lotus/itests/deals_concurrent_test.go

219 lines
7.1 KiB
Go
Raw Normal View History

2021-12-10 10:33:29 +00:00
//stm: #integration
2021-06-23 17:13:29 +00:00
package itests
import (
2021-06-28 16:17:22 +00:00
"context"
2021-06-23 17:13:29 +00:00
"fmt"
2021-06-28 16:17:22 +00:00
"sync"
2021-06-23 17:13:29 +00:00
"testing"
"time"
2021-07-20 16:51:09 +00:00
"github.com/filecoin-project/lotus/chain/actors/policy"
2021-06-28 16:17:22 +00:00
"github.com/stretchr/testify/require"
datatransfer "github.com/filecoin-project/go-data-transfer"
2021-06-23 17:13:29 +00:00
"github.com/filecoin-project/go-state-types/abi"
2021-06-28 16:17:22 +00:00
2021-06-30 11:00:34 +00:00
"github.com/filecoin-project/lotus/api"
2021-06-23 17:13:29 +00:00
"github.com/filecoin-project/lotus/itests/kit"
2021-06-28 16:17:22 +00:00
"github.com/filecoin-project/lotus/node"
"github.com/filecoin-project/lotus/node/modules"
"github.com/filecoin-project/lotus/node/modules/dtypes"
"github.com/filecoin-project/lotus/node/repo"
2021-06-23 17:13:29 +00:00
)
2021-07-02 12:54:09 +00:00
// TestDealWithMarketAndMinerNode is running concurrently a number of storage and retrieval deals towards a miner
// architecture where the `mining/sealing/proving` node is a separate process from the `markets` node
2021-06-30 11:00:34 +00:00
func TestDealWithMarketAndMinerNode(t *testing.T) {
if testing.Short() {
t.Skip("skipping test in short mode")
}
2021-07-30 16:01:31 +00:00
t.Skip("skipping due to flakiness: see #6956")
2021-06-30 11:00:34 +00:00
kit.QuietMiningLogs()
oldDelay := policy.GetPreCommitChallengeDelay()
policy.SetPreCommitChallengeDelay(5)
t.Cleanup(func() {
policy.SetPreCommitChallengeDelay(oldDelay)
})
// For these tests where the block time is artificially short, just use
// a deal start epoch that is guaranteed to be far enough in the future
// so that the deal starts sealing in time
startEpoch := abi.ChainEpoch(8 << 10)
2021-06-30 11:00:34 +00:00
runTest := func(t *testing.T, n int, fastRetrieval bool, carExport bool) {
api.RunningNodeType = api.NodeMiner // TODO(anteva): fix me
client, main, market, _ := kit.EnsembleWithMinerAndMarketNodes(t, kit.ThroughRPC())
dh := kit.NewDealHarness(t, client, main, market)
dh.RunConcurrentDeals(kit.RunConcurrentDealsOpts{
N: n,
FastRetrieval: fastRetrieval,
CarExport: carExport,
StartEpoch: startEpoch,
2021-06-30 11:00:34 +00:00
})
}
2021-07-20 16:51:09 +00:00
// this test is expensive because we don't use mock proofs; do a single cycle.
2021-07-20 14:43:44 +00:00
cycles := []int{4}
2021-06-30 11:00:34 +00:00
for _, n := range cycles {
n := n
ns := fmt.Sprintf("%d", n)
t.Run(ns+"-fastretrieval-CAR", func(t *testing.T) { runTest(t, n, true, true) })
2021-07-02 12:54:09 +00:00
t.Run(ns+"-fastretrieval-NoCAR", func(t *testing.T) { runTest(t, n, true, false) })
2021-07-20 14:43:44 +00:00
t.Run(ns+"-stdretrieval-CAR", func(t *testing.T) { runTest(t, n, false, true) })
2021-07-02 12:54:09 +00:00
t.Run(ns+"-stdretrieval-NoCAR", func(t *testing.T) { runTest(t, n, false, false) })
2021-06-30 11:00:34 +00:00
}
}
2021-06-23 17:13:29 +00:00
func TestDealCyclesConcurrent(t *testing.T) {
2021-12-13 12:41:04 +00:00
//stm: @CHAIN_SYNCER_LOAD_GENESIS_001, @CHAIN_SYNCER_FETCH_TIPSET_001,
//stm: @CHAIN_SYNCER_START_001, @CHAIN_SYNCER_SYNC_001, @BLOCKCHAIN_BEACON_VALIDATE_BLOCK_VALUES_01
//stm: @CHAIN_SYNCER_COLLECT_CHAIN_001, @CHAIN_SYNCER_COLLECT_HEADERS_001, @CHAIN_SYNCER_VALIDATE_TIPSET_001
//stm: @CHAIN_SYNCER_NEW_PEER_HEAD_001, @CHAIN_SYNCER_VALIDATE_MESSAGE_META_001, @CHAIN_SYNCER_STOP_001
2021-12-14 10:33:33 +00:00
//stm: @CHAIN_INCOMING_HANDLE_INCOMING_BLOCKS_001, @CHAIN_INCOMING_VALIDATE_BLOCK_PUBSUB_001, @CHAIN_INCOMING_VALIDATE_MESSAGE_PUBSUB_001
2021-06-23 17:13:29 +00:00
if testing.Short() {
t.Skip("skipping test in short mode")
}
