lighthouse/beacon_node/beacon_chain/src/beacon_chain.rs
realbigsean 20ebf1f3c1 Realized unrealized experimentation (#3322)
## Issue Addressed

Add a flag that optionally enables unrealized vote tracking.  Would like to test out on testnets and benchmark differences in methods of vote tracking. This PR includes a DB schema upgrade to enable to new vote tracking style.


Co-authored-by: realbigsean <sean@sigmaprime.io>
Co-authored-by: Paul Hauner <paul@paulhauner.com>
Co-authored-by: sean <seananderson33@gmail.com>
Co-authored-by: Mac L <mjladson@pm.me>
2022-07-25 23:53:26 +00:00

4688 lines
191 KiB
Rust

use crate::attestation_verification::{
batch_verify_aggregated_attestations, batch_verify_unaggregated_attestations,
Error as AttestationError, VerifiedAggregatedAttestation, VerifiedAttestation,
VerifiedUnaggregatedAttestation,
};
use crate::attester_cache::{AttesterCache, AttesterCacheKey};
use crate::beacon_proposer_cache::compute_proposer_duties_from_head;
use crate::beacon_proposer_cache::BeaconProposerCache;
use crate::block_times_cache::BlockTimesCache;
use crate::block_verification::{
check_block_is_finalized_descendant, check_block_relevancy, get_block_root,
signature_verify_chain_segment, BlockError, ExecutionPendingBlock, GossipVerifiedBlock,
IntoExecutionPendingBlock, PayloadVerificationOutcome, POS_PANDA_BANNER,
};
use crate::chain_config::ChainConfig;
use crate::early_attester_cache::EarlyAttesterCache;
use crate::errors::{BeaconChainError as Error, BlockProductionError};
use crate::eth1_chain::{Eth1Chain, Eth1ChainBackend};
use crate::events::ServerSentEventHandler;
use crate::execution_payload::{get_execution_payload, PreparePayloadHandle};
use crate::fork_choice_signal::{ForkChoiceSignalRx, ForkChoiceSignalTx, ForkChoiceWaitResult};
use crate::head_tracker::HeadTracker;
use crate::historical_blocks::HistoricalBlockError;
use crate::migrate::BackgroundMigrator;
use crate::naive_aggregation_pool::{
AggregatedAttestationMap, Error as NaiveAggregationError, NaiveAggregationPool,
SyncContributionAggregateMap,
};
use crate::observed_aggregates::{
Error as AttestationObservationError, ObservedAggregateAttestations, ObservedSyncContributions,
};
use crate::observed_attesters::{
ObservedAggregators, ObservedAttesters, ObservedSyncAggregators, ObservedSyncContributors,
};
use crate::observed_block_producers::ObservedBlockProducers;
use crate::observed_operations::{ObservationOutcome, ObservedOperations};
use crate::persisted_beacon_chain::{PersistedBeaconChain, DUMMY_CANONICAL_HEAD_BLOCK_ROOT};
use crate::persisted_fork_choice::PersistedForkChoice;
use crate::pre_finalization_cache::PreFinalizationBlockCache;
use crate::proposer_prep_service::PAYLOAD_PREPARATION_LOOKAHEAD_FACTOR;
use crate::shuffling_cache::{BlockShufflingIds, ShufflingCache};
use crate::snapshot_cache::SnapshotCache;
use crate::sync_committee_verification::{
Error as SyncCommitteeError, VerifiedSyncCommitteeMessage, VerifiedSyncContribution,
};
use crate::timeout_rw_lock::TimeoutRwLock;
use crate::validator_monitor::{
get_slot_delay_ms, timestamp_now, ValidatorMonitor,
HISTORIC_EPOCHS as VALIDATOR_MONITOR_HISTORIC_EPOCHS,
};
use crate::validator_pubkey_cache::ValidatorPubkeyCache;
use crate::BeaconForkChoiceStore;
use crate::BeaconSnapshot;
use crate::{metrics, BeaconChainError};
use eth2::types::{EventKind, SseBlock, SyncDuty};
use execution_layer::{ExecutionLayer, PayloadAttributes, PayloadStatus};
use fork_choice::{
AttestationFromBlock, ExecutionStatus, ForkChoice, ForkchoiceUpdateParameters,
InvalidationOperation, PayloadVerificationStatus,
};
use futures::channel::mpsc::Sender;
use itertools::process_results;
use itertools::Itertools;
use operation_pool::{OperationPool, PersistedOperationPool};
use parking_lot::{Mutex, RwLock};
use safe_arith::SafeArith;
use slasher::Slasher;
use slog::{crit, debug, error, info, trace, warn, Logger};
use slot_clock::SlotClock;
use ssz::Encode;
use state_processing::{
common::get_indexed_attestation,
per_block_processing,
per_block_processing::errors::AttestationValidationError,
per_slot_processing,
state_advance::{complete_state_advance, partial_state_advance},
BlockSignatureStrategy, SigVerifiedOp, VerifyBlockRoot,
};
use std::cmp::Ordering;
use std::collections::HashMap;
use std::collections::HashSet;
use std::io::prelude::*;
use std::marker::PhantomData;
use std::sync::Arc;
use std::time::{Duration, Instant};
use store::iter::{BlockRootsIterator, ParentRootBlockIterator, StateRootsIterator};
use store::{
DatabaseBlock, Error as DBError, HotColdDB, KeyValueStore, KeyValueStoreOp, StoreItem, StoreOp,
};
use task_executor::{ShutdownReason, TaskExecutor};
use tree_hash::TreeHash;
use types::beacon_state::CloneConfig;
use types::*;
pub use crate::canonical_head::{CanonicalHead, CanonicalHeadRwLock};
pub use fork_choice::CountUnrealized;
pub type ForkChoiceError = fork_choice::Error<crate::ForkChoiceStoreError>;
/// Alias to appease clippy.
type HashBlockTuple<E> = (Hash256, Arc<SignedBeaconBlock<E>>);
/// The time-out before failure during an operation to take a read/write RwLock on the block
/// processing cache.
pub const BLOCK_PROCESSING_CACHE_LOCK_TIMEOUT: Duration = Duration::from_secs(1);
/// The time-out before failure during an operation to take a read/write RwLock on the
/// attestation cache.
pub const ATTESTATION_CACHE_LOCK_TIMEOUT: Duration = Duration::from_secs(1);
/// The time-out before failure during an operation to take a read/write RwLock on the
/// validator pubkey cache.
pub const VALIDATOR_PUBKEY_CACHE_LOCK_TIMEOUT: Duration = Duration::from_secs(1);
// These keys are all zero because they get stored in different columns, see `DBColumn` type.
pub const BEACON_CHAIN_DB_KEY: Hash256 = Hash256::zero();
pub const OP_POOL_DB_KEY: Hash256 = Hash256::zero();
pub const ETH1_CACHE_DB_KEY: Hash256 = Hash256::zero();
pub const FORK_CHOICE_DB_KEY: Hash256 = Hash256::zero();
/// Defines how old a block can be before it's no longer a candidate for the early attester cache.
const EARLY_ATTESTER_CACHE_HISTORIC_SLOTS: u64 = 4;
/// Defines a distance between the head block slot and the current slot.
