lighthouse/eth2/utils/ssz/src/cached_tree_hash/tests.rs
2019-03-29 14:37:27 +11:00

547 lines
13 KiB
Rust

use super::*;
use int_to_bytes::int_to_bytes32;
#[derive(Clone)]
pub struct Inner {
pub a: u64,
pub b: u64,
pub c: u64,
pub d: u64,
}
impl CachedTreeHash for Inner {
type Item = Self;
fn build_tree_hash_cache(&self) -> Result<TreeHashCache, Error> {
let tree = TreeHashCache::from_leaves_and_subtrees(
self,
vec![
self.a.build_tree_hash_cache()?,
self.b.build_tree_hash_cache()?,
self.c.build_tree_hash_cache()?,
self.d.build_tree_hash_cache()?,
],
)?;
Ok(tree)
}
fn num_bytes(&self) -> usize {
let mut bytes = 0;
bytes += self.a.num_bytes();
bytes += self.b.num_bytes();
bytes += self.c.num_bytes();
bytes += self.d.num_bytes();
bytes
}
fn offsets(&self) -> Result<Vec<usize>, Error> {
let mut offsets = vec![];
offsets.push(self.a.num_child_nodes() + 1);
offsets.push(self.b.num_child_nodes() + 1);
offsets.push(self.c.num_child_nodes() + 1);
offsets.push(self.d.num_child_nodes() + 1);
Ok(offsets)
}
fn num_child_nodes(&self) -> usize {
let mut children = 0;
let leaves = 4;
children += self.a.num_child_nodes();
children += self.b.num_child_nodes();
children += self.c.num_child_nodes();
children += self.d.num_child_nodes();
num_nodes(leaves) + children - 1
}
fn cached_hash_tree_root(
&self,
other: &Self,
cache: &mut TreeHashCache,
chunk: usize,
) -> Result<usize, Error> {
let offset_handler = OffsetHandler::new(self, chunk)?;
// Skip past the internal nodes and update any changed leaf nodes.
{
let chunk = offset_handler.first_leaf_node()?;
let chunk = self.a.cached_hash_tree_root(&other.a, cache, chunk)?;
let chunk = self.b.cached_hash_tree_root(&other.b, cache, chunk)?;
let chunk = self.c.cached_hash_tree_root(&other.c, cache, chunk)?;
let _chunk = self.d.cached_hash_tree_root(&other.d, cache, chunk)?;
}
for (&parent, children) in offset_handler.iter_internal_nodes().rev() {
if cache.either_modified(children)? {
cache.modify_chunk(parent, &cache.hash_children(children)?)?;
}
}
Ok(offset_handler.next_node())
}
}
#[derive(Clone)]
pub struct Outer {
pub a: u64,
pub b: Inner,
pub c: u64,
}
impl CachedTreeHash for Outer {
type Item = Self;
fn build_tree_hash_cache(&self) -> Result<TreeHashCache, Error> {
let tree = TreeHashCache::from_leaves_and_subtrees(
self,
vec![
self.a.build_tree_hash_cache()?,
self.b.build_tree_hash_cache()?,
self.c.build_tree_hash_cache()?,
],
)?;
Ok(tree)
}
fn num_bytes(&self) -> usize {
let mut bytes = 0;
bytes += self.a.num_bytes();
bytes += self.b.num_bytes();
bytes += self.c.num_bytes();
bytes
}
fn num_child_nodes(&self) -> usize {
let mut children = 0;
let leaves = 3;
children += self.a.num_child_nodes();
children += self.b.num_child_nodes();
children += self.c.num_child_nodes();
num_nodes(leaves) + children - 1
}
fn offsets(&self) -> Result<Vec<usize>, Error> {
let mut offsets = vec![];
offsets.push(self.a.num_child_nodes() + 1);
offsets.push(self.b.num_child_nodes() + 1);
offsets.push(self.c.num_child_nodes() + 1);
Ok(offsets)
}
fn cached_hash_tree_root(
&self,
other: &Self,
cache: &mut TreeHashCache,
chunk: usize,
) -> Result<usize, Error> {
let offset_handler = OffsetHandler::new(self, chunk)?;
// Skip past the internal nodes and update any changed leaf nodes.
