Implement golden tests for Poisson distribution

Signed-off-by: Jakub Sztandera <kubuxu@protocol.ai>
This commit is contained in:
Jakub Sztandera 2020-06-23 00:01:17 +02:00
parent d92362f96e
commit d7f710806b
No known key found for this signature in database
GPG Key ID: 9A9AF56F8B3879BA
11 changed files with 188 additions and 28 deletions

View File

@ -67,12 +67,13 @@ func init() {
expDenoCoef = parse(deno)
}
// expneg accepts x in Q.256 format, in range of 0 to 5 and computes e^-x,
// output is in Q.256 format
// expneg accepts x in Q.256 format and computes e^-x.
// It is most precise within [0, 1.725) range, where error is less than 3.4e-30.
// Over the [0, 5) range its error is less than 4.6e-15.
// Output is in Q.256 format.
func expneg(x *big.Int) *big.Int {
// exp is approximated by rational function
// polynomials of the rational function are evaluated using Horners method
// polynomials of the rational function are evaluated using Horner's method
num := polyval(expNumCoef, x) // Q.256
deno := polyval(expDenoCoef, x) // Q.256
@ -80,10 +81,11 @@ func expneg(x *big.Int) *big.Int {
return num.Div(num, deno) // Q.512 / Q.256 => Q.256
}
// polyval evaluates a polynomial given by coefficients `p` in Q.256 format,
// at point `x` in Q.256 format, output is in Q.256
// polyval evaluates a polynomial given by coefficients `p` in Q.256 format
// at point `x` in Q.256 format. Output is in Q.256.
// Coefficients should be ordered from the highest order coefficient to the lowest.
func polyval(p []*big.Int, x *big.Int) *big.Int {
// evaluation using Horner's method
res := new(big.Int).Set(p[0]) // Q.256
tmp := new(big.Int) // big.Int.Mul doesn't like when input is reused as output
for _, c := range p[1:] {
@ -108,11 +110,11 @@ var MaxWinCount = 3 * build.BlocksPerEpoch
type poiss struct {
lam *big.Int
pmf *big.Int
tmp *big.Int
icdf *big.Int
k uint64
kBig *big.Int
tmp *big.Int // temporary variable for optmization
k uint64
}
// newPoiss starts poisson inverted CDF
@ -120,12 +122,10 @@ type poiss struct {
// returns (instance, `1-poisscdf(0, lambda)`)
// CDF value returend is reused when calling `next`
func newPoiss(lambda *big.Int) (*poiss, *big.Int) {
// e^-lambda
elam := expneg(lambda) // Q.256
// pmf(k) = (lambda^k)*(e^lambda) / k!
// k = 0 here so it similifies to just e^labda
pmf := new(big.Int).Set(elam) // Q.256
// k = 0 here, so it simplifies to just e^-lambda
pmf := expneg(lambda) // Q.256
// icdf(k) = 1 - ∑ᵏᵢ₌₀ pmf(i)
// icdf(0) = 1 - pmf(0)
@ -134,34 +134,34 @@ func newPoiss(lambda *big.Int) (*poiss, *big.Int) {
icdf = icdf.Sub(icdf, pmf) // Q.256
k := uint64(0)
kBig := new(big.Int).SetUint64(k) // Q.0
p := &poiss{
lam: lambda,
pmf: pmf,
tmp: elam,
tmp: new(big.Int),
icdf: icdf,
k: k,
kBig: kBig,
k: k,
}
return p, icdf
}
// next computes next `k++, 1-poisscdf(k, lam)`
// next computes `k++, 1-poisscdf(k, lam)`
// return is in Q.256 format
func (p *poiss) next() *big.Int {
// incrementally compute next pfm and icdf
// incrementally compute next pmf and icdf
// pmf(k) = (lambda^k)*(e^lambda) / k!
// so pmf(k) = pmf(k-1) * lambda / k
p.k++
p.kBig = p.kBig.SetUint64(p.k) // Q.0
p.tmp.SetUint64(p.k) // Q.0
// calculate pmf for k
p.pmf = p.pmf.Div(p.pmf, p.kBig) // Q.256 / Q.0 => Q.256
p.pmf = p.pmf.Div(p.pmf, p.tmp) // Q.256 / Q.0 => Q.256
// we are using `tmp` as target for multiplication as using an input as output
// for Int.Mul causes allocations
p.tmp = p.tmp.Mul(p.pmf, p.lam) // Q.256 * Q.256 => Q.512
p.pmf = p.pmf.Rsh(p.tmp, precision) // Q.512 >> 256 => Q.256
@ -171,11 +171,9 @@ func (p *poiss) next() *big.Int {
return p.icdf
}
// poissStep performs a step in evaluation of Poisson distribution
// k should be incremented after each evaluation step
// tmp is scratch space
// ouput is (pmf, icdf)
// ComputeWinCount uses VRFProof to compute number of wins
// The algorithm is based on Algorand's Sortition with Binomial distribution
// replaced by Poisson distribution.
func (ep *ElectionProof) ComputeWinCount(power BigInt, totalPower BigInt) uint64 {
h := blake2b.Sum256(ep.VRFProof)