///
/// If the head block is older than this value, don't bother preparing beacon proposers.
const PREPARE_PROPOSER_HISTORIC_EPOCHS: u64 = 4;
/// If the head is more than `MAX_PER_SLOT_FORK_CHOICE_DISTANCE` slots behind the wall-clock slot, DO NOT
/// run the per-slot tasks (primarily fork choice).
///
/// This prevents unnecessary work during sync.
const MAX_PER_SLOT_FORK_CHOICE_DISTANCE: u64 = 4;
/// Reported to the user when the justified block has an invalid execution payload.
pub const INVALID_JUSTIFIED_PAYLOAD_SHUTDOWN_REASON: &str =
"Justified block has an invalid execution payload.";
/// Defines the behaviour when a block/block-root for a skipped slot is requested.
pub enum WhenSlotSkipped {
/// If the slot is a skip slot, return `None`.
///
/// This is how the HTTP API behaves.
None,
/// If the slot it a skip slot, return the previous non-skipped block.
///
/// This is generally how the specification behaves.
Prev,
}
/// The result of a chain segment processing.
pub enum ChainSegmentResult<T: EthSpec> {
/// Processing this chain segment finished successfully.
Successful { imported_blocks: usize },
/// There was an error processing this chain segment. Before the error, some blocks could
/// have been imported.
Failed {
imported_blocks: usize,
error: BlockError<T>,
},
}
/// Configure the signature verification of produced blocks.
pub enum ProduceBlockVerification {
VerifyRandao,
NoVerification,
}
/// The accepted clock drift for nodes gossiping blocks and attestations. See:
///
/// https://github.com/ethereum/eth2.0-specs/blob/v0.12.1/specs/phase0/p2p-interface.md#configuration
pub const MAXIMUM_GOSSIP_CLOCK_DISPARITY: Duration = Duration::from_millis(500);
#[derive(Debug, PartialEq)]
pub enum AttestationProcessingOutcome {
Processed,
EmptyAggregationBitfield,
UnknownHeadBlock {
beacon_block_root: Hash256,
},
/// The attestation is attesting to a state that is later than itself. (Viz., attesting to the
/// future).
AttestsToFutureBlock {
block: Slot,
attestation: Slot,
},
/// The slot is finalized, no need to import.
FinalizedSlot {
attestation: Slot,
finalized: Slot,
},
FutureEpoch {
attestation_epoch: Epoch,
current_epoch: Epoch,
},
PastEpoch {
attestation_epoch: Epoch,
current_epoch: Epoch,
},
BadTargetEpoch,
UnknownTargetRoot(Hash256),
InvalidSignature,
NoCommitteeForSlotAndIndex {
slot: Slot,
index: CommitteeIndex,
},
Invalid(AttestationValidationError),
}
/// Defines how a `BeaconState` should be "skipped" through skip-slots.
pub enum StateSkipConfig {
/// Calculate the state root during each skip slot, producing a fully-valid `BeaconState`.
WithStateRoots,
/// Don't calculate the state root at each slot, instead just use the zero hash. This is orders
/// of magnitude faster, however it produces a partially invalid state.
///
/// This state is useful for operations that don't use the state roots; e.g., for calculating
/// the shuffling.
WithoutStateRoots,
}
pub trait BeaconChainTypes: Send + Sync + 'static {
type HotStore: store::ItemStore<Self::EthSpec>;
type ColdStore: store::ItemStore<Self::EthSpec>;
type SlotClock: slot_clock::SlotClock;
type Eth1Chain: Eth1ChainBackend<Self::EthSpec>;
type EthSpec: types::EthSpec;
}
/// Used internally to split block production into discrete functions.
struct PartialBeaconBlock<E: EthSpec, Payload> {
state: BeaconState<E>,
slot: Slot,
proposer_index: u64,
parent_root: Hash256,
randao_reveal: Signature,
eth1_data: Eth1Data,
graffiti: Graffiti,
proposer_slashings: Vec<ProposerSlashing>,
attester_slashings: Vec<AttesterSlashing<E>>,
attestations: Vec<Attestation<E>>,
deposits: Vec<Deposit>,
voluntary_exits: Vec<SignedVoluntaryExit>,
sync_aggregate: Option<SyncAggregate<E>>,
prepare_payload_handle: Option<PreparePayloadHandle<Payload>>,
}
pub type BeaconForkChoice<T> = ForkChoice<
BeaconForkChoiceStore<
<T as BeaconChainTypes>::EthSpec,
<T as BeaconChainTypes>::HotStore,
<T as BeaconChainTypes>::ColdStore,
>,
<T as BeaconChainTypes>::EthSpec,
>;
pub type BeaconStore<T> = Arc<
HotColdDB<
<T as BeaconChainTypes>::EthSpec,
<T as BeaconChainTypes>::HotStore,
<T as BeaconChainTypes>::ColdStore,
>,
>;
/// Represents the "Beacon Chain" component of Ethereum 2.0. Allows import of blocks and block
/// operations and chooses a canonical head.
pub struct BeaconChain<T: BeaconChainTypes> {
pub spec: ChainSpec,
/// Configuration for `BeaconChain` runtime behaviour.
pub config: ChainConfig,
/// Persistent storage for blocks, states, etc. Typically an on-disk store, such as LevelDB.
pub store: BeaconStore<T>,
/// Used for spawning async and blocking tasks.
pub task_executor: TaskExecutor,
/// Database migrator for running background maintenance on the store.
pub store_migrator: BackgroundMigrator<T::EthSpec, T::HotStore, T::ColdStore>,
/// Reports the current slot, typically based upon the system clock.
pub slot_clock: T::SlotClock,
/// Stores all operations (e.g., `Attestation`, `Deposit`, etc) that are candidates for
/// inclusion in a block.
pub op_pool: OperationPool<T::EthSpec>,
/// A pool of attestations dedicated to the "naive aggregation strategy" defined in the eth2
/// specs.
