package splitstore import ( "bytes" "errors" "os" "path/filepath" "runtime" "sync" "sync/atomic" "time" blocks "github.com/ipfs/go-block-format" "github.com/ipfs/go-cid" ipld "github.com/ipfs/go-ipld-format" cbg "github.com/whyrusleeping/cbor-gen" "go.opencensus.io/stats" "golang.org/x/sync/errgroup" "golang.org/x/xerrors" "github.com/filecoin-project/go-state-types/abi" "github.com/filecoin-project/lotus/build" "github.com/filecoin-project/lotus/chain/types" "github.com/filecoin-project/lotus/metrics" ) var ( // CompactionThreshold is the number of epochs that need to have elapsed // from the previously compacted epoch to trigger a new compaction. // // |················· CompactionThreshold ··················| // | | // =======‖≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡‖------------------------» // | | chain --> ↑__ current epoch // | archived epochs ___↑ // ↑________ CompactionBoundary // // === :: cold (already archived) // ≡≡≡ :: to be archived in this compaction // --- :: hot CompactionThreshold = 5 * build.Finality // CompactionBoundary is the number of epochs from the current epoch at which // we will walk the chain for live objects. CompactionBoundary = 4 * build.Finality // SyncGapTime is the time delay from a tipset's min timestamp before we decide // there is a sync gap SyncGapTime = time.Minute // SyncWaitTime is the time delay from a tipset's min timestamp before we decide // we have synced. SyncWaitTime = 30 * time.Second // This is a testing flag that should always be true when running a node. itests rely on the rough hack // of starting genesis so far in the past that they exercise catchup mining to mine // blocks quickly and so disabling syncgap checking is necessary to test compaction // without a deep structural improvement of itests. CheckSyncGap = true ) var ( // used to signal end of walk errStopWalk = errors.New("stop walk") ) const ( batchSize = 16384 cidKeySize = 128 ) func (s *SplitStore) HeadChange(_, apply []*types.TipSet) error { s.headChangeMx.Lock() defer s.headChangeMx.Unlock() // Revert only. if len(apply) == 0 { return nil } curTs := apply[len(apply)-1] epoch := curTs.Height() // NOTE: there is an implicit invariant assumption that HeadChange is invoked // synchronously and no other HeadChange can be invoked while one is in // progress. // this is guaranteed by the chainstore, and it is pervasive in all lotus // -- if that ever changes then all hell will break loose in general and // we will have a rance to protectTipSets here. // Regardless, we put a mutex in HeadChange just to be safe if !atomic.CompareAndSwapInt32(&s.compacting, 0, 1) { // we are currently compacting // 1. Signal sync condition to yield compaction when out of sync and resume when in sync timestamp := time.Unix(int64(curTs.MinTimestamp()), 0) if CheckSyncGap && time.Since(timestamp) > SyncGapTime { /* Chain out of sync */ if atomic.CompareAndSwapInt32(&s.outOfSync, 0, 1) { // transition from in sync to out of sync s.chainSyncMx.Lock() s.chainSyncFinished = false s.chainSyncMx.Unlock() } // already out of sync, no signaling necessary } // TODO: ok to use hysteresis with no transitions between 30s and 1m? if time.Since(timestamp) < SyncWaitTime { /* Chain in sync */ if atomic.CompareAndSwapInt32(&s.outOfSync, 0, 0) { // already in sync, no signaling necessary } else { // transition from out of sync to in sync s.chainSyncMx.Lock() s.chainSyncFinished = true s.chainSyncCond.Broadcast() s.chainSyncMx.Unlock() } } // 2. protect the new tipset(s) s.protectTipSets(apply) return nil } // check if we are actually closing first if atomic.LoadInt32(&s.closing) == 1 { atomic.StoreInt32(&s.compacting, 0) return nil } timestamp := time.Unix(int64(curTs.MinTimestamp()), 0) if CheckSyncGap && time.Since(timestamp) > SyncGapTime { // don't attempt compaction before we have caught up syncing atomic.StoreInt32(&s.compacting, 0) return nil } if s.isNearUpgrade(epoch) { // we are near an upgrade epoch, suppress compaction atomic.StoreInt32(&s.compacting, 0) return nil } if epoch-s.baseEpoch > CompactionThreshold { // it's time to compact -- prepare the transaction and go! s.beginTxnProtect() s.compactType = hot go func() { defer atomic.StoreInt32(&s.compacting, 0) defer s.endTxnProtect() log.Info("compacting splitstore") start := time.Now() s.compact(curTs) log.Infow("compaction done", "took", time.Since(start)) }() // only prune if auto prune is enabled and after at least one compaction } else { // no compaction necessary atomic.StoreInt32(&s.compacting, 0) } return nil } func (s *SplitStore) isNearUpgrade(epoch abi.ChainEpoch) bool { for _, upgrade := range s.upgrades { if epoch >= upgrade.start && epoch <= upgrade.end { return true } } return false } // transactionally protect incoming tipsets func (s *SplitStore) protectTipSets(apply []*types.TipSet) { s.txnLk.RLock() if !s.txnActive { s.txnLk.RUnlock() return } var cids []cid.Cid for _, ts := range apply { cids = append(cids, ts.Cids()...) } if len(cids) == 0 { s.txnLk.RUnlock() return } // critical section if s.txnMarkSet != nil { curTs := apply[len(apply)-1] timestamp := time.Unix(int64(curTs.MinTimestamp()), 0) doSync := time.Since(timestamp) < SyncWaitTime go func() { // we are holding the txnLk while marking // so critical section cannot delete if doSync { defer func() { s.txnSyncMx.Lock() defer s.txnSyncMx.Unlock() s.txnSync = true s.txnSyncCond.Broadcast() }() } defer s.txnLk.RUnlock() s.markLiveRefs(cids) }() return } s.trackTxnRefMany(cids) s.txnLk.RUnlock() } func (s *SplitStore) markLiveRefs(cids []cid.Cid) { log.Debugf("marking %d live refs", len(cids)) startMark := time.Now() szMarked := new(int64) count := new(int32) visitor := newConcurrentVisitor() walkObject := func(c cid.Cid) (int64, error) { return s.walkObjectIncomplete(c, visitor, func(c cid.Cid) error { if isUnitaryObject(c) { return errStopWalk } visit, err := s.txnMarkSet.Visit(c) if err != nil { return xerrors.Errorf("error visiting object: %w", err) } if !visit { return errStopWalk } atomic.AddInt32(count, 1) return nil }, func(missing cid.Cid) error { log.Warnf("missing object reference %s in %s", missing, c) return errStopWalk }) } // optimize the common case of single put if len(cids) == 1 { sz, err := walkObject(cids[0]) if err != nil { log.Errorf("error marking tipset refs: %s", err) } log.Debugw("marking live refs done", "took", time.Since(startMark), "marked", *count) atomic.AddInt64(szMarked, sz) return } workch := make(chan cid.Cid, len(cids)) for _, c := range cids { workch <- c } close(workch) worker := func() error { for c := range workch { sz, err := walkObject(c) if err != nil { return err } atomic.AddInt64(szMarked, sz) } return nil } workers := runtime.NumCPU() / 2 if workers < 2 { workers = 2 } if workers > len(cids) { workers = len(cids) } g := new(errgroup.Group) for i := 0; i < workers; i++ { g.Go(worker) } if err := g.Wait(); err != nil { log.Errorf("error marking tipset refs: %s", err) } log.Debugw("marking live refs done", "took", time.Since(startMark), "marked", *count, "size marked", *szMarked) s.szMarkedLiveRefs += atomic.LoadInt64(szMarked) } // transactionally protect a view func (s *SplitStore) protectView(c cid.Cid) { // the txnLk is held for read defer s.txnLk.RUnlock() if s.txnActive { s.trackTxnRef(c) } s.txnViewsMx.Lock() s.txnViews++ s.txnViewsMx.Unlock() } func (s *SplitStore) viewDone() { s.txnViewsMx.Lock() defer s.txnViewsMx.Unlock() s.txnViews-- if s.txnViews == 0 && s.txnViewsWaiting { s.txnViewsCond.Broadcast() } } func (s *SplitStore) viewWait() { s.txnViewsMx.Lock() defer s.txnViewsMx.Unlock() s.txnViewsWaiting = true for s.txnViews > 0 { s.txnViewsCond.Wait() } s.txnViewsWaiting = false } // transactionally protect a reference to an object func (s *SplitStore) trackTxnRef(c cid.Cid) { if !s.txnActive { // not compacting return } if isUnitaryObject(c) { return } s.txnRefsMx.Lock() s.txnRefs[c] = struct{}{} s.txnRefsMx.Unlock() } // transactionally protect a batch of references func (s *SplitStore) trackTxnRefMany(cids []cid.Cid) { if !s.txnActive { // not compacting return } s.txnRefsMx.Lock() defer s.txnRefsMx.Unlock() for _, c := range cids { if isUnitaryObject(c) { continue } s.txnRefs[c] = struct{}{} } return } // protect all pending transactional references func (s *SplitStore) protectTxnRefs(markSet MarkSet) error { for { var txnRefs map[cid.Cid]struct{} s.txnRefsMx.Lock() if len(s.txnRefs) > 0 { txnRefs = s.txnRefs s.txnRefs = make(map[cid.Cid]struct{}) } s.txnRefsMx.Unlock() if len(txnRefs) == 0 { return nil } log.Infow("protecting transactional references", "refs", len(txnRefs)) count := 0 sz := new(int64) workch := make(chan cid.Cid, len(txnRefs)) startProtect := time.Now() for c := range txnRefs { mark, err := markSet.Has(c) if err != nil { return xerrors.Errorf("error checking markset: %w", err) } if mark { continue } workch <- c count++ } close(workch) if count == 0 { return nil } workers := runtime.NumCPU() / 2 if workers < 2 { workers = 2 } if workers > count { workers = count } worker := func() error { for c := range workch { szTxn, err := s.doTxnProtect(c, markSet) if err != nil { return xerrors.Errorf("error protecting transactional references to %s: %w", c, err) } atomic.AddInt64(sz, szTxn) } return nil } g := new(errgroup.Group) for i := 0; i < workers; i++ { g.Go(worker) } if err := g.Wait(); err != nil { return err } s.szProtectedTxns += atomic.LoadInt64(sz) log.Infow("protecting transactional refs done", "took", time.Since(startProtect), "protected", count, "protected size", sz) } } // transactionally protect a reference by walking the object and marking. // concurrent markings are short circuited by checking the markset. func (s *SplitStore) doTxnProtect(root cid.Cid, markSet MarkSet) (int64, error) { if err := s.checkClosing(); err != nil { return 0, err } // Note: cold objects are deleted heaviest first, so the consituents of an object // cannot