View File

@ -1,12 +1,52 @@
package types
import (
"bytes"
"fmt"
"math/big"
"os"
"testing"
"github.com/xorcare/golden"
)
func TestPoissonFunction(t *testing.T) {
tests := []struct {
lambdaBase uint64
lambdaShift uint
}{
{10, 10}, // 0.0097
{209714, 20}, // 0.19999885
{1036915, 20}, // 0.9888792038
{1706, 10}, // 1.6660
{2, 0}, // 2
{5242879, 20}, //4.9999990
{5, 0}, // 5
}
for _, test := range tests {
t.Run(fmt.Sprintf("lam-%d-%d", test.lambdaBase, test.lambdaShift), func(t *testing.T) {
test := test
b := &bytes.Buffer{}
b.WriteString("icdf\n")
lam := new(big.Int).SetUint64(test.lambdaBase)
lam = lam.Lsh(lam, precision-test.lambdaShift)
p, icdf := newPoiss(lam)
b.WriteString(icdf.String())
b.WriteRune('\n')
for i := 0; i < 15; i++ {
b.WriteString(p.next().String())
b.WriteRune('\n')
}
golden.Assert(t, []byte(b.String()))
})
}
}
func q256ToF(x *big.Int) float64 {
deno := big.NewInt(1)
deno = deno.Lsh(deno, 256)

View File

@ -0,0 +1,17 @@
icdf
1125278653883954157340515998824199281259686237023612910954531537010133365568
5485581780123676224984074899749002236148166431650497590243915223971292577
17842170241691453912141677461647358103546946338181118738604570718548080
43538699106868068808561503680708109912117284430088557923220935824303
85008817354919776986513548953593326094752560579206896166859206326
138328508214407784218646352510285887677303021571444942144212932
192946940473264032619492808002293590266469557064324916486706
235498963868775663540157747991701194152938740691242898919
255504995002156513848360474242833468958493714151012216
249505772801580009049072856702435230216536441494110
232834101038081471620316286291642591265760137159
11533551765583311484083562200606025547302501012
11353456917542541496993529059255898133794641608
11353321629946357024346977051186975261639061786
11353321535577219060847642123725989684858819334
11353321535515780819985988910882590605707269697

View File

@ -0,0 +1,17 @@
icdf
72718197862321603787957847055188249408647877796280116987586082825356498974798
30123322455004902866096392147720313525979066051167804713805891738863284666878
9062729215708086547397523150443475826195010851218953471088727298493148732956
2120601657722952965249404258310617497861606438105371150448777320082300909521
404370264674629622846679825118378024155401061236248117877372450081489268106
64941157977031699837280219244596630364570458903895153606060064374226923144
8998760514291795062091202215054973561658841304177095664084807386711484044
1095864305518189121413406860322570887693509822868614985675874891701983877
118988091690998292615838041961723734187855286032350465668217096980526413
11653361409102593830837021393444274321721937984503223867724441309766994
1039253147016500070761515827557061937775360855994320103804816785188376
85064880905559492020902336338153555957806293407638915883403930221828
6433469833589351070633969345898155559842007456615136652210720692299
452164666340411064711833496915674079929092772106312520794348036629
29679788379529243880483477334855509673275091060271619731000625321
1827354397264548824373139406487609602015834650190678153972930556