///
/// This pool accepts `Attestation` objects that only have one aggregation bit set and provides
/// a method to get an aggregated `Attestation` for some `AttestationData`.
pub naive_aggregation_pool: RwLock<NaiveAggregationPool<AggregatedAttestationMap<T::EthSpec>>>,
/// A pool of `SyncCommitteeContribution` dedicated to the "naive aggregation strategy" defined in the eth2
/// specs.
///
/// This pool accepts `SyncCommitteeContribution` objects that only have one aggregation bit set and provides
/// a method to get an aggregated `SyncCommitteeContribution` for some `SyncCommitteeContributionData`.
pub naive_sync_aggregation_pool:
RwLock<NaiveAggregationPool<SyncContributionAggregateMap<T::EthSpec>>>,
/// Contains a store of attestations which have been observed by the beacon chain.
pub(crate) observed_attestations: RwLock<ObservedAggregateAttestations<T::EthSpec>>,
/// Contains a store of sync contributions which have been observed by the beacon chain.
pub(crate) observed_sync_contributions: RwLock<ObservedSyncContributions<T::EthSpec>>,
/// Maintains a record of which validators have been seen to publish gossip attestations in
/// recent epochs.
pub observed_gossip_attesters: RwLock<ObservedAttesters<T::EthSpec>>,
/// Maintains a record of which validators have been seen to have attestations included in
/// blocks in recent epochs.
pub observed_block_attesters: RwLock<ObservedAttesters<T::EthSpec>>,
/// Maintains a record of which validators have been seen sending sync messages in recent epochs.
pub(crate) observed_sync_contributors: RwLock<ObservedSyncContributors<T::EthSpec>>,
/// Maintains a record of which validators have been seen to create `SignedAggregateAndProofs`
/// in recent epochs.
pub observed_aggregators: RwLock<ObservedAggregators<T::EthSpec>>,
/// Maintains a record of which validators have been seen to create `SignedContributionAndProofs`
/// in recent epochs.
pub(crate) observed_sync_aggregators: RwLock<ObservedSyncAggregators<T::EthSpec>>,
/// Maintains a record of which validators have proposed blocks for each slot.
pub(crate) observed_block_producers: RwLock<ObservedBlockProducers<T::EthSpec>>,
/// Maintains a record of which validators have submitted voluntary exits.
pub(crate) observed_voluntary_exits: Mutex<ObservedOperations<SignedVoluntaryExit, T::EthSpec>>,
/// Maintains a record of which validators we've seen proposer slashings for.
pub(crate) observed_proposer_slashings: Mutex<ObservedOperations<ProposerSlashing, T::EthSpec>>,
/// Maintains a record of which validators we've seen attester slashings for.
pub(crate) observed_attester_slashings:
Mutex<ObservedOperations<AttesterSlashing<T::EthSpec>, T::EthSpec>>,
/// Provides information from the Ethereum 1 (PoW) chain.
pub eth1_chain: Option<Eth1Chain<T::Eth1Chain, T::EthSpec>>,
/// Interfaces with the execution client.
pub execution_layer: Option<ExecutionLayer<T::EthSpec>>,
/// Stores information about the canonical head and finalized/justified checkpoints of the
/// chain. Also contains the fork choice struct, for computing the canonical head.
pub canonical_head: CanonicalHead<T>,
/// The root of the genesis block.
pub genesis_block_root: Hash256,
/// The root of the genesis state.
pub genesis_state_root: Hash256,
/// The root of the list of genesis validators, used during syncing.
pub genesis_validators_root: Hash256,
/// Transmitter used to indicate that slot-start fork choice has completed running.
pub fork_choice_signal_tx: Option<ForkChoiceSignalTx>,
/// Receiver used by block production to wait on slot-start fork choice.
pub fork_choice_signal_rx: Option<ForkChoiceSignalRx>,
/// The genesis time of this `BeaconChain` (seconds since UNIX epoch).
pub genesis_time: u64,
/// A handler for events generated by the beacon chain. This is only initialized when the
/// HTTP server is enabled.
pub event_handler: Option<ServerSentEventHandler<T::EthSpec>>,
/// Used to track the heads of the beacon chain.
pub(crate) head_tracker: Arc<HeadTracker>,
/// A cache dedicated to block processing.
pub(crate) snapshot_cache: TimeoutRwLock<SnapshotCache<T::EthSpec>>,
/// Caches the attester shuffling for a given epoch and shuffling key root.
pub shuffling_cache: TimeoutRwLock<ShufflingCache>,
/// Caches the beacon block proposer shuffling for a given epoch and shuffling key root.
pub beacon_proposer_cache: Mutex<BeaconProposerCache>,
/// Caches a map of `validator_index -> validator_pubkey`.
pub(crate) validator_pubkey_cache: TimeoutRwLock<ValidatorPubkeyCache<T>>,
/// A cache used when producing attestations.
pub(crate) attester_cache: Arc<AttesterCache>,
/// A cache used when producing attestations whilst the head block is still being imported.
pub early_attester_cache: EarlyAttesterCache<T::EthSpec>,
/// A cache used to keep track of various block timings.
pub block_times_cache: Arc<RwLock<BlockTimesCache>>,
/// A cache used to track pre-finalization block roots for quick rejection.
pub pre_finalization_block_cache: PreFinalizationBlockCache,
/// Sender given to tasks, so that if they encounter a state in which execution cannot
/// continue they can request that everything shuts down.
pub shutdown_sender: Sender<ShutdownReason>,
/// Logging to CLI, etc.
pub(crate) log: Logger,
/// Arbitrary bytes included in the blocks.
pub(crate) graffiti: Graffiti,
/// Optional slasher.
pub slasher: Option<Arc<Slasher<T::EthSpec>>>,
/// Provides monitoring of a set of explicitly defined validators.
pub validator_monitor: RwLock<ValidatorMonitor<T::EthSpec>>,
}
type BeaconBlockAndState<T, Payload> = (BeaconBlock<T, Payload>, BeaconState<T>);
impl<T: BeaconChainTypes> BeaconChain<T> {
/// Persists the head tracker and fork choice.