be deleted before the object itself. return s.walkObjectIncomplete(root, newTmpVisitor(), func(c cid.Cid) error { if isUnitaryObject(c) { return errStopWalk } visit, err := markSet.Visit(c) if err != nil { return xerrors.Errorf("error visiting object: %w", err) } if !visit { return errStopWalk } return nil }, func(c cid.Cid) error { if s.txnMissing != nil { log.Debugf("missing object reference %s in %s", c, root) s.txnRefsMx.Lock() s.txnMissing[c] = struct{}{} s.txnRefsMx.Unlock() } return errStopWalk }) } func (s *SplitStore) applyProtectors() error { s.mx.Lock() defer s.mx.Unlock() count := 0 for _, protect := range s.protectors { err := protect(func(c cid.Cid) error { s.trackTxnRef(c) count++ return nil }) if err != nil { return xerrors.Errorf("error applynig protector: %w", err) } } if count > 0 { log.Infof("protected %d references through %d protectors", count, len(s.protectors)) } return nil } // --- Compaction --- // Compaction works transactionally with the following algorithm: // - We prepare a transaction, whereby all i/o referenced objects through the API are tracked. // - We walk the chain and mark reachable objects, keeping 4 finalities of state roots and messages and all headers all the way to genesis. // - Once the chain walk is complete, we begin full transaction protection with concurrent marking; we walk and mark all references created during the chain walk. On the same time, all I/O through the API concurrently marks objects as live references. // - We collect cold objects by iterating through the hotstore and checking the mark set; if an object is not marked, then it is candidate for purge. // - When running with a coldstore, we next copy all cold objects to the coldstore. // - At this point we are ready to begin purging: // - We sort cold objects heaviest first, so as to never delete the consituents of a DAG before the DAG itself (which would leave dangling references) // - We delete in small batches taking a lock; each batch is checked again for marks, from the concurrent transactional mark, so as to never delete anything live // // - We then end the transaction and compact/gc the hotstore. func (s *SplitStore) compact(curTs *types.TipSet) { log.Info("waiting for active views to complete") start := time.Now() s.viewWait() log.Infow("waiting for active views done", "took", time.Since(start)) start = time.Now() err := s.doCompact(curTs) took := time.Since(start).Milliseconds() stats.Record(s.ctx, metrics.SplitstoreCompactionTimeSeconds.M(float64(took)/1e3)) if err != nil { log.Errorf("COMPACTION ERROR: %s", err) } } func (s *SplitStore) doCompact(curTs *types.TipSet) error { if s.checkpointExists() { // this really shouldn't happen, but if it somehow does, it means that the hotstore // might be potentially inconsistent; abort compaction and notify the user to intervene. return xerrors.Errorf("checkpoint exists; aborting compaction") } s.clearSizeMeasurements() currentEpoch := curTs.Height() boundaryEpoch := currentEpoch - CompactionBoundary var inclMsgsEpoch abi.ChainEpoch inclMsgsRange := abi.ChainEpoch(s.cfg.HotStoreMessageRetention) * build.Finality if inclMsgsRange < boundaryEpoch { inclMsgsEpoch = boundaryEpoch - inclMsgsRange } log.Infow("running compaction", "currentEpoch", currentEpoch, "baseEpoch", s.baseEpoch, "boundaryEpoch", boundaryEpoch, "inclMsgsEpoch", inclMsgsEpoch, "compactionIndex", s.compactionIndex) markSet, err := s.markSetEnv.New("live", s.markSetSize) if err != nil { return xerrors.Errorf("error creating mark set: %w", err) } defer markSet.Close() //nolint:errcheck defer s.debug.Flush() coldSet, err := s.markSetEnv.New("cold", s.markSetSize) if err != nil { return xerrors.Errorf("error creating cold mark set: %w", err) } defer coldSet.Close() //nolint:errcheck if err := s.checkYield(); err != nil { return err } // 0. track all protected references at beginning of compaction; anything added later should // be transactionally protected by the write log.Info("protecting references with registered protectors") err = s.applyProtectors() if err != nil { return err } // 1. mark reachable objects by walking the chain from the current epoch; we keep state roots // and messages until the boundary epoch. log.Info("marking reachable objects") startMark := time.Now() count := new(int64) coldCount := new(int64) fCold := func(c cid.Cid) error { // Writes to cold set optimized away in universal and discard mode // // Nothing gets written to cold store in discard mode so no cold objects to write // Everything not marked hot gets written to cold store in universal mode so no need to track cold objects separately if s.cfg.DiscardColdBlocks || s.cfg.UniversalColdBlocks { return nil } if isUnitaryObject(c) { return errStopWalk } visit, err := coldSet.Visit(c) if err != nil { return xerrors.Errorf("error visiting object: %w", err) } if !visit { return errStopWalk } atomic.AddInt64(coldCount, 1) return nil } fHot := func(c cid.Cid) error { if