View File

@ -0,0 +1,17 @@
icdf
93907545465879218275260347624273708225148723352890415890955745471328115138024
57447553596668785643406883388130520172829512611140657354486862128150346836988
27076095525930017054568011324233899656590951319429188573619716140132147265911
10209654292635635800479757502291310268341281539592025246744927385067352842651
3184715634432458451975226003210729824895496226017269232182332263939291493510
843984120585852874524302031056145794325474791455055607017530061469667926785
194034907919461416983404196340045475941285897027461784665454449911533518447
39345544525367691179167072173518251727638261160626536209449847049064587000
7131182470884793691126479665205819536661348710819293305892247868965466268
1167890189531948301087715470416213490892402026859749426392544722128541359
174396377814374645286335419995210764907848995332895729280582459579342738
23925812935985027317838050852967276757134553590636105055350959232313899
3035286920153916620063269622769735189335169019323041991528942663951986
358060554242868329017312833503133182524340437692927389149107908421231
39467628723598770945019147503633808666969235107758896427288845018926
4082242594961149456000070139366495398696105445630156285138889148853

View File

@ -0,0 +1,17 @@
icdf
100121334043824876020967110392587568107053060743383522309741056272383359786578
68779823656842237215759361160386888614619212898869438850308000801323820079862
37438313269859598410551611928186209122185365054355355390874945330264280373146
16543973011871172540413112440052422793896133158012633084586241682891253902002
6096802882876959605343862695985529629751517209841271931441889859204740666430
1917934831279274431316162798358772364093670830572727470184149129730135372202
524978814080046039973596165816519942207722037483212649764902219905266940794
126991380594552213875719985090162107383165239457636986787974531383875960392
27494522223178757351250939908572648677026039951243071043742609253528215292
5384109251762433679146707645997213408995106727599978656135515446784271938
962026657479168944725861193482126355388920082871360178614096685435483268
158011640336757174831161838479383254733249783829793182701111456099339874
24009137479688546515378612645592737957304733989532016715613917876649310
3393367809370296005258116363471119991774726321799529640921988919312302
448257856467688789526616894596603139556153797837745773108856211121302
55576529414007827429083632080000892593677461309507924067105183362502

View File

@ -0,0 +1,17 @@
icdf
20989436322611254574979389012727393136091537312055593688180077279147576363096
2029014232696520721523332453453803636238058967796600089005757967894658844577
132982872945592560215194824292206599698851338836977427578620974467337246296
6581505574095040906286115477587166321018484661524779791358182693980706360
261473369241451189291715224208035992983406808190620756138506410631265448
8673527587881831627652027122245179992541421812500366598395022980519170
246914417172755020716947338861248744263385116558896234139925344965714
6155418508705151241339695503211918565434455355693098789916851059631
136477982954924943101944815709613669983383501630000081908122878386
2724514397229876659600187515561464490237868059330199615762951760
49460332945698577716770256622916953121860884014393828193908634
823264627479642334265449493920662550930201158945634649498769
12651460568281449375957051928671501418597070452648092732548
180560129118157986659345179422379755776654969450793746138
2405427973892505908363489341734991530618943133521671600
30045550760659097055494870911555042207154242485930695