///
/// We do it atomically even though no guarantees need to be made about blocks from
/// the head tracker also being present in fork choice.
pub fn persist_head_and_fork_choice(&self) -> Result<(), Error> {
let mut batch = vec![];
let _head_timer = metrics::start_timer(&metrics::PERSIST_HEAD);
batch.push(self.persist_head_in_batch());
let _fork_choice_timer = metrics::start_timer(&metrics::PERSIST_FORK_CHOICE);
batch.push(self.persist_fork_choice_in_batch());
self.store.hot_db.do_atomically(batch)?;
Ok(())
}
/// Return a `PersistedBeaconChain` without reference to a `BeaconChain`.
pub fn make_persisted_head(
genesis_block_root: Hash256,
head_tracker: &HeadTracker,
) -> PersistedBeaconChain {
PersistedBeaconChain {
_canonical_head_block_root: DUMMY_CANONICAL_HEAD_BLOCK_ROOT,
genesis_block_root,
ssz_head_tracker: head_tracker.to_ssz_container(),
}
}
/// Return a database operation for writing the beacon chain head to disk.
pub fn persist_head_in_batch(&self) -> KeyValueStoreOp {
Self::persist_head_in_batch_standalone(self.genesis_block_root, &self.head_tracker)
}
pub fn persist_head_in_batch_standalone(
genesis_block_root: Hash256,
head_tracker: &HeadTracker,
) -> KeyValueStoreOp {
Self::make_persisted_head(genesis_block_root, head_tracker)
.as_kv_store_op(BEACON_CHAIN_DB_KEY)
}
/// Load fork choice from disk, returning `None` if it isn't found.
pub fn load_fork_choice(
store: BeaconStore<T>,
spec: &ChainSpec,
) -> Result<Option<BeaconForkChoice<T>>, Error> {
let persisted_fork_choice =
match store.get_item::<PersistedForkChoice>(&FORK_CHOICE_DB_KEY)? {
Some(fc) => fc,
None => return Ok(None),
};
let fc_store =
BeaconForkChoiceStore::from_persisted(persisted_fork_choice.fork_choice_store, store)?;
Ok(Some(ForkChoice::from_persisted(
persisted_fork_choice.fork_choice,
fc_store,
spec,
)?))
}
/// Persists `self.op_pool` to disk.
///
/// ## Notes
///
/// This operation is typically slow and causes a lot of allocations. It should be used
/// sparingly.
pub fn persist_op_pool(&self) -> Result<(), Error> {
let _timer = metrics::start_timer(&metrics::PERSIST_OP_POOL);
self.store.put_item(
&OP_POOL_DB_KEY,
&PersistedOperationPool::from_operation_pool(&self.op_pool),
)?;
Ok(())
}
/// Persists `self.eth1_chain` and its caches to disk.
pub fn persist_eth1_cache(&self) -> Result<(), Error> {
let _timer = metrics::start_timer(&metrics::PERSIST_OP_POOL);
if let Some(eth1_chain) = self.eth1_chain.as_ref() {
self.store
.put_item(&ETH1_CACHE_DB_KEY, &eth1_chain.as_ssz_container())?;
}
Ok(())
}
/// Returns the slot _right now_ according to `self.slot_clock`. Returns `Err` if the slot is
/// unavailable.
///
/// The slot might be unavailable due to an error with the system clock, or if the present time
/// is before genesis (i.e., a negative slot).
pub fn slot(&self) -> Result<Slot, Error> {
self.slot_clock.now().ok_or(Error::UnableToReadSlot)
}
/// Returns the epoch _right now_ according to `self.slot_clock`. Returns `Err` if the epoch is
/// unavailable.
///
/// The epoch might be unavailable due to an error with the system clock, or if the present time
/// is before genesis (i.e., a negative epoch).
pub fn epoch(&self) -> Result<Epoch, Error> {
self.slot()
.map(|slot| slot.epoch(T::EthSpec::slots_per_epoch()))
}
/// Iterates across all `(block_root, slot)` pairs from `start_slot`
/// to the head of the chain (inclusive).
///
/// ## Notes
///
/// - `slot` always increases by `1`.
/// - Skipped slots contain the root of the closest prior
/// non-skipped slot (identical to the way they are stored in `state.block_roots`).
/// - Iterator returns `(Hash256, Slot)`.
///
/// Will return a `BlockOutOfRange` error if the requested start slot is before the period of
/// history for which we have blocks stored. See `get_oldest_block_slot`.
pub fn forwards_iter_block_roots(
&self,
start_slot: Slot,
) -> Result<impl Iterator<Item = Result<(Hash256, Slot), Error>> + '_, Error> {
let oldest_block_slot = self.store.get_oldest_block_slot();
if start_slot < oldest_block_slot {
return Err(Error::HistoricalBlockError(
HistoricalBlockError::BlockOutOfRange {
slot: start_slot,
oldest_block_slot,
},
));
}
let local_head = self.head_snapshot();
let iter = self.store.forwards_block_roots_iterator(
start_slot,
local_head.beacon_state.clone_with(CloneConfig::none()),
local_head.beacon_block_root,
&self.spec,
)?;
Ok(iter.map(|result| result.map_err(Into::into)))
}
/// Even more efficient variant of `forwards_iter_block_roots` that will avoid cloning the head
/// state if it isn't required for the requested range of blocks.
pub fn forwards_iter_block_roots_until(
&self,
start_slot: Slot,
end_slot: Slot,
) -> Result<impl Iterator<Item = Result<(Hash256, Slot), Error>> + '_, Error> {
let oldest_block_slot = self.store.get_oldest_block_slot();
if start_slot < oldest_block_slot {
return Err(Error::HistoricalBlockError(
HistoricalBlockError::BlockOutOfRange {
slot: start_slot,
oldest_block_slot,
},
));
}
self.with_head(move |head| {
let iter = self.store.forwards_block_roots_iterator_until(
start_slot,
end_slot,
|| {
(
head.beacon_state.clone_with_only_committee_caches(),
head.beacon_block_root,
)
},
&self.spec,
)?;
Ok(iter
.map(|result| result.map_err(Into::into))
.take_while(move |result| {
result.as_ref().map_or(true, |(_, slot)| *slot <= end_slot)
}))
})
}
/// Traverse backwards from `block_root` to find the block roots of its ancestors.
///
/// ## Notes
///
/// - `slot` always decreases by `1`.
/// - Skipped slots contain the root of the closest prior
/// non-skipped slot (identical to the way they are stored in `state.block_roots`) .
/// - Iterator returns `(Hash256, Slot)`.
/// - The provided `block_root` is included as the first item in the iterator.
pub fn rev_iter_block_roots_from(
&self,
block_root: Hash256,
) -> Result<impl Iterator<Item = Result<(Hash256, Slot), Error>> + '_, Error> {
let block = self
.get_blinded_block(&block_root)?
.ok_or(Error::MissingBeaconBlock(block_root))?;
let state = self
.get_state(&block.state_root(), Some(block.slot()))?
.ok_or_else(|| Error::MissingBeaconState(block.state_root()))?;
let iter = BlockRootsIterator::owned(&self.store, state);
Ok(std::iter::once(Ok((block_root, block.slot())))
.chain(iter)
.map(|result| result.map_err(|e| e.into())))
}
/// Iterates backwards across all `(state_root, slot)` pairs starting from
/// an arbitrary `BeaconState` to the earliest reachable ancestor (may or may not be genesis).