isUnitaryObject(c) { return errStopWalk } visit, err := markSet.Visit(c) if err != nil { return xerrors.Errorf("error visiting object: %w", err) } if !visit { return errStopWalk } atomic.AddInt64(count, 1) return nil } err = s.walkChain(curTs, boundaryEpoch, inclMsgsEpoch, &noopVisitor{}, fHot, fCold) if err != nil { return xerrors.Errorf("error marking: %w", err) } s.markSetSize = *count + *count>>2 // overestimate a bit log.Infow("marking done", "took", time.Since(startMark), "marked", *count) if err := s.checkYield(); err != nil { return err } // 1.1 protect transactional refs err = s.protectTxnRefs(markSet) if err != nil { return xerrors.Errorf("error protecting transactional refs: %w", err) } if err := s.checkYield(); err != nil { return err } // 2. iterate through the hotstore to collect cold objects log.Info("collecting cold objects") startCollect := time.Now() coldw, err := NewColdSetWriter(s.coldSetPath()) if err != nil { return xerrors.Errorf("error creating coldset: %w", err) } defer coldw.Close() //nolint:errcheck purgew, err := NewColdSetWriter(s.discardSetPath()) if err != nil { return xerrors.Errorf("error creating deadset: %w", err) } defer purgew.Close() //nolint:errcheck // some stats for logging var hotCnt, coldCnt, purgeCnt int64 err = s.hot.ForEachKey(func(c cid.Cid) error { // was it marked? mark, err := markSet.Has(c) if err != nil { return xerrors.Errorf("error checking mark set for %s: %w", c, err) } if mark { hotCnt++ return nil } // it needs to be removed from hot store, mark it as candidate for purge if err := purgew.Write(c); err != nil { return xerrors.Errorf("error writing cid to purge set: %w", err) } purgeCnt++ coldMark, err := coldSet.Has(c) if err != nil { return xerrors.Errorf("error checking cold mark set for %s: %w", c, err) } // Discard mode: coldMark == false, s.cfg.UniversalColdBlocks == false, always return here, no writes to cold store // Universal mode: coldMark == false, s.cfg.UniversalColdBlocks == true, never stop here, all writes to cold store // Otherwise: s.cfg.UniversalColdBlocks == false, if !coldMark stop here and don't write to cold store, if coldMark continue and write to cold store if !coldMark && !s.cfg.UniversalColdBlocks { // universal mode means mark everything as cold return nil } // it's cold, mark as candidate for move if err := coldw.Write(c); err != nil { return xerrors.Errorf("error writing cid to cold set") } coldCnt++ return nil }) if err != nil { return xerrors.Errorf("error collecting cold objects: %w", err) } if err := purgew.Close(); err != nil { return xerrors.Errorf("erroring closing purgeset: %w", err) } if err := coldw.Close(); err != nil { return xerrors.Errorf("error closing coldset: %w", err) } log.Infow("cold collection done", "took", time.Since(startCollect)) log.Infow("compaction stats", "hot", hotCnt, "cold", coldCnt, "purge", purgeCnt) s.szKeys = hotCnt * cidKeySize stats.Record(s.ctx, metrics.SplitstoreCompactionHot.M(hotCnt)) stats.Record(s.ctx, metrics.SplitstoreCompactionCold.M(coldCnt)) if err := s.checkYield(); err != nil { return err } // now that we have collected cold objects, check for missing references from transactional i/o // and disable further collection of such references (they will not be acted upon as we can't // possibly delete objects we didn't have when we were collecting cold objects) s.waitForMissingRefs(markSet) if err := s.checkYield(); err != nil { return err } coldr, err := NewColdSetReader(s.coldSetPath()) if err != nil { return xerrors.Errorf("error opening coldset: %w", err) } defer coldr.Close() //nolint:errcheck // 3. copy the cold objects to the coldstore -- if we have one if !s.cfg.DiscardColdBlocks { log.Info("moving cold objects to the coldstore") startMove := time.Now() err = s.moveColdBlocks(coldr) if err != nil { return xerrors.Errorf("error moving cold objects: %w", err) } log.Infow("moving done", "took", time.Since(startMove)) if err := s.checkYield(); err != nil { return err } if err := coldr.Reset(); err != nil { return xerrors.Errorf("error resetting coldset: %w", err) } } purger, err := NewColdSetReader(s.discardSetPath()) if err != nil { return xerrors.Errorf("error opening coldset: %w", err) } defer purger.Close() //nolint:errcheck // 4. Purge cold objects with checkpointing for recovery. // This is the critical section of compaction, whereby any cold object not in the markSet is // considered already deleted. // We delete cold objects in batches, holding the transaction lock, where we check the markSet // again for new references created by the VM. // After each batch, we write a checkpoint to disk; if the process is interrupted before completion, // the process will continue from the checkpoint in the next recovery. if err := s.beginCriticalSection(markSet); err != nil { return xerrors.Errorf("error beginning critical section: %w", err) } if err := s.checkClosing(); err != nil { return err } // wait for the head to catch up so that the current tipset