{
let chunk = offset_handler.first_leaf_node()?;
let chunk = self.a.cached_hash_tree_root(&other.a, cache, chunk)?;
let chunk = self.b.cached_hash_tree_root(&other.b, cache, chunk)?;
let _chunk = self.c.cached_hash_tree_root(&other.c, cache, chunk)?;
}
for (&parent, children) in offset_handler.iter_internal_nodes().rev() {
if cache.either_modified(children)? {
cache.modify_chunk(parent, &cache.hash_children(children)?)?;
}
}
Ok(offset_handler.next_node())
}
}
fn join(many: Vec<Vec<u8>>) -> Vec<u8> {
let mut all = vec![];
for one in many {
all.extend_from_slice(&mut one.clone())
}
all
}
#[test]
fn partial_modification_to_inner_struct() {
let original_inner = Inner {
a: 1,
b: 2,
c: 3,
d: 4,
};
let original_outer = Outer {
a: 0,
b: original_inner.clone(),
c: 5,
};
let modified_inner = Inner {
a: 42,
..original_inner.clone()
};
// Modify outer
let modified_outer = Outer {
b: modified_inner.clone(),
..original_outer.clone()
};
// Perform a differential hash
let mut cache_struct = TreeHashCache::new(&original_outer).unwrap();
modified_outer
.cached_hash_tree_root(&original_outer, &mut cache_struct, 0)
.unwrap();
let modified_cache: Vec<u8> = cache_struct.into();
// Generate reference data.
let mut data = vec![];
data.append(&mut int_to_bytes32(0));
let inner_bytes: Vec<u8> = TreeHashCache::new(&modified_inner).unwrap().into();
data.append(&mut int_to_bytes32(5));
let leaves = vec![
int_to_bytes32(0),
inner_bytes[0..32].to_vec(),
int_to_bytes32(5),
vec![0; 32], // padding
];
let mut merkle = merkleize(join(leaves));
merkle.splice(4 * 32..5 * 32, inner_bytes);
assert_eq!(merkle.len() / HASHSIZE, 13);
assert_eq!(modified_cache.len() / HASHSIZE, 13);
assert_eq!(merkle, modified_cache);
}
#[test]
fn partial_modification_to_outer() {
let inner = Inner {
a: 1,
b: 2,
c: 3,
d: 4,
};
let original_outer = Outer {
a: 0,
b: inner.clone(),
c: 5,
};
// Build the initial cache.
// let original_cache = original_outer.build_cache_bytes();
// Modify outer
let modified_outer = Outer {
c: 42,
..original_outer.clone()
};
// Perform a differential hash
let mut cache_struct = TreeHashCache::new(&original_outer).unwrap();
modified_outer
.cached_hash_tree_root(&original_outer, &mut cache_struct, 0)
.unwrap();
let modified_cache: Vec<u8> = cache_struct.into();
// Generate reference data.
let mut data = vec![];
data.append(&mut int_to_bytes32(0));
let inner_bytes: Vec<u8> = TreeHashCache::new(&inner).unwrap().into();
data.append(&mut int_to_bytes32(5));
let leaves = vec![
int_to_bytes32(0),
inner_bytes[0..32].to_vec(),
int_to_bytes32(42),
vec![0; 32], // padding
];
let mut merkle = merkleize(join(leaves));
merkle.splice(4 * 32..5 * 32, inner_bytes);
assert_eq!(merkle.len() / HASHSIZE, 13);
assert_eq!(modified_cache.len() / HASHSIZE, 13);
assert_eq!(merkle, modified_cache);
}
#[test]
fn outer_builds() {
let inner = Inner {
a: 1,
b: 2,
c: 3,
d: 4,
};
let outer = Outer {
a: 0,
b: inner.clone(),
c: 5,
};
// Build the function output.
let cache: Vec<u8> = TreeHashCache::new(&outer).unwrap().into();
// Generate reference data.
let mut data = vec![];
data.append(&mut int_to_bytes32(0));
let inner_bytes: Vec<u8> = TreeHashCache::new(&inner).unwrap().into();
data.append(&mut int_to_bytes32(5));
let leaves = vec![
int_to_bytes32(0),
inner_bytes[0..32].to_vec(),
int_to_bytes32(5),
vec![0; 32], // padding
];
let mut merkle = merkleize(join(leaves));
merkle.splice(4 * 32..5 * 32, inner_bytes);
assert_eq!(merkle.len() / HASHSIZE, 13);
assert_eq!(cache.len() / HASHSIZE, 13);
assert_eq!(merkle, cache);
}
/*
#[test]
fn partial_modification_u64_vec() {
let n: u64 = 50;
let original_vec: Vec<u64> = (0..n).collect();
// Generate initial cache.
let original_cache = original_vec.build_cache_bytes();
// Modify the vec
let mut modified_vec = original_vec.clone();
modified_vec[n as usize - 1] = 42;
// Perform a differential hash
let mut cache_struct = TreeHashCache::from_bytes(original_cache.clone()).unwrap();
modified_vec.cached_hash_tree_root(&original_vec, &mut cache_struct, 0);
let modified_cache: Vec<u8> = cache_struct.into();
// Generate reference data.