///
/// ## Notes
///
/// - `slot` always decreases by `1`.
/// - Iterator returns `(Hash256, Slot)`.
/// - As this iterator starts at the `head` of the chain (viz., the best block), the first slot
/// returned may be earlier than the wall-clock slot.
pub fn rev_iter_state_roots_from<'a>(
&'a self,
state_root: Hash256,
state: &'a BeaconState<T::EthSpec>,
) -> impl Iterator<Item = Result<(Hash256, Slot), Error>> + 'a {
std::iter::once(Ok((state_root, state.slot())))
.chain(StateRootsIterator::new(&self.store, state))
.map(|result| result.map_err(Into::into))
}
/// Iterates across all `(state_root, slot)` pairs from `start_slot`
/// to the head of the chain (inclusive).
///
/// ## Notes
///
/// - `slot` always increases by `1`.
/// - Iterator returns `(Hash256, Slot)`.
pub fn forwards_iter_state_roots(
&self,
start_slot: Slot,
) -> Result<impl Iterator<Item = Result<(Hash256, Slot), Error>> + '_, Error> {
let local_head = self.head_snapshot();
let iter = self.store.forwards_state_roots_iterator(
start_slot,
local_head.beacon_state_root(),
local_head.beacon_state.clone_with(CloneConfig::none()),
&self.spec,
)?;
Ok(iter.map(|result| result.map_err(Into::into)))
}
/// Super-efficient forwards state roots iterator that avoids cloning the head if the state
/// roots lie entirely within the freezer database.
///
/// The iterator returned will include roots for `start_slot..=end_slot`, i.e. it
/// is endpoint inclusive.
pub fn forwards_iter_state_roots_until(
&self,
start_slot: Slot,
end_slot: Slot,
) -> Result<impl Iterator<Item = Result<(Hash256, Slot), Error>> + '_, Error> {
self.with_head(move |head| {
let iter = self.store.forwards_state_roots_iterator_until(
start_slot,
end_slot,
|| {
(
head.beacon_state.clone_with_only_committee_caches(),
head.beacon_state_root(),
)
},
&self.spec,
)?;
Ok(iter
.map(|result| result.map_err(Into::into))
.take_while(move |result| {
result.as_ref().map_or(true, |(_, slot)| *slot <= end_slot)
}))
})
}
/// Returns the block at the given slot, if any. Only returns blocks in the canonical chain.
///
/// Use the `skips` parameter to define the behaviour when `request_slot` is a skipped slot.
///
/// ## Errors
///
/// May return a database error.
pub fn block_at_slot(
&self,
request_slot: Slot,
skips: WhenSlotSkipped,
) -> Result<Option<SignedBlindedBeaconBlock<T::EthSpec>>, Error> {
let root = self.block_root_at_slot(request_slot, skips)?;
if let Some(block_root) = root {
Ok(self.store.get_blinded_block(&block_root)?)
} else {
Ok(None)
}
}
/// Returns the state root at the given slot, if any. Only returns state roots in the canonical chain.
///
/// ## Errors
///
/// May return a database error.
pub fn state_root_at_slot(&self, request_slot: Slot) -> Result<Option<Hash256>, Error> {
if request_slot > self.slot()? {
return Ok(None);
} else if request_slot == self.spec.genesis_slot {
return Ok(Some(self.genesis_state_root));
}
// Check limits w.r.t historic state bounds.
let (historic_lower_limit, historic_upper_limit) = self.store.get_historic_state_limits();
if request_slot > historic_lower_limit && request_slot < historic_upper_limit {
return Ok(None);
}
// Try an optimized path of reading the root directly from the head state.
let fast_lookup: Option<Hash256> = self.with_head(|head| {
if head.beacon_block.slot() <= request_slot {
// Return the head state root if all slots between the request and the head are skipped.
Ok(Some(head.beacon_state_root()))
} else if let Ok(root) = head.beacon_state.get_state_root(request_slot) {
// Return the root if it's easily accessible from the head state.
Ok(Some(*root))
} else {
// Fast lookup is not possible.
Ok::<_, Error>(None)
}
})?;
if let Some(root) = fast_lookup {
return Ok(Some(root));
}
process_results(
self.forwards_iter_state_roots_until(request_slot, request_slot)?,
|mut iter| {
if let Some((root, slot)) = iter.next() {
if slot == request_slot {
Ok(Some(root))
} else {
// Sanity check.
Err(Error::InconsistentForwardsIter { request_slot, slot })
}
} else {
Ok(None)
}
},
)?
}
/// Returns the block root at the given slot, if any. Only returns roots in the canonical chain.
///
/// ## Notes
///
/// - Use the `skips` parameter to define the behaviour when `request_slot` is a skipped slot.
/// - Returns `Ok(None)` for any slot higher than the current wall-clock slot, or less than
/// the oldest known block slot.
pub fn block_root_at_slot(
&self,
request_slot: Slot,
skips: WhenSlotSkipped,
) -> Result<Option<Hash256>, Error> {
match skips {
WhenSlotSkipped::None => self.block_root_at_slot_skips_none(request_slot),
WhenSlotSkipped::Prev => self.block_root_at_slot_skips_prev(request_slot),
}
.or_else(|e| match e {
Error::HistoricalBlockError(_) => Ok(None),
e => Err(e),
})
}
/// Returns the block root at the given slot, if any. Only returns roots in the canonical chain.
///
/// ## Notes
///
/// - Returns `Ok(None)` if the given `Slot` was skipped.
/// - Returns `Ok(None)` for any slot higher than the current wall-clock slot.
///
/// ## Errors
///
/// May return a database error.
fn block_root_at_slot_skips_none(&self, request_slot: Slot) -> Result<Option<Hash256>, Error> {
if request_slot > self.slot()? {
return Ok(None);
} else if request_slot == self.spec.genesis_slot {
return Ok(Some(self.genesis_block_root));
}
let prev_slot = request_slot.saturating_sub(1_u64);
// Try an optimized path of reading the root directly from the head state.
let fast_lookup: Option<Option<Hash256>> = self.with_head(|head| {
let state = &head.beacon_state;
// Try find the root for the `request_slot`.
let request_root_opt = match state.slot().cmp(&request_slot) {
// It's always a skip slot if the head is less than the request slot, return early.
Ordering::Less => return Ok(Some(None)),
// The request slot is the head slot.
Ordering::Equal => Some(head.beacon_block_root),
// Try find the request slot in the state.