oldDelay := policy.GetPreCommitChallengeDelay()
policy.SetPreCommitChallengeDelay(5)
t.Cleanup(func() {
policy.SetPreCommitChallengeDelay(oldDelay)
})
2021-06-23 17:13:29 +00:00
kit.QuietMiningLogs()
// For these tests where the block time is artificially short, just use
// a deal start epoch that is guaranteed to be far enough in the future
// so that the deal starts sealing in time
startEpoch := abi.ChainEpoch(2 << 12)
runTest := func(t *testing.T, n int, fastRetrieval bool, carExport bool) {
client, miner, ens := kit.EnsembleMinimal(t, kit.MockProofs())
ens.InterconnectAll().BeginMining(250 * time.Millisecond)
2021-06-30 11:00:34 +00:00
dh := kit.NewDealHarness(t, client, miner, miner)
2021-06-23 17:13:29 +00:00
dh.RunConcurrentDeals(kit.RunConcurrentDealsOpts{
N: n,
FastRetrieval: fastRetrieval,
CarExport: carExport,
StartEpoch: startEpoch,
})
}
2021-07-20 16:51:09 +00:00
// this test is cheap because we use mock proofs, do various cycles
2021-07-20 14:43:44 +00:00
cycles := []int{2, 4, 8, 16}
2021-06-23 17:13:29 +00:00
for _, n := range cycles {
n := n
ns := fmt.Sprintf("%d", n)
t.Run(ns+"-fastretrieval-CAR", func(t *testing.T) { runTest(t, n, true, true) })
t.Run(ns+"-fastretrieval-NoCAR", func(t *testing.T) { runTest(t, n, true, false) })
integrate DAG store and CARv2 in deal-making (#6671) This commit removes badger from the deal-making processes, and moves to a new architecture with the dagstore as the cental component on the miner-side, and CARv2s on the client-side. Every deal that has been handed off to the sealing subsystem becomes a shard in the dagstore. Shards are mounted via the LotusMount, which teaches the dagstore how to load the related piece when serving retrievals. When the miner starts the Lotus for the first time with this patch, we will perform a one-time migration of all active deals into the dagstore. This is a lightweight process, and it consists simply of registering the shards in the dagstore. Shards are backed by the unsealed copy of the piece. This is currently a CARv1. However, the dagstore keeps CARv2 indices for all pieces, so when it's time to acquire a shard to serve a retrieval, the unsealed CARv1 is joined with its index (safeguarded by the dagstore), to form a read-only blockstore, thus taking the place of the monolithic badger. Data transfers have been adjusted to interface directly with CARv2 files. On inbound transfers (client retrievals, miner storage deals), we stream the received data into a CARv2 ReadWrite blockstore. On outbound transfers (client storage deals, miner retrievals), we serve the data off a CARv2 ReadOnly blockstore. Client-side imports are managed by the refactored *imports.Manager component (when not using IPFS integration). Just like it before, we use the go-filestore library to avoid duplicating the data from the original file in the resulting UnixFS DAG (concretely the leaves). However, the target of those imports are what we call "ref-CARv2s": CARv2 files placed under the `$LOTUS_PATH/imports` directory, containing the intermediate nodes in full, and the leaves as positional references to the original file on disk. Client-side retrievals are placed into CARv2 files in the location: `$LOTUS_PATH/retrievals`. A new set of `Dagstore*` JSON-RPC operations and `lotus-miner dagstore` subcommands have been introduced on the miner-side to inspect and manage the dagstore. Despite moving to a CARv2-backed system, the IPFS integration has been respected, and it continues to be possible to make storage deals with data held in an IPFS node, and to perform retrievals directly into an IPFS node. NOTE: because the "staging" and "client" Badger blockstores are no longer used, existing imports on the client will be rendered useless. On startup, Lotus will enumerate all imports and print WARN statements on the log for each import that needs to be reimported. These log lines contain these messages: - import lacks carv2 path; import will not work; please reimport - import has missing/broken carv2; please reimport At the end, we will print a "sanity check completed" message indicating the count of imports found, and how many were deemed broken. Co-authored-by: Aarsh Shah <aarshkshah1992@gmail.com> Co-authored-by: Dirk McCormick <dirkmdev@gmail.com> Co-authored-by: Raúl Kripalani <raul@protocol.ai> Co-authored-by: Dirk McCormick <dirkmdev@gmail.com>
