcode" "github.com/filecoin-project/lotus/lib/sigs" "golang.org/x/xerrors" "github.com/filecoin-project/lotus/blockstore" ffi "github.com/filecoin-project/filecoin-ffi" ffi_cgo "github.com/filecoin-project/filecoin-ffi/cgo" "github.com/filecoin-project/lotus/chain/actors/adt" "github.com/filecoin-project/lotus/chain/actors/builtin/miner" "github.com/filecoin-project/lotus/chain/types" ) var _ Interface = (*FVM)(nil) var _ ffi_cgo.Externs = (*FvmExtern)(nil) type FvmExtern struct { Rand blockstore.Blockstore epoch abi.ChainEpoch nv network.Version lbState LookbackStateGetter base cid.Cid } // This may eventually become identical to ExecutionTrace, but we can make incremental progress towards that type FvmExecutionTrace struct { Msg *types.Message MsgRct *types.MessageReceipt Error string Subcalls []FvmExecutionTrace } func (t *FvmExecutionTrace) ToExecutionTrace() types.ExecutionTrace { if t == nil { return types.ExecutionTrace{} } ret := types.ExecutionTrace{ Msg: t.Msg, MsgRct: t.MsgRct, Error: t.Error, Duration: 0, GasCharges: nil, Subcalls: make([]types.ExecutionTrace, len(t.Subcalls)), } for i, v := range t.Subcalls { ret.Subcalls[i] = v.ToExecutionTrace() } return ret } // VerifyConsensusFault is similar to the one in syscalls.go used by the Lotus VM, except it never errors // Errors are logged and "no fault" is returned, which is functionally what go-actors does anyway func (x *FvmExtern) VerifyConsensusFault(ctx context.Context, a, b, extra []byte) (*ffi_cgo.ConsensusFault, int64) { totalGas := int64(0) ret := &ffi_cgo.ConsensusFault{ Type: ffi_cgo.ConsensusFaultNone, } // Note that block syntax is not validated. Any validly signed block will be accepted pursuant to the below conditions. // Whether or not it could ever have been accepted in a chain is not checked/does not matter here. // for that reason when checking block parent relationships, rather than instantiating a Tipset to do so // (which runs a syntactic check), we do it directly on the CIDs. // (0) cheap preliminary checks // can blocks be decoded properly? var blockA, blockB types.BlockHeader if decodeErr := blockA.UnmarshalCBOR(bytes.NewReader(a)); decodeErr != nil { log.Info("invalid consensus fault: cannot decode first block header: %w", decodeErr) return ret, totalGas } if decodeErr := blockB.UnmarshalCBOR(bytes.NewReader(b)); decodeErr != nil { log.Info("invalid consensus fault: cannot decode second block header: %w", decodeErr) return ret, totalGas } // are blocks the same? if blockA.Cid().Equals(blockB.Cid()) { log.Info("invalid consensus fault: submitted blocks are the same") return ret, totalGas } // (1) check conditions necessary to any consensus fault // were blocks mined by same miner? if blockA.Miner != blockB.Miner { log.Info("invalid consensus fault: blocks not mined by the same miner") return ret, totalGas } // block a must be earlier or equal to block b, epoch wise (ie at least as early in the chain). if blockB.Height < blockA.Height { log.Info("invalid consensus fault: first block must not be of higher height than second") return ret, totalGas } ret.Epoch = blockB.Height faultType := ffi_cgo.ConsensusFaultNone // (2) check for the consensus faults themselves // (a) double-fork mining fault if blockA.Height == blockB.Height { faultType = ffi_cgo.ConsensusFaultDoubleForkMining } // (b) time-offset mining fault // strictly speaking no need to compare heights based on double