Refactor poisson to struct for easier testing

Signed-off-by: Jakub Sztandera <kubuxu@protocol.ai>
This commit is contained in:
Jakub Sztandera 2020-06-22 17:02:10 +02:00
parent 84c0b50aa1
commit 8fea872345
No known key found for this signature in database
GPG Key ID: 9A9AF56F8B3879BA
2 changed files with 64 additions and 11 deletions

View File

@ -105,6 +105,67 @@ func lambda(power, totalPower *big.Int) *big.Int {
var MaxWinCount = 3 * build.BlocksPerEpoch var MaxWinCount = 3 * build.BlocksPerEpoch
type poiss struct {
lam *big.Int
pmf *big.Int
tmp *big.Int
icdf *big.Int
k uint64
kBig *big.Int
}
// newPoiss starts poisson inverted CDF
// lambda is in Q.256 format
// returns (instance, `1-poisscdf(0, lambda)`)
// CDF value returend is reused when calling `next`
func newPoiss(lambda *big.Int) (*poiss, *big.Int) {
elam := expneg(lambda) // Q.256
pmf := new(big.Int).Set(elam) // Q.256
icdf := big.NewInt(1)
icdf = icdf.Lsh(icdf, precision) // Q.256
icdf = icdf.Sub(icdf, pmf) // Q.256
k := uint64(0)
kBig := new(big.Int).SetUint64(k) // Q.0
p := &poiss{
lam: lambda,
pmf: pmf,
tmp: elam,
icdf: icdf,
k: k,
kBig: kBig,
}
return p, icdf
}
// next computes next `k++, 1-poisscdf(k, lam)`
// return is in Q.256 format
func (p *poiss) next() *big.Int {
p.k++
p.kBig = p.kBig.SetUint64(p.k) // Q.0
// calculate pmf for k
p.pmf = p.pmf.Div(p.pmf, p.kBig) // Q.256 / Q.0 => Q.256
p.tmp = p.tmp.Mul(p.pmf, p.lam) // Q.256 * Q.256 => Q.512
p.pmf = p.pmf.Rsh(p.tmp, precision) // Q.512 >> 256 => Q.256
// calculate output
p.icdf = p.icdf.Sub(p.icdf, p.pmf) // Q.256
return p.icdf
}
// poissStep performs a step in evaluation of Poisson distribution
// k should be incremented after each evaluation step
// tmp is scratch space
// ouput is (pmf, icdf)
func (ep *ElectionProof) ComputeWinCount(power BigInt, totalPower BigInt) uint64 { func (ep *ElectionProof) ComputeWinCount(power BigInt, totalPower BigInt) uint64 {
h := blake2b.Sum256(ep.VRFProof) h := blake2b.Sum256(ep.VRFProof)
@ -112,7 +173,6 @@ func (ep *ElectionProof) ComputeWinCount(power BigInt, totalPower BigInt) uint64
// We are calculating upside-down CDF of Poisson distribution with // We are calculating upside-down CDF of Poisson distribution with
// rate λ=power*E/totalPower // rate λ=power*E/totalPower
// Steps: // Steps:
// 1. calculate λ=power*E/totalPower // 1. calculate λ=power*E/totalPower
// 2. calculate elam = exp(-λ) // 2. calculate elam = exp(-λ)
@ -123,21 +183,13 @@ func (ep *ElectionProof) ComputeWinCount(power BigInt, totalPower BigInt) uint64
// for h(vrf) < rhs: j++; pmf = pmf * lam / j; rhs = rhs - pmf // for h(vrf) < rhs: j++; pmf = pmf * lam / j; rhs = rhs - pmf
lam := lambda(power.Int, totalPower.Int) // Q.256 lam := lambda(power.Int, totalPower.Int) // Q.256
elam := expneg(lam) // Q.256
pmf := new(big.Int).Set(elam)
rhs := big.NewInt(1) // Q.0 p, rhs := newPoiss(lam)
rhs = rhs.Lsh(rhs, precision) // Q.256
rhs = rhs.Sub(rhs, elam) // Q.256
tmp := new(big.Int) // big.Int.Mul doesn't like when input is reused as output
var j uint64 var j uint64
for lhs.Cmp(rhs) < 0 && j < MaxWinCount { for lhs.Cmp(rhs) < 0 && j < MaxWinCount {
rhs = p.next()
j++ j++
pmf = pmf.Div(pmf, new(big.Int).SetUint64(j) /* Q.0 */) // Q.256 / Q.0 => Q.256
tmp = tmp.Mul(pmf, lam) // Q.256 * Q.256 => Q.512
pmf = pmf.Rsh(tmp, precision) // Q.512 >> 256 => Q.256
rhs = rhs.Sub(rhs, pmf)
} }
return j return j

View File

@ -67,6 +67,7 @@ func TestWinCounts(t *testing.T) {
power := NewInt(30) power := NewInt(30)
f, _ := os.Create("output.wins") f, _ := os.Create("output.wins")
fmt.Fprintf(f, "wins\n")
ep := &ElectionProof{VRFProof: nil} ep := &ElectionProof{VRFProof: nil}
for i := uint64(0); i < 1000000; i++ { for i := uint64(0); i < 1000000; i++ {
i := i + 1000000 i := i + 1000000