Refactor poisson to struct for easier testing
Signed-off-by: Jakub Sztandera <kubuxu@protocol.ai>
This commit is contained in:
parent
84c0b50aa1
commit
8fea872345
@ -105,6 +105,67 @@ func lambda(power, totalPower *big.Int) *big.Int {
|
|||||||
|
|
||||||
var MaxWinCount = 3 * build.BlocksPerEpoch
|
var MaxWinCount = 3 * build.BlocksPerEpoch
|
||||||
|
|
||||||
|
type poiss struct {
|
||||||
|
lam *big.Int
|
||||||
|
pmf *big.Int
|
||||||
|
tmp *big.Int
|
||||||
|
icdf *big.Int
|
||||||
|
|
||||||
|
k uint64
|
||||||
|
kBig *big.Int
|
||||||
|
}
|
||||||
|
|
||||||
|
// newPoiss starts poisson inverted CDF
|
||||||
|
// lambda is in Q.256 format
|
||||||
|
// returns (instance, `1-poisscdf(0, lambda)`)
|
||||||
|
// CDF value returend is reused when calling `next`
|
||||||
|
func newPoiss(lambda *big.Int) (*poiss, *big.Int) {
|
||||||
|
elam := expneg(lambda) // Q.256
|
||||||
|
|
||||||
|
pmf := new(big.Int).Set(elam) // Q.256
|
||||||
|
|
||||||
|
icdf := big.NewInt(1)
|
||||||
|
icdf = icdf.Lsh(icdf, precision) // Q.256
|
||||||
|
icdf = icdf.Sub(icdf, pmf) // Q.256
|
||||||
|
|
||||||
|
k := uint64(0)
|
||||||
|
kBig := new(big.Int).SetUint64(k) // Q.0
|
||||||
|
|
||||||
|
p := &poiss{
|
||||||
|
lam: lambda,
|
||||||
|
pmf: pmf,
|
||||||
|
|
||||||
|
tmp: elam,
|
||||||
|
icdf: icdf,
|
||||||
|
|
||||||
|
k: k,
|
||||||
|
kBig: kBig,
|
||||||
|
}
|
||||||
|
|
||||||
|
return p, icdf
|
||||||
|
}
|
||||||
|
|
||||||
|
// next computes next `k++, 1-poisscdf(k, lam)`
|
||||||
|
// return is in Q.256 format
|
||||||
|
func (p *poiss) next() *big.Int {
|
||||||
|
p.k++
|
||||||
|
p.kBig = p.kBig.SetUint64(p.k) // Q.0
|
||||||
|
|
||||||
|
// calculate pmf for k
|
||||||
|
p.pmf = p.pmf.Div(p.pmf, p.kBig) // Q.256 / Q.0 => Q.256
|
||||||
|
p.tmp = p.tmp.Mul(p.pmf, p.lam) // Q.256 * Q.256 => Q.512
|
||||||
|
p.pmf = p.pmf.Rsh(p.tmp, precision) // Q.512 >> 256 => Q.256
|
||||||
|
|
||||||
|
// calculate output
|
||||||
|
p.icdf = p.icdf.Sub(p.icdf, p.pmf) // Q.256
|
||||||
|
return p.icdf
|
||||||
|
}
|
||||||
|
|
||||||
|
// poissStep performs a step in evaluation of Poisson distribution
|
||||||
|
// k should be incremented after each evaluation step
|
||||||
|
// tmp is scratch space
|
||||||
|
// ouput is (pmf, icdf)
|
||||||
|
|
||||||
func (ep *ElectionProof) ComputeWinCount(power BigInt, totalPower BigInt) uint64 {
|
func (ep *ElectionProof) ComputeWinCount(power BigInt, totalPower BigInt) uint64 {
|
||||||
h := blake2b.Sum256(ep.VRFProof)
|
h := blake2b.Sum256(ep.VRFProof)
|
||||||
|
|
||||||
@ -112,7 +173,6 @@ func (ep *ElectionProof) ComputeWinCount(power BigInt, totalPower BigInt) uint64
|
|||||||
|
|
||||||
// We are calculating upside-down CDF of Poisson distribution with
|
// We are calculating upside-down CDF of Poisson distribution with
|
||||||
// rate λ=power*E/totalPower
|
// rate λ=power*E/totalPower
|
||||||
|
|
||||||
// Steps:
|
// Steps:
|
||||||
// 1. calculate λ=power*E/totalPower
|
// 1. calculate λ=power*E/totalPower
|
||||||
// 2. calculate elam = exp(-λ)
|
// 2. calculate elam = exp(-λ)
|
||||||
@ -123,21 +183,13 @@ func (ep *ElectionProof) ComputeWinCount(power BigInt, totalPower BigInt) uint64
|
|||||||
// for h(vrf) < rhs: j++; pmf = pmf * lam / j; rhs = rhs - pmf
|
// for h(vrf) < rhs: j++; pmf = pmf * lam / j; rhs = rhs - pmf
|
||||||
|
|
||||||
lam := lambda(power.Int, totalPower.Int) // Q.256
|
lam := lambda(power.Int, totalPower.Int) // Q.256
|
||||||
elam := expneg(lam) // Q.256
|
|
||||||
pmf := new(big.Int).Set(elam)
|
|
||||||
|
|
||||||
rhs := big.NewInt(1) // Q.0
|
p, rhs := newPoiss(lam)
|
||||||
rhs = rhs.Lsh(rhs, precision) // Q.256
|
|
||||||
rhs = rhs.Sub(rhs, elam) // Q.256
|
|
||||||
|
|
||||||
tmp := new(big.Int) // big.Int.Mul doesn't like when input is reused as output
|
|
||||||
var j uint64
|
var j uint64
|
||||||
for lhs.Cmp(rhs) < 0 && j < MaxWinCount {
|
for lhs.Cmp(rhs) < 0 && j < MaxWinCount {
|
||||||
|
rhs = p.next()
|
||||||
j++
|
j++
|
||||||
pmf = pmf.Div(pmf, new(big.Int).SetUint64(j) /* Q.0 */) // Q.256 / Q.0 => Q.256
|
|
||||||
tmp = tmp.Mul(pmf, lam) // Q.256 * Q.256 => Q.512
|
|
||||||
pmf = pmf.Rsh(tmp, precision) // Q.512 >> 256 => Q.256
|
|
||||||
rhs = rhs.Sub(rhs, pmf)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return j
|
return j
|
||||||
|
@ -67,6 +67,7 @@ func TestWinCounts(t *testing.T) {
|
|||||||
power := NewInt(30)
|
power := NewInt(30)
|
||||||
|
|
||||||
f, _ := os.Create("output.wins")
|
f, _ := os.Create("output.wins")
|
||||||
|
fmt.Fprintf(f, "wins\n")
|
||||||
ep := &ElectionProof{VRFProof: nil}
|
ep := &ElectionProof{VRFProof: nil}
|
||||||
for i := uint64(0); i < 1000000; i++ {
|
for i := uint64(0); i < 1000000; i++ {
|
||||||
i := i + 1000000
|
i := i + 1000000
|
||||||
|
Loading…
Reference in New Issue
Block a user