Ordering::Greater => state.get_block_root(request_slot).ok().copied(),
};
if let Some(request_root) = request_root_opt {
if let Ok(prev_root) = state.get_block_root(prev_slot) {
return Ok(Some((*prev_root != request_root).then(|| request_root)));
}
}
// Fast lookup is not possible.
Ok::<_, Error>(None)
})?;
if let Some(root_opt) = fast_lookup {
return Ok(root_opt);
}
if let Some(((prev_root, _), (curr_root, curr_slot))) = process_results(
self.forwards_iter_block_roots_until(prev_slot, request_slot)?,
|iter| iter.tuple_windows().next(),
)? {
// Sanity check.
if curr_slot != request_slot {
return Err(Error::InconsistentForwardsIter {
request_slot,
slot: curr_slot,
});
}
Ok((curr_root != prev_root).then(|| curr_root))
} else {
Ok(None)
}
}
/// Returns the block root at the given slot, if any. Only returns roots in the canonical chain.
///
/// ## Notes
///
/// - Returns the root at the previous non-skipped slot if the given `Slot` was skipped.
/// - Returns `Ok(None)` for any slot higher than the current wall-clock slot.
///
/// ## Errors
///
/// May return a database error.
fn block_root_at_slot_skips_prev(&self, request_slot: Slot) -> Result<Option<Hash256>, Error> {
if request_slot > self.slot()? {
return Ok(None);
} else if request_slot == self.spec.genesis_slot {
return Ok(Some(self.genesis_block_root));
}
// Try an optimized path of reading the root directly from the head state.
let fast_lookup: Option<Hash256> = self.with_head(|head| {
if head.beacon_block.slot() <= request_slot {
// Return the head root if all slots between the request and the head are skipped.
Ok(Some(head.beacon_block_root))
} else if let Ok(root) = head.beacon_state.get_block_root(request_slot) {
// Return the root if it's easily accessible from the head state.
Ok(Some(*root))
} else {
// Fast lookup is not possible.
Ok::<_, Error>(None)
}
})?;
if let Some(root) = fast_lookup {
return Ok(Some(root));
}
process_results(
self.forwards_iter_block_roots_until(request_slot, request_slot)?,
|mut iter| {
if let Some((root, slot)) = iter.next() {
if slot == request_slot {
Ok(Some(root))
} else {
// Sanity check.
Err(Error::InconsistentForwardsIter { request_slot, slot })
}
} else {
Ok(None)
}
},
)?
}
/// Returns the block at the given root, if any.
///
/// Will also check the early attester cache for the block. Because of this, there's no
/// guarantee that a block returned from this function has a `BeaconState` available in
/// `self.store`. The expected use for this function is *only* for returning blocks requested
/// from P2P peers.
///
/// ## Errors
///
/// May return a database error.
pub async fn get_block_checking_early_attester_cache(
&self,
block_root: &Hash256,
) -> Result<Option<Arc<SignedBeaconBlock<T::EthSpec>>>, Error> {
if let Some(block) = self.early_attester_cache.get_block(*block_root) {
return Ok(Some(block));
}
Ok(self.get_block(block_root).await?.map(Arc::new))
}
/// Returns the block at the given root, if any.
///
/// ## Errors
///
/// May return a database error.
pub async fn get_block(
&self,
block_root: &Hash256,
) -> Result<Option<SignedBeaconBlock<T::EthSpec>>, Error> {
// Load block from database, returning immediately if we have the full block w payload
// stored.
let blinded_block = match self.store.try_get_full_block(block_root)? {
Some(DatabaseBlock::Full(block)) => return Ok(Some(block)),
Some(DatabaseBlock::Blinded(block)) => block,
None => return Ok(None),
};
// If we only have a blinded block, load the execution payload from the EL.
let block_message = blinded_block.message();
let execution_payload_header = &block_message
.execution_payload()
.map_err(|_| Error::BlockVariantLacksExecutionPayload(*block_root))?
.execution_payload_header;
let exec_block_hash = execution_payload_header.block_hash;
let execution_payload = self
.execution_layer
.as_ref()
.ok_or(Error::ExecutionLayerMissing)?
.get_payload_by_block_hash(exec_block_hash)
.await
.map_err(|e| Error::ExecutionLayerErrorPayloadReconstruction(exec_block_hash, e))?
.ok_or(Error::BlockHashMissingFromExecutionLayer(exec_block_hash))?;
// Verify payload integrity.
let header_from_payload = ExecutionPayloadHeader::from(&execution_payload);
if header_from_payload != *execution_payload_header {
for txn in &execution_payload.transactions {
debug!(
self.log,
"Reconstructed txn";
"bytes" => format!("0x{}", hex::encode(&**txn)),
);
}
return Err(Error::InconsistentPayloadReconstructed {
slot: blinded_block.slot(),
exec_block_hash,
canonical_payload_root: execution_payload_header.tree_hash_root(),
reconstructed_payload_root: header_from_payload.tree_hash_root(),
canonical_transactions_root: execution_payload_header.transactions_root,
reconstructed_transactions_root: header_from_payload.transactions_root,
});
}
// Add the payload to the block to form a full block.
blinded_block
.try_into_full_block(Some(execution_payload))
.ok_or(Error::AddPayloadLogicError)
.map(Some)
}
pub fn get_blinded_block(
&self,
block_root: &Hash256,
) -> Result<Option<SignedBlindedBeaconBlock<T::EthSpec>>, Error> {
Ok(self.store.get_blinded_block(block_root)?)
}
/// Returns the state at the given root, if any.
///
/// ## Errors
///
/// May return a database error.
pub fn get_state(
&self,
state_root: &Hash256,
slot: Option<Slot>,
) -> Result<Option<BeaconState<T::EthSpec>>, Error> {
Ok(self.store.get_state(state_root, slot)?)
}
/// Return the sync committee at `slot + 1` from the canonical chain.
///
/// This is useful when dealing with sync committee messages, because messages are signed
/// and broadcast one slot prior to the slot of the sync committee (which is relevant at
/// sync committee period boundaries).
pub fn sync_committee_at_next_slot(
&self,
slot: Slot,
) -> Result<Arc<SyncCommittee<T::EthSpec>>, Error> {
let epoch = slot.safe_add(1)?.epoch(T::EthSpec::slots_per_epoch());
self.sync_committee_at_epoch(epoch)
}
/// Return the sync committee at `epoch` from the canonical chain.
pub fn sync_committee_at_epoch(
&self,
epoch: Epoch,
) -> Result<Arc<SyncCommittee<T::EthSpec>>, Error> {
// Try to read a committee from the head. This will work most of the time, but will fail
// for faraway committees, or if there are skipped slots at the transition to Altair.
let spec = &self.spec;
let committee_from_head =
self.with_head(
|head| match head.beacon_state.get_built_sync_committee(epoch, spec) {
Ok(committee) => Ok(Some(committee.clone())),
Err(BeaconStateError::SyncCommitteeNotKnown { .. })
| Err(BeaconStateError::IncorrectStateVariant) => Ok(None),
Err(e) => Err(Error::from(e)),
},
)?;
if let Some(committee) = committee_from_head {
Ok(committee)
} else {
// Slow path: load a state (or advance the head).
let sync_committee_period = epoch.sync_committee_period(spec)?;
let committee = self
.state_for_sync_committee_period(sync_committee_period)?