is marked s.waitForTxnSync() if err := s.checkClosing(); err != nil { return err } checkpoint, err := NewCheckpoint(s.checkpointPath()) if err != nil { return xerrors.Errorf("error creating checkpoint: %w", err) } defer checkpoint.Close() //nolint:errcheck // 5. purge cold objects from the hotstore, taking protected references into account log.Info("purging cold objects from the hotstore") startPurge := time.Now() err = s.purge(purger, checkpoint, markSet) if err != nil { return xerrors.Errorf("error purging cold objects: %w", err) } log.Infow("purging cold objects from hotstore done", "took", time.Since(startPurge)) s.endCriticalSection() log.Infow("critical section done", "total protected size", s.szProtectedTxns, "total marked live size", s.szMarkedLiveRefs) if err := checkpoint.Close(); err != nil { log.Warnf("error closing checkpoint: %s", err) } if err := os.Remove(s.checkpointPath()); err != nil { log.Warnf("error removing checkpoint: %s", err) } if err := coldr.Close(); err != nil { log.Warnf("error closing coldset: %s", err) } if err := os.Remove(s.coldSetPath()); err != nil { log.Warnf("error removing coldset: %s", err) } if err := os.Remove(s.discardSetPath()); err != nil { log.Warnf("error removing discardset: %s", err) } // we are done; do some housekeeping s.endTxnProtect() s.gcHotAfterCompaction() err = s.setBaseEpoch(boundaryEpoch) if err != nil { return xerrors.Errorf("error saving base epoch: %w", err) } err = s.ds.Put(s.ctx, markSetSizeKey, int64ToBytes(s.markSetSize)) if err != nil { return xerrors.Errorf("error saving mark set size: %w", err) } s.compactionIndex++ err = s.ds.Put(s.ctx, compactionIndexKey, int64ToBytes(s.compactionIndex)) if err != nil { return xerrors.Errorf("error saving compaction index: %w", err) } return nil } func (s *SplitStore) beginTxnProtect() { log.Info("preparing compaction transaction") s.txnLk.Lock() defer s.txnLk.Unlock() s.txnActive = true s.txnSync = false s.txnRefs = make(map[cid.Cid]struct{}) s.txnMissing = make(map[cid.Cid]struct{}) } func (s *SplitStore) beginCriticalSection(markSet MarkSet) error { log.Info("beginning critical section") // do that once first to get the bulk before the markset is in critical section if err := s.protectTxnRefs(markSet); err != nil { return xerrors.Errorf("error protecting transactional references: %w", err) } if err := markSet.BeginCriticalSection(); err != nil { return xerrors.Errorf("error beginning critical section for markset: %w", err) } s.txnLk.Lock() defer s.txnLk.Unlock() s.txnMarkSet = markSet // and do it again while holding the lock to mark references that might have been created // in the meantime and avoid races of the type Has->txnRef->enterCS->Get fails because // it's not in the markset if err := s.protectTxnRefs(markSet); err != nil { return xerrors.Errorf("error protecting transactional references: %w", err) } return nil } func (s *SplitStore) waitForTxnSync() { log.Info("waiting for sync") if !CheckSyncGap { log.Warnf("If you see this outside of test it is a serious splitstore issue") return } startWait := time.Now() defer func() { log.Infow("waiting for sync done", "took", time.Since(startWait)) }() s.txnSyncMx.Lock() defer s.txnSyncMx.Unlock() for !s.txnSync { s.txnSyncCond.Wait() } } // Block compaction operations if chain sync has fallen behind func (s *SplitStore) waitForSync() { if atomic.LoadInt32(&s.outOfSync) == 0 { return } s.chainSyncMx.Lock() defer s.chainSyncMx.Unlock() for !s.chainSyncFinished { s.chainSyncCond.Wait() } } // Combined sync and closing check func (s *SplitStore) checkYield() error { s.waitForSync() return s.checkClosing() } func (s *SplitStore) endTxnProtect() { s.txnLk.Lock() defer s.txnLk.Unlock() if !s.txnActive { return } s.txnActive = false s.txnSync = false s.txnRefs = nil s.txnMissing = nil s.txnMarkSet = nil } func (s *SplitStore) endCriticalSection() { log.Info("ending critical section") s.txnLk.Lock() defer s.txnLk.Unlock() s.txnMarkSet.EndCriticalSection() s.txnMarkSet = nil } func (s *SplitStore) walkChain(ts *types.TipSet, inclState, inclMsgs abi.ChainEpoch, visitor ObjectVisitor, fHot, fCold func(cid.Cid) error) error { var walked ObjectVisitor var mx sync.Mutex // we copy the tipset first into a new slice, which allows us to reuse it in every epoch. toWalk := make([]cid.Cid, len(ts.Cids())) copy(toWalk, ts.Cids()) walkCnt := new(int64) scanCnt := new(int64) szWalk := new(int64) tsRef := func(blkCids []cid.Cid) (cid.Cid, error) { return types.NewTipSetKey(blkCids...).Cid() } stopWalk := func(_ cid.Cid) error { return errStopWalk } walkBlock := func(c cid.Cid) error { visit, err := walked.Visit(c) if err != nil { return err } if !visit { return nil } atomic.AddInt64(walkCnt, 1) if err := fHot(c); err != nil { return err } var hdr types.BlockHeader err = s.view(c, func(data []byte) error { return hdr.UnmarshalCBOR(bytes.NewBuffer(data)) }) if err != nil { return xerrors.Errorf("error unmarshaling block header (cid: %s): %w", c, err) } // tipset CID references are retained pRef, err := tsRef(hdr.Parents) if err != nil { return xerrors.Errorf("error computing cid reference to parent tipset") } sz, err := s.walkObjectIncomplete(pRef, visitor, fHot, stopWalk) if err != nil { return xerrors.Errorf("error walking parent tipset cid reference") } atomic.AddInt64(szWalk, sz) // message are retained if within the inclMsgs boundary if hdr.Height >= inclMsgs && hdr.Height > 0 { if inclMsgs < inclState { // we need to use walkObjectIncomplete here, as messages/receipts may be missing early on if we // synced from snapshot and have a long HotStoreMessageRetentionPolicy. sz, err := s.walkObjectIncomplete(hdr.Messages, visitor, fHot, stopWalk) if err != nil { return xerrors.Errorf("error walking messages (cid: %s): %w", hdr.Messages, err) } atomic.AddInt64(szWalk, sz) sz, err = s.walkObjectIncomplete(hdr.ParentMessageReceipts, visitor, fHot, stopWalk) if err != nil { return xerrors.Errorf("error walking messages receipts (cid: %s): %w", hdr.ParentMessageReceipts, err) } atomic.AddInt64(szWalk, sz) } else { sz, err = s.walkObject(hdr.Messages, visitor, fHot) if err != nil { return xerrors.Errorf("error walking messages (cid: %s): %w", hdr.Messages, err) } atomic.AddInt64(szWalk, sz) sz, err := s.walkObjectIncomplete(hdr.ParentMessageReceipts, visitor, fHot, stopWalk) if err != nil { return xerrors.Errorf("error walking message receipts (cid: %s): %w", hdr.ParentMessageReceipts, err) } atomic.AddInt64(szWalk, sz) } } // messages and receipts outside of inclMsgs are included in the cold store if hdr.Height < inclMsgs && hdr.Height > 0 { sz, err := s.walkObjectIncomplete(hdr.Messages, visitor, fCold, stopWalk) if err != nil { return xerrors.Errorf("error walking messages (cid: %s): %w", hdr.Messages, err) } atomic.AddInt64(szWalk, sz) sz, err = s.walkObjectIncomplete(hdr.ParentMessageReceipts, visitor, fCold, stopWalk) if err != nil { return xerrors.Errorf("error walking messages receipts (cid: %s): %w", hdr.ParentMessageReceipts, err) } atomic.AddInt64(szWalk, sz) } // state is only retained if within the inclState boundary, with the exception of genesis if hdr.Height >= inclState || hdr.Height == 0 { sz, err := s.walkObject(hdr.ParentStateRoot, visitor, fHot) if err != nil { return xerrors.Errorf("error walking state root (cid: %s): %w", hdr.ParentStateRoot, err) } atomic.AddInt64(szWalk, sz) atomic.AddInt64(scanCnt, 1) } if hdr.Height > 0 { mx.Lock() toWalk = append(toWalk, hdr.Parents...) mx.Unlock() } return nil } // retain ref to chain head hRef, err := tsRef(ts.Cids()) if err != nil { return xerrors.Errorf("error computing cid reference to parent tipset") } sz, err := s.walkObjectIncomplete(hRef, visitor, fHot, stopWalk) if err != nil { return xerrors.Errorf("error walking parent tipset cid reference") } atomic.AddInt64(szWalk, sz) for len(toWalk) > 0 { // walking can take a while, so check this with every opportunity if err := s.checkYield(); err != nil { return err } workers := len(toWalk) if workers > runtime.NumCPU()/2 { workers = runtime.NumCPU() / 2 } if workers < 2 { workers = 2 } // the walk is BFS, so we can reset the walked set in every iteration and avoid building up // a set that contains all blocks (1M epochs -> 5M blocks -> 200MB worth of memory and growing // over time) walked = newConcurrentVisitor() workch := make(chan cid.Cid, len(toWalk)) for _, c := range toWalk { workch <- c } close(workch) toWalk = toWalk[:0] g := new(errgroup.Group) for i := 0; i < workers; i++ { g.Go(func() error { for c := range workch { if err := walkBlock(c); err != nil { return xerrors.Errorf("error walking block (cid: %s): %w", c, err) } } return nil }) } if err := g.Wait(); err != nil { return err } } log.Infow("chain walk done", "walked", *walkCnt, "scanned", *scanCnt, "walk size", szWalk) s.szWalk = atomic.LoadInt64(szWalk) return nil } func (s *SplitStore) walkObject(c cid.Cid, visitor ObjectVisitor, f func(cid.Cid) error) (int64, error) { var sz int64 visit, err := visitor.Visit(c) if err != nil { return 0, xerrors.Errorf("error visiting object: %w", err) } if !visit { return sz, nil } if err := f(c); err != nil { if err == errStopWalk { return sz, nil } return 0, err } if c.Prefix().Codec != cid.DagCBOR { return sz, nil } // check this before recursing if err := s.checkYield(); err != nil { return 0, err } var links []cid.Cid err = s.view(c, func(data []byte) error { sz += int64(len(data)) return cbg.ScanForLinks(bytes.NewReader(data), func(c cid.Cid) { links = append(links, c) }) }) if err != nil { return 0, xerrors.Errorf("error scanning linked block (cid: %s): %w", c, err) } for _, c := range links { szLink, err := s.walkObject(c, visitor, f) if err != nil { return 0, xerrors.Errorf("error walking link (cid: %s): %w", c, err) } sz += szLink } return sz, nil } // like walkObject, but the object may be potentially incomplete (references missing) func (s *SplitStore) walkObjectIncomplete(c cid.Cid, visitor