2021-08-16 22:34:32 +00:00
t.Run(ns+"-stdretrieval-CAR", func(t *testing.T) { runTest(t, n, false, true) })
2021-06-23 17:13:29 +00:00
t.Run(ns+"-stdretrieval-NoCAR", func(t *testing.T) { runTest(t, n, false, false) })
}
}
2021-06-28 16:17:22 +00:00
func TestSimultanenousTransferLimit(t *testing.T) {
t.Skip("skipping as flaky #7152")
2021-06-28 16:17:22 +00:00
if testing.Short() {
t.Skip("skipping test in short mode")
}
kit.QuietMiningLogs()
oldDelay := policy.GetPreCommitChallengeDelay()
policy.SetPreCommitChallengeDelay(5)
t.Cleanup(func() {
policy.SetPreCommitChallengeDelay(oldDelay)
})
2021-06-28 16:17:22 +00:00
// For these tests where the block time is artificially short, just use
// a deal start epoch that is guaranteed to be far enough in the future
// so that the deal starts sealing in time
startEpoch := abi.ChainEpoch(2 << 12)
2021-07-20 14:43:44 +00:00
const (
graphsyncThrottle = 2
concurrency = 20
)
2021-06-28 16:17:22 +00:00
runTest := func(t *testing.T) {
client, miner, ens := kit.EnsembleMinimal(t, kit.MockProofs(), kit.ConstructorOpts(
node.ApplyIf(node.IsType(repo.StorageMiner), node.Override(new(dtypes.StagingGraphsync), modules.StagingGraphsync(graphsyncThrottle, graphsyncThrottle))),
node.Override(new(dtypes.Graphsync), modules.Graphsync(graphsyncThrottle, graphsyncThrottle)),
2021-06-28 16:17:22 +00:00
))
ens.InterconnectAll().BeginMining(250 * time.Millisecond)
dh := kit.NewDealHarness(t, client, miner, miner)
2021-06-28 16:17:22 +00:00
ctx, cancel := context.WithCancel(context.Background())
du, err := miner.MarketDataTransferUpdates(ctx)
require.NoError(t, err)
var maxOngoing int
var wg sync.WaitGroup
wg.Add(1)
go func() {
defer wg.Done()
ongoing := map[datatransfer.TransferID]struct{}{}
for {
select {
case u := <-du:
t.Logf("%d - %s", u.TransferID, datatransfer.Statuses[u.Status])
if u.Status == datatransfer.Ongoing && u.Transferred > 0 {
2021-06-28 16:17:22 +00:00
ongoing[u.TransferID] = struct{}{}
} else {
delete(ongoing, u.TransferID)
}
if len(ongoing) > maxOngoing {
maxOngoing = len(ongoing)
}
case <-ctx.Done():
return
}
}
}()
t.Logf("running concurrent deals: %d", concurrency)
2021-06-28 16:17:22 +00:00
dh.RunConcurrentDeals(kit.RunConcurrentDealsOpts{
2021-07-20 14:43:44 +00:00
N: concurrency,
2021-06-28 16:17:22 +00:00
FastRetrieval: true,
StartEpoch: startEpoch,
})
t.Logf("all deals finished")
2021-06-28 16:17:22 +00:00
cancel()
wg.Wait()
// The eventing systems across go-data-transfer and go-graphsync
// are racy, and that's why we can't enforce graphsyncThrottle exactly,
// without making this test racy.
//
// Essentially what could happen is that the graphsync layer starts the
// next transfer before the go-data-transfer FSM has the opportunity to
// move the previously completed transfer to the next stage, thus giving
// the appearance that more than graphsyncThrottle transfers are
// in progress.
//
// Concurrency (20) is x10 higher than graphsyncThrottle (2), so if all
// 20 transfers are not happening at once, we know the throttle is
// in effect. Thus we are a little bit lenient here to account for the
// above races and allow up to graphsyncThrottle*2.
require.LessOrEqual(t, maxOngoing, graphsyncThrottle*2)
2021-06-28 16:17:22 +00:00
}
runTest(t)
}