.get_built_sync_committee(epoch, spec)?
.clone();
Ok(committee)
}
}
/// Load a state suitable for determining the sync committee for the given period.
///
/// Specifically, the state at the start of the *previous* sync committee period.
///
/// This is sufficient for historical duties, and efficient in the case where the head
/// is lagging the current period and we need duties for the next period (because we only
/// have to transition the head to start of the current period).
///
/// We also need to ensure that the load slot is after the Altair fork.
///
/// **WARNING**: the state returned will have dummy state roots. It should only be used
/// for its sync committees (determining duties, etc).
pub fn state_for_sync_committee_period(
&self,
sync_committee_period: u64,
) -> Result<BeaconState<T::EthSpec>, Error> {
let altair_fork_epoch = self
.spec
.altair_fork_epoch
.ok_or(Error::AltairForkDisabled)?;
let load_slot = std::cmp::max(
self.spec.epochs_per_sync_committee_period * sync_committee_period.saturating_sub(1),
altair_fork_epoch,
)
.start_slot(T::EthSpec::slots_per_epoch());
self.state_at_slot(load_slot, StateSkipConfig::WithoutStateRoots)
}
/// Returns the current heads of the `BeaconChain`. For the canonical head, see `Self::head`.
///
/// Returns `(block_root, block_slot)`.
pub fn heads(&self) -> Vec<(Hash256, Slot)> {
self.head_tracker.heads()
}
pub fn knows_head(&self, block_hash: &SignedBeaconBlockHash) -> bool {
self.head_tracker.contains_head((*block_hash).into())
}
/// Returns the `BeaconState` at the given slot.
///
/// Returns `None` when the state is not found in the database or there is an error skipping
/// to a future state.
pub fn state_at_slot(
&self,
slot: Slot,
config: StateSkipConfig,
) -> Result<BeaconState<T::EthSpec>, Error> {
let head_state = self.head_beacon_state_cloned();
match slot.cmp(&head_state.slot()) {
Ordering::Equal => Ok(head_state),
Ordering::Greater => {
if slot > head_state.slot() + T::EthSpec::slots_per_epoch() {
warn!(
self.log,
"Skipping more than an epoch";
"head_slot" => head_state.slot(),
"request_slot" => slot
)
}
let start_slot = head_state.slot();
let task_start = Instant::now();
let max_task_runtime = Duration::from_secs(self.spec.seconds_per_slot);
let head_state_slot = head_state.slot();
let mut state = head_state;
let skip_state_root = match config {
StateSkipConfig::WithStateRoots => None,
StateSkipConfig::WithoutStateRoots => Some(Hash256::zero()),
};
while state.slot() < slot {
// Do not allow and forward state skip that takes longer than the maximum task duration.
//
// This is a protection against nodes doing too much work when they're not synced
// to a chain.
if task_start + max_task_runtime < Instant::now() {
return Err(Error::StateSkipTooLarge {
start_slot,
requested_slot: slot,
max_task_runtime,
});
}
// Note: supplying some `state_root` when it is known would be a cheap and easy
// optimization.
match per_slot_processing(&mut state, skip_state_root, &self.spec) {
Ok(_) => (),
Err(e) => {
warn!(
self.log,
"Unable to load state at slot";
"error" => ?e,
"head_slot" => head_state_slot,
"requested_slot" => slot
);
return Err(Error::NoStateForSlot(slot));
}
};
}
Ok(state)
}
Ordering::Less => {
let state_root =
process_results(self.forwards_iter_state_roots_until(slot, slot)?, |iter| {
iter.take_while(|(_, current_slot)| *current_slot >= slot)
.find(|(_, current_slot)| *current_slot == slot)
.map(|(root, _slot)| root)
})?
.ok_or(Error::NoStateForSlot(slot))?;
Ok(self
.get_state(&state_root, Some(slot))?
.ok_or(Error::NoStateForSlot(slot))?)
}
}
}
/// Returns the `BeaconState` the current slot (viz., `self.slot()`).
///
/// - A reference to the head state (note: this keeps a read lock on the head, try to use
/// sparingly).
/// - The head state, but with skipped slots (for states later than the head).
///
/// Returns `None` when there is an error skipping to a future state or the slot clock cannot
/// be read.
pub fn wall_clock_state(&self) -> Result<BeaconState<T::EthSpec>, Error> {
self.state_at_slot(self.slot()?, StateSkipConfig::WithStateRoots)
}
/// Returns the validator index (if any) for the given public key.
///
/// ## Notes
///
/// This query uses the `validator_pubkey_cache` which contains _all_ validators ever seen,
/// even if those validators aren't included in the head state. It is important to remember
/// that just because a validator exists here, it doesn't necessarily exist in all
/// `BeaconStates`.
///
/// ## Errors
///
/// May return an error if acquiring a read-lock on the `validator_pubkey_cache` times out.
pub fn validator_index(&self, pubkey: &PublicKeyBytes) -> Result<Option<usize>, Error> {
let pubkey_cache = self
.validator_pubkey_cache
.try_read_for(VALIDATOR_PUBKEY_CACHE_LOCK_TIMEOUT)
.ok_or(Error::ValidatorPubkeyCacheLockTimeout)?;
Ok(pubkey_cache.get_index(pubkey))
}
/// Return the validator indices of all public keys fetched from an iterator.
///
/// If any public key doesn't belong to a known validator then an error will be returned.
/// We could consider relaxing this by returning `Vec<Option<usize>>` in future.
pub fn validator_indices<'a>(
&self,
validator_pubkeys: impl Iterator<Item = &'a PublicKeyBytes>,
) -> Result<Vec<u64>, Error> {
let pubkey_cache = self
.validator_pubkey_cache
.try_read_for(VALIDATOR_PUBKEY_CACHE_LOCK_TIMEOUT)
.ok_or(Error::ValidatorPubkeyCacheLockTimeout)?;
validator_pubkeys
.map(|pubkey| {
pubkey_cache
.get_index(pubkey)
.map(|id| id as u64)
.ok_or(Error::ValidatorPubkeyUnknown(*pubkey))
})
.collect()
}
/// Returns the validator pubkey (if any) for the given validator index.