ObjectVisitor, f, missing func(cid.Cid) error) (int64, error) { var sz int64 visit, err := visitor.Visit(c) if err != nil { return 0, xerrors.Errorf("error visiting object: %w", err) } if !visit { return sz, nil } // occurs check -- only for DAGs if c.Prefix().Codec == cid.DagCBOR { has, err := s.has(c) if err != nil { return 0, xerrors.Errorf("error occur checking %s: %w", c, err) } if !has { err = missing(c) if err == errStopWalk { return sz, nil } return 0, err } } if err := f(c); err != nil { if err == errStopWalk { return sz, nil } return 0, err } if c.Prefix().Codec != cid.DagCBOR { return sz, nil } // check this before recursing if err := s.checkYield(); err != nil { return sz, err } var links []cid.Cid err = s.view(c, func(data []byte) error { sz += int64(len(data)) return cbg.ScanForLinks(bytes.NewReader(data), func(c cid.Cid) { links = append(links, c) }) }) if err != nil { return 0, xerrors.Errorf("error scanning linked block (cid: %s): %w", c, err) } for _, c := range links { szLink, err := s.walkObjectIncomplete(c, visitor, f, missing) if err != nil { return 0, xerrors.Errorf("error walking link (cid: %s): %w", c, err) } sz += szLink } return sz, nil } // internal version used during compaction and related operations func (s *SplitStore) view(c cid.Cid, cb func([]byte) error) error { if isIdentiyCid(c) { data, err := decodeIdentityCid(c) if err != nil { return err } return cb(data) } err := s.hot.View(s.ctx, c, cb) if ipld.IsNotFound(err) { return s.cold.View(s.ctx, c, cb) } return err } func (s *SplitStore) has(c cid.Cid) (bool, error) { if isIdentiyCid(c) { return true, nil } has, err := s.hot.Has(s.ctx, c) if has || err != nil { return has, err } return s.cold.Has(s.ctx, c) } func (s *SplitStore) get(c cid.Cid) (blocks.Block, error) { blk, err := s.hot.Get(s.ctx, c) switch { case err == nil: return blk, nil case ipld.IsNotFound(err): return s.cold.Get(s.ctx, c) default: return nil, err } } func (s *SplitStore) getSize(c cid.Cid) (int, error) { sz, err := s.hot.GetSize(s.ctx, c) switch { case err == nil: return sz, nil case ipld.IsNotFound(err): return s.cold.GetSize(s.ctx, c) default: return 0, err } } func (s *SplitStore) moveColdBlocks(coldr *ColdSetReader) error { batch := make([]blocks.Block, 0, batchSize) err := coldr.ForEach(func(c cid.Cid) error { if err := s.checkYield(); err != nil { return err } blk, err := s.hot.Get(s.ctx, c) if err != nil { if ipld.IsNotFound(err) { log.Warnf("hotstore missing block %s", c) return nil } return xerrors.Errorf("error retrieving block %s from hotstore: %w", c, err) } batch = append(batch, blk) if len(batch) == batchSize { err = s.cold.PutMany(s.ctx, batch) if err != nil { return xerrors.Errorf("error putting batch to coldstore: %w", err) } batch = batch[:0] } return nil }) if err != nil { return xerrors.Errorf("error iterating coldset: %w", err) } if len(batch) > 0 { err := s.cold.PutMany(s.ctx, batch) if err != nil { return xerrors.Errorf("error putting batch to coldstore: %w", err) } } return nil } func (s *SplitStore) purge(coldr *ColdSetReader, checkpoint *Checkpoint, markSet MarkSet) error { batch := make([]cid.Cid, 0, batchSize) deadCids := make([]cid.Cid, 0, batchSize) var purgeCnt, liveCnt int defer func() { log.Infow("purged cold objects", "purged", purgeCnt, "live", liveCnt) }() deleteBatch := func() error { pc, lc, err := s.purgeBatch(batch, deadCids, checkpoint, markSet) purgeCnt += pc liveCnt += lc batch = batch[:0] return err } err := coldr.ForEach(func(c cid.Cid) error { batch = append(batch, c) if len(batch) == batchSize { return deleteBatch() } return nil }) if err != nil { return err } if len(batch) > 0 { return deleteBatch() } return nil } func (s *SplitStore) purgeBatch(batch, deadCids []cid.Cid, checkpoint *Checkpoint, markSet MarkSet) (purgeCnt int, liveCnt int, err error) { if err := s.checkClosing(); err != nil { return 0, 0, err } s.txnLk.Lock() defer s.txnLk.Unlock() for _, c := range batch { has, err := markSet.Has(c) if err != nil { return 0, 0, xerrors.Errorf("error checking markset for liveness: %w", err) } if has { liveCnt++ continue } deadCids = append(deadCids, c) } if len(deadCids) == 0 { if err := checkpoint.Set(batch[len(batch)-1]); err != nil { return 0, 0, xerrors.Errorf("error setting checkpoint: %w", err) } return 0, liveCnt, nil } switch s.compactType { case hot: if err := s.hot.DeleteMany(s.ctx, deadCids); err != nil { return 0, liveCnt, xerrors.Errorf("error purging cold objects: %w", err) } case cold: if err := s.cold.DeleteMany(s.ctx, deadCids); err != nil { return 0, liveCnt, xerrors.Errorf("error purging dead objects: %w", err) } default: return 0, liveCnt, xerrors.Errorf("invalid compaction type %d, only hot and cold allowed for critical section", s.compactType) } s.debug.LogDelete(deadCids) purgeCnt = len(deadCids) if err := checkpoint.Set(batch[len(batch)-1]); err != nil { return purgeCnt, liveCnt, xerrors.Errorf("error setting checkpoint: %w", err) } return