View File

@ -0,0 +1,17 @@
icdf
115011888277122352219705460287186602222085188670665840381425306072442950421456
111110883476153136200377836679680074066161208695792222091263916395092054329056
101358371473730096152058777660913753676351258758608176365860442201714814098056
85104184803025029404860345962969886360001342196634766823521318546086080379726
64786451464643695970862306340540052214563946494168004895597413976550163231816
44468718126262362536864266718110218069126550791701242967673509407014246083906
27537273677611251341865900366085356281262054372978941361070255599067648460651
15443384785717600488295638686067597861358842645320154499210788593391507301186
7884704228284068704814225136056498848919335315533412710548621714843919076521
3685437251932106602880106497161443842008497910096333939069640115650814507266
1585803763756125551913047177713916338553079207377794553330149316054262222641
631424905494315983291656577965040200618797978869367559812198952601283911451
233767047885228663032743828069675143146180800324189645846386301162542948456
80821718035579693702392770417611659502866500883736602013381435224565655001
26198385946419347512981678399017558201682822512146229215879697389573764486
7990608583365898783177981059486191101288263054949438283379118111243134316

View File

@ -0,0 +1,17 @@
icdf
115011887533064380050215202002871794783671664388541274939039184893270600703151
111110879755863630144777547269452207577572562543679248972859798819416242535921
101358362173007217989878395557465593373392010546833825352856759707561945139525
85104169301821710755220628061805234978705652326202881500299286939503312327242
64786432088141395502693562453332343133008530920262028792733819517798429528997
44468698749761909885846743680008378684637277300179598543979674797636862943384
27537257530529080605729671834720742022613060678716434560927439906969908575619
15443373252088578337713549627194971124753642243467082552611819728291522561946
7884697019766617162458477655388623015603913245952633503615157778326861227793
3685433247200570820185174890022164698361097802621279879954268046011715772231
1585801761390548420193995297013958176769177427873274589439743405082427147382
631423995328231141553650878972791975288890578033071631113620389859816342901
233766668649395912353875000216328335294367462954196928187468994385755448892
80821572175657684536655650469711580587115741420816601432036447172153463116
26198333853594769407667441209847842642730676168975225661522405972966431948
7990591219092428810606628986022697269060757693982546042792694706871429282

1
go.mod
View File

@ -111,6 +111,7 @@ require (
github.com/whyrusleeping/cbor-gen v0.0.0-20200504204219-64967432584d
github.com/whyrusleeping/multiaddr-filter v0.0.0-20160516205228-e903e4adabd7
github.com/whyrusleeping/pubsub v0.0.0-20131020042734-02de8aa2db3d
github.com/xorcare/golden v0.6.1-0.20191112154924-b87f686d7542
go.opencensus.io v0.22.3
go.uber.org/dig v1.8.0 // indirect
go.uber.org/fx v1.9.0

2
go.sum
View File

@ -1373,6 +1373,8 @@ github.com/whyrusleeping/timecache v0.0.0-20160911033111-cfcb2f1abfee/go.mod h1:
github.com/whyrusleeping/yamux v1.1.5/go.mod h1:E8LnQQ8HKx5KD29HZFUwM1PxCOdPRzGwur1mcYhXcD8=
github.com/x-cray/logrus-prefixed-formatter v0.5.2/go.mod h1:2duySbKsL6M18s5GU7VPsoEPHyzalCE06qoARUCeBBE=
github.com/xiang90/probing v0.0.0-20190116061207-43a291ad63a2/go.mod h1:UETIi67q53MR2AWcXfiuqkDkRtnGDLqkBTpCHuJHxtU=
github.com/xorcare/golden v0.6.1-0.20191112154924-b87f686d7542 h1:oWgZJmC1DorFZDpfMfWg7xk29yEOZiXmo/wZl+utTI8=
github.com/xorcare/golden v0.6.1-0.20191112154924-b87f686d7542/go.mod h1:7T39/ZMvaSEZlBPoYfVFmsBLmUl3uz9IuzWj/U6FtvQ=
github.com/xordataexchange/crypt v0.0.3-0.20170626215501-b2862e3d0a77/go.mod h1:aYKd//L2LvnjZzWKhF00oedf4jCCReLcmhLdhm1A27Q=
github.com/yuin/goldmark v1.1.25/go.mod h1:3hX8gzYuyVAZsxl0MRgGTJEmQBFcNTphYh9decYSb74=
go.dedis.ch/fixbuf v1.0.3 h1:hGcV9Cd/znUxlusJ64eAlExS+5cJDIyTyEG+otu5wQs=