let mut data = vec![];
for i in &modified_vec {
data.append(&mut int_to_bytes8(*i));
}
let data = sanitise_bytes(data);
let expected = merkleize(data);
assert_eq!(expected, modified_cache);
}
#[test]
fn large_vec_of_u64_builds() {
let n: u64 = 50;
let my_vec: Vec<u64> = (0..n).collect();
// Generate function output.
let cache = my_vec.build_cache_bytes();
// Generate reference data.
let mut data = vec![];
for i in &my_vec {
data.append(&mut int_to_bytes8(*i));
}
let data = sanitise_bytes(data);
let expected = merkleize(data);
assert_eq!(expected, cache);
}
#[test]
fn vec_of_u64_builds() {
let data = join(vec![
int_to_bytes8(1),
int_to_bytes8(2),
int_to_bytes8(3),
int_to_bytes8(4),
int_to_bytes8(5),
vec![0; 32 - 8], // padding
]);
let expected = merkleize(data);
let my_vec = vec![1, 2, 3, 4, 5];
let cache = my_vec.build_cache_bytes();
assert_eq!(expected, cache);
}
*/
#[test]
fn merkleize_odd() {
let data = join(vec![
int_to_bytes32(1),
int_to_bytes32(2),
int_to_bytes32(3),
int_to_bytes32(4),
int_to_bytes32(5),
]);
let merkle = merkleize(sanitise_bytes(data));
let expected_len = num_nodes(8) * BYTES_PER_CHUNK;
assert_eq!(merkle.len(), expected_len);
}
fn generic_test(index: usize) {
let inner = Inner {
a: 1,
b: 2,
c: 3,
d: 4,
};
let cache: Vec<u8> = TreeHashCache::new(&inner).unwrap().into();
let changed_inner = match index {
0 => Inner {
a: 42,
..inner.clone()
},
1 => Inner {
b: 42,
..inner.clone()
},
2 => Inner {
c: 42,
..inner.clone()
},
3 => Inner {
d: 42,
..inner.clone()
},
_ => panic!("bad index"),
};
let mut cache_struct = TreeHashCache::from_bytes(cache.clone()).unwrap();
changed_inner
.cached_hash_tree_root(&inner, &mut cache_struct, 0)
.unwrap();
// assert_eq!(*cache_struct.hash_count, 3);
let new_cache: Vec<u8> = cache_struct.into();
let data1 = int_to_bytes32(1);
let data2 = int_to_bytes32(2);
let data3 = int_to_bytes32(3);
let data4 = int_to_bytes32(4);
let mut data = vec![data1, data2, data3, data4];
data[index] = int_to_bytes32(42);
let expected = merkleize(join(data));
assert_eq!(expected, new_cache);
}
#[test]
fn cached_hash_on_inner() {
generic_test(0);
generic_test(1);
generic_test(2);
generic_test(3);
}
#[test]
fn inner_builds() {
let data1 = int_to_bytes32(1);
let data2 = int_to_bytes32(2);
let data3 = int_to_bytes32(3);
let data4 = int_to_bytes32(4);
let data = join(vec![data1, data2, data3, data4]);
let expected = merkleize(data);
let inner = Inner {
a: 1,
b: 2,
c: 3,
d: 4,
};
let cache: Vec<u8> = TreeHashCache::new(&inner).unwrap().into();
assert_eq!(expected, cache);
}
#[test]
fn merkleize_4_leaves() {
let data1 = hash(&int_to_bytes32(1));
let data2 = hash(&int_to_bytes32(2));
let data3 = hash(&int_to_bytes32(3));
let data4 = hash(&int_to_bytes32(4));
let data = join(vec![
data1.clone(),
data2.clone(),
data3.clone(),
data4.clone(),
]);
let cache = merkleize(data);
let hash_12 = {
let mut joined = vec![];
joined.append(&mut data1.clone());
joined.append(&mut data2.clone());
hash(&joined)
};
let hash_34 = {
let mut joined = vec![];
joined.append(&mut data3.clone());
joined.append(&mut data4.clone());
hash(&joined)
};
let hash_hash12_hash_34 = {
let mut joined = vec![];
joined.append(&mut hash_12.clone());
joined.append(&mut hash_34.clone());
hash(&joined)
};
for (i, chunk) in cache.chunks(HASHSIZE).enumerate().rev() {
let expected = match i {
0 => hash_hash12_hash_34.clone(),
1 => hash_12.clone(),
2 => hash_34.clone(),
3 => data1.clone(),
4 => data2.clone(),
5 => data3.clone(),
6 => data4.clone(),
_ => vec![],
};
assert_eq!(chunk, &expected[..], "failed at {}", i);
}
}