fork mining check above, // but at same height this would be a different fault. if types.CidArrsEqual(blockA.Parents, blockB.Parents) && blockA.Height != blockB.Height { faultType = ffi_cgo.ConsensusFaultTimeOffsetMining } // (c) parent-grinding fault // Here extra is the "witness", a third block that shows the connection between A and B as // A's sibling and B's parent. // Specifically, since A is of lower height, it must be that B was mined omitting A from its tipset // // B // | // [A, C] var blockC types.BlockHeader if len(extra) > 0 { if decodeErr := blockC.UnmarshalCBOR(bytes.NewReader(extra)); decodeErr != nil { log.Info("invalid consensus fault: cannot decode extra: %w", decodeErr) return ret, totalGas } if types.CidArrsEqual(blockA.Parents, blockC.Parents) && blockA.Height == blockC.Height && types.CidArrsContains(blockB.Parents, blockC.Cid()) && !types.CidArrsContains(blockB.Parents, blockA.Cid()) { faultType = ffi_cgo.ConsensusFaultParentGrinding } } // (3) return if no consensus fault by now if faultType == ffi_cgo.ConsensusFaultNone { log.Info("invalid consensus fault: no fault detected") return ret, totalGas } // else // (4) expensive final checks // check blocks are properly signed by their respective miner // note we do not need to check extra's: it is a parent to block b // which itself is signed, so it was willingly included by the miner gasA, sigErr := x.VerifyBlockSig(ctx, &blockA) totalGas += gasA if sigErr != nil { log.Info("invalid consensus fault: cannot verify first block sig: %w", sigErr) return ret, totalGas } gas2, sigErr := x.VerifyBlockSig(ctx, &blockB) totalGas += gas2 if sigErr != nil { log.Info("invalid consensus fault: cannot verify second block sig: %w", sigErr) return ret, totalGas } ret.Type = faultType ret.Target = blockA.Miner return ret, totalGas } func (x *FvmExtern) VerifyBlockSig(ctx context.Context, blk *types.BlockHeader) (int64, error) { waddr, gasUsed, err := x.workerKeyAtLookback(ctx, blk.Miner, blk.Height) if err != nil { return gasUsed, err } return gasUsed, sigs.CheckBlockSignature(ctx, blk, waddr) } func (x *FvmExtern) workerKeyAtLookback(ctx context.Context, minerId address.Address, height abi.ChainEpoch) (address.Address, int64, error) { if height < x.epoch-policy.ChainFinality { return address.Undef, 0, xerrors.Errorf("cannot get worker key (currEpoch %d, height %d)", x.epoch, height) } gasUsed := int64(0) gasAdder := func(gc GasCharge) { // technically not overflow safe, but that's fine gasUsed += gc.Total() } cstWithoutGas := cbor.NewCborStore(x.Blockstore) cbb := &gasChargingBlocks{gasAdder, PricelistByEpochAndNetworkVersion(x.epoch, x.nv), x.Blockstore} cstWithGas := cbor.NewCborStore(cbb) lbState, err := x.lbState(ctx, height) if err != nil { return address.Undef, gasUsed, err } // get appropriate miner actor act, err := lbState.GetActor(minerId) if err != nil { return address.Undef, gasUsed, err } // use that to get the miner state mas, err := miner.Load(adt.WrapStore(ctx, cstWithGas), act) if err != nil { return address.Undef, gasUsed, err } info, err := mas.Info() if err != nil { return address.Undef, gasUsed, err } stateTree, err := state.LoadStateTree(cstWithoutGas, x.base) if err != nil { return address.Undef, gasUsed, err } raddr, err := ResolveToKeyAddr(stateTree, cstWithGas, info.Worker) if err != nil { return address.Undef, gasUsed, err } return raddr, gasUsed, nil } type FVM struct { fvm *ffi.FVM } func NewFVM(ctx context.Context, opts *VMOpts) (*FVM, error) { log.Info("using the FVM, this is experimental!") circToReport := opts.FilVested // For v14 (and earlier), we perform the FilVested portion of the calculation, and let the FVM dynamically do the rest // v15 and after, the circ supply is always constant per epoch, so we calculate the base and report it at creation if opts.NetworkVersion >= network.Version15 { state, err := state.LoadStateTree(cbor.NewCborStore(opts.Bstore), opts.StateBase) if err != nil { return nil, err } circToReport, err = opts.CircSupplyCalc(ctx, opts.Epoch, state) if err != nil { return nil, err } } fvmOpts := ffi.FVMOpts{ FVMVersion: 0, Externs: &FvmExtern{Rand: opts.Rand, Blockstore: opts.Bstore, lbState: opts.LookbackState, base: opts.StateBase, epoch: opts.Epoch, nv: opts.NetworkVersion}, Epoch: opts.Epoch, BaseFee: opts.BaseFee, BaseCircSupply: circToReport, NetworkVersion: opts.NetworkVersion, StateBase: opts.StateBase, Tracing: EnableDetailedTracing, } fvm, err := ffi.CreateFVM(&fvmOpts) if err != nil { return nil, err } return &FVM{ fvm: fvm, }, nil } func (vm *FVM) ApplyMessage(ctx context.Context, cmsg types.ChainMsg) (*ApplyRet, error) { start := build.Clock.Now() msgBytes, err := cmsg.VMMessage().Serialize() if err != nil { return nil, xerrors.Errorf("serializing msg: %w", err) } ret, err := vm.fvm.ApplyMessage(msgBytes, uint(cmsg.ChainLength())) if err != nil { return nil, xerrors.Errorf("applying msg: %w", err) } var et FvmExecutionTrace if len(ret.ExecTraceBytes) != 0 { if err = et.UnmarshalCBOR(bytes.NewReader(ret.ExecTraceBytes)); err != nil { return nil, xerrors.Errorf("failed to unmarshal exectrace: %w", err) } } var aerr aerrors.ActorError if ret.ExitCode != 0 { amsg := ret.FailureInfo if amsg == "" { amsg = "unknown error" } aerr = aerrors.New(exitcode.ExitCode(ret.ExitCode), amsg) } return &ApplyRet{ MessageReceipt: types.MessageReceipt{ Return: ret.Return, ExitCode: exitcode.ExitCode(ret.ExitCode), GasUsed: ret.GasUsed, }, GasCosts: &GasOutputs{ // TODO: do the other optional fields eventually BaseFeeBurn: big.Zero(), OverEstimationBurn: big.Zero(), MinerPenalty: ret.MinerPenalty, MinerTip: ret.MinerTip, Refund: big.Zero(), GasRefund: 0, GasBurned: 0, }, ActorErr: aerr, ExecutionTrace: et.ToExecutionTrace(), Duration: time.Since(start), }, nil } func (vm *FVM) ApplyImplicitMessage(ctx context.Context, cmsg *types.Message) (*ApplyRet, error) { start := build.Clock.Now() msgBytes, err := cmsg.VMMessage().Serialize() if err != nil { return nil, xerrors.Errorf("serializing msg: %w", err) } ret, err := vm.fvm.ApplyImplicitMessage(msgBytes) if err != nil { return nil, xerrors.Errorf("applying msg: %w", err) } var et FvmExecutionTrace if len(ret.ExecTraceBytes) != 0 { if err = et.UnmarshalCBOR(bytes.NewReader(ret.ExecTraceBytes)); err != nil { return nil, xerrors.Errorf("failed to unmarshal exectrace: %w", err) } } var aerr aerrors.ActorError if ret.ExitCode != 0 { amsg := ret.FailureInfo if amsg == "" { amsg = "unknown error" } aerr = aerrors.New(exitcode.ExitCode(ret.ExitCode), amsg) } return &ApplyRet{ MessageReceipt: types.MessageReceipt{ Return: ret.Return, ExitCode: exitcode.ExitCode(ret.ExitCode), GasUsed: ret.GasUsed, }, ActorErr: aerr, ExecutionTrace: et.ToExecutionTrace(), Duration: time.Since(start), }, nil } func (vm *FVM) Flush(ctx context.Context) (cid.Cid, error) { return vm.fvm.Flush() }