purgeCnt, liveCnt, nil } func (s *SplitStore) coldSetPath() string { return filepath.Join(s.path, "coldset") } func (s *SplitStore) discardSetPath() string { return filepath.Join(s.path, "deadset") } func (s *SplitStore) checkpointPath() string { return filepath.Join(s.path, "checkpoint") } func (s *SplitStore) pruneCheckpointPath() string { return filepath.Join(s.path, "prune-checkpoint") } func (s *SplitStore) checkpointExists() bool { _, err := os.Stat(s.checkpointPath()) return err == nil } func (s *SplitStore) pruneCheckpointExists() bool { _, err := os.Stat(s.pruneCheckpointPath()) return err == nil } func (s *SplitStore) completeCompaction() error { checkpoint, last, err := OpenCheckpoint(s.checkpointPath()) if err != nil { return xerrors.Errorf("error opening checkpoint: %w", err) } defer checkpoint.Close() //nolint:errcheck coldr, err := NewColdSetReader(s.coldSetPath()) if err != nil { return xerrors.Errorf("error opening coldset: %w", err) } defer coldr.Close() //nolint:errcheck markSet, err := s.markSetEnv.Recover("live") if err != nil { return xerrors.Errorf("error recovering markset: %w", err) } defer markSet.Close() //nolint:errcheck // PURGE s.compactType = hot log.Info("purging cold objects from the hotstore") startPurge := time.Now() err = s.completePurge(coldr, checkpoint, last, markSet) if err != nil { return xerrors.Errorf("error purging cold objects: %w", err) } log.Infow("purging cold objects from hotstore done", "took", time.Since(startPurge)) markSet.EndCriticalSection() if err := checkpoint.Close(); err != nil { log.Warnf("error closing checkpoint: %s", err) } if err := os.Remove(s.checkpointPath()); err != nil { log.Warnf("error removing checkpoint: %s", err) } if err := coldr.Close(); err != nil { log.Warnf("error closing coldset: %s", err) } if err := os.Remove(s.coldSetPath()); err != nil { log.Warnf("error removing coldset: %s", err) } s.compactType = none // Note: at this point we can start the splitstore; base epoch is not // incremented here so a compaction should run on the first head // change, which will trigger gc on the hotstore. // We don't mind the second (back-to-back) compaction as the head will // have advanced during marking and coldset accumulation. return nil } func (s *SplitStore) completePurge(coldr *ColdSetReader, checkpoint *Checkpoint, start cid.Cid, markSet MarkSet) error { if !start.Defined() { return s.purge(coldr, checkpoint, markSet) } seeking := true batch := make([]cid.Cid, 0, batchSize) deadCids := make([]cid.Cid, 0, batchSize) var purgeCnt, liveCnt int defer func() { log.Infow("purged cold objects", "purged", purgeCnt, "live", liveCnt) }() deleteBatch := func() error { pc, lc, err := s.purgeBatch(batch, deadCids, checkpoint, markSet) purgeCnt += pc liveCnt += lc batch = batch[:0] return err } err := coldr.ForEach(func(c cid.Cid) error { if seeking { if start.Equals(c) { seeking = false } return nil } batch = append(batch, c) if len(batch) == batchSize { return deleteBatch() } return nil }) if err != nil { return err } if len(batch) > 0 { return deleteBatch() } return nil } func (s *SplitStore) clearSizeMeasurements() { s.szKeys = 0 s.szMarkedLiveRefs = 0 s.szProtectedTxns = 0 s.szWalk = 0 } // I really don't like having this code, but we seem to have some occasional DAG references with // missing constituents. During testing in mainnet *some* of these references *sometimes* appeared // after a little bit. // We need to figure out where they are coming from and eliminate that vector, but until then we // have this gem[TM]. // My best guess is that they are parent message receipts or yet to be computed state roots; magik // thinks the cause may be block validation. func (s *SplitStore) waitForMissingRefs(markSet MarkSet) { s.txnLk.Lock() missing := s.txnMissing s.txnMissing = nil s.txnLk.Unlock() if len(missing) == 0 { return } log.Info("waiting for missing references") start := time.Now() count := 0 defer func() { log.Infow("waiting for missing references done", "took", time.Since(start), "marked", count) }() for i := 0; i < 3 && len(missing) > 0; i++ { if err := s.checkClosing(); err != nil { return } wait := time.Duration(i) * time.Minute log.Infof("retrying for %d missing references in %s (attempt: %d)", len(missing), wait, i+1) if wait > 0 { time.Sleep(wait) } towalk := missing visitor := newTmpVisitor() missing = make(map[cid.Cid]struct{}) for c := range towalk { _, err := s.walkObjectIncomplete(c, visitor, func(c cid.Cid) error { if isUnitaryObject(c) { return errStopWalk } visit, err := markSet.Visit(c) if err != nil { return xerrors.Errorf("error visiting object: %w", err) } if !visit { return errStopWalk } count++ return nil }, func(c cid.Cid) error { missing[c] = struct{}{} return errStopWalk }) if err != nil { log.Warnf("error marking: %s", err) } } } if len(missing) > 0 { log.Warnf("still missing %d references", len(missing)) for c := range missing { log.Warnf("unresolved missing reference: %s", c) } } }