///
/// ## Notes
///
/// This query uses the `validator_pubkey_cache` which contains _all_ validators ever seen,
/// even if those validators aren't included in the head state. It is important to remember
/// that just because a validator exists here, it doesn't necessarily exist in all
/// `BeaconStates`.
///
/// ## Errors
///
/// May return an error if acquiring a read-lock on the `validator_pubkey_cache` times out.
pub fn validator_pubkey(&self, validator_index: usize) -> Result<Option<PublicKey>, Error> {
let pubkey_cache = self
.validator_pubkey_cache
.try_read_for(VALIDATOR_PUBKEY_CACHE_LOCK_TIMEOUT)
.ok_or(Error::ValidatorPubkeyCacheLockTimeout)?;
Ok(pubkey_cache.get(validator_index).cloned())
}
/// As per `Self::validator_pubkey`, but returns `PublicKeyBytes`.
pub fn validator_pubkey_bytes(
&self,
validator_index: usize,
) -> Result<Option<PublicKeyBytes>, Error> {
let pubkey_cache = self
.validator_pubkey_cache
.try_read_for(VALIDATOR_PUBKEY_CACHE_LOCK_TIMEOUT)
.ok_or(Error::ValidatorPubkeyCacheLockTimeout)?;
Ok(pubkey_cache.get_pubkey_bytes(validator_index).copied())
}
/// As per `Self::validator_pubkey_bytes` but will resolve multiple indices at once to avoid
/// bouncing the read-lock on the pubkey cache.
///
/// Returns a map that may have a length less than `validator_indices.len()` if some indices
/// were unable to be resolved.
pub fn validator_pubkey_bytes_many(
&self,
validator_indices: &[usize],
) -> Result<HashMap<usize, PublicKeyBytes>, Error> {
let pubkey_cache = self
.validator_pubkey_cache
.try_read_for(VALIDATOR_PUBKEY_CACHE_LOCK_TIMEOUT)
.ok_or(Error::ValidatorPubkeyCacheLockTimeout)?;
let mut map = HashMap::with_capacity(validator_indices.len());
for &validator_index in validator_indices {
if let Some(pubkey) = pubkey_cache.get_pubkey_bytes(validator_index) {
map.insert(validator_index, *pubkey);
}
}
Ok(map)
}
/// Returns the block canonical root of the current canonical chain at a given slot, starting from the given state.
///
/// Returns `None` if the given slot doesn't exist in the chain.
pub fn root_at_slot_from_state(
&self,
target_slot: Slot,
beacon_block_root: Hash256,
state: &BeaconState<T::EthSpec>,
) -> Result<Option<Hash256>, Error> {
let iter = BlockRootsIterator::new(&self.store, state);
let iter_with_head = std::iter::once(Ok((beacon_block_root, state.slot())))
.chain(iter)
.map(|result| result.map_err(|e| e.into()));
process_results(iter_with_head, |mut iter| {
iter.find(|(_, slot)| *slot == target_slot)
.map(|(root, _)| root)
})
}
/// Returns the attestation duties for the given validator indices using the shuffling cache.
///
/// An error may be returned if `head_block_root` is a finalized block, this function is only
/// designed for operations at the head of the chain.
///
/// The returned `Vec` will have the same length as `validator_indices`, any
/// non-existing/inactive validators will have `None` values.
///
/// ## Notes
///
/// This function will try to use the shuffling cache to return the value. If the value is not
/// in the shuffling cache, it will be added. Care should be taken not to wash out the
/// shuffling cache with historical/useless values.
pub fn validator_attestation_duties(
&self,
validator_indices: &[u64],
epoch: Epoch,
head_block_root: Hash256,
) -> Result<(Vec<Option<AttestationDuty>>, Hash256, ExecutionStatus), Error> {
let execution_status = self
.canonical_head
.fork_choice_read_lock()
.get_block_execution_status(&head_block_root)
.ok_or(Error::AttestationHeadNotInForkChoice(head_block_root))?;
let (duties, dependent_root) = self.with_committee_cache(
head_block_root,
epoch,
|committee_cache, dependent_root| {
let duties = validator_indices
.iter()
.map(|validator_index| {
let validator_index = *validator_index as usize;
committee_cache.get_attestation_duties(validator_index)
})
.collect();
Ok((duties, dependent_root))
},
)?;
Ok((duties, dependent_root, execution_status))
}
/// Returns an aggregated `Attestation`, if any, that has a matching `attestation.data`.
///
/// The attestation will be obtained from `self.naive_aggregation_pool`.
pub fn get_aggregated_attestation(
&self,
data: &AttestationData,
) -> Result<Option<Attestation<T::EthSpec>>, Error> {
if let Some(attestation) = self.naive_aggregation_pool.read().get(data) {
self.filter_optimistic_attestation(attestation)
.map(Option::Some)
} else {
Ok(None)
}
}
/// Returns an aggregated `Attestation`, if any, that has a matching
/// `attestation.data.tree_hash_root()`.
///
/// The attestation will be obtained from `self.naive_aggregation_pool`.
pub fn get_aggregated_attestation_by_slot_and_root(
&self,
slot: Slot,
attestation_data_root: &Hash256,
) -> Result<Option<Attestation<T::EthSpec>>, Error> {
if let Some(attestation) = self
.naive_aggregation_pool
.read()
.get_by_slot_and_root(slot, attestation_data_root)
{
self.filter_optimistic_attestation(attestation)
.map(Option::Some)
} else {
Ok(None)
}
}
/// Returns `Ok(attestation)` if the supplied `attestation` references a valid
/// `beacon_block_root`.
fn filter_optimistic_attestation(
&self,
attestation: Attestation<T::EthSpec>,
) -> Result<Attestation<T::EthSpec>, Error> {
let beacon_block_root = attestation.data.beacon_block_root;
match self
.canonical_head
.fork_choice_read_lock()
.get_block_execution_status(&beacon_block_root)
{
// The attestation references a block that is not in fork choice, it must be
// pre-finalization.
None => Err(Error::CannotAttestToFinalizedBlock { beacon_block_root }),
// The attestation references a fully valid `beacon_block_root`.
Some(execution_status) if execution_status.is_valid_or_irrelevant() => Ok(attestation),
// The attestation references a block that has not been verified by an EL (i.e. it
// is optimistic or invalid). Don't return the block, return an error instead.
Some(execution_status) => Err(Error::HeadBlockNotFullyVerified {
beacon_block_root,
execution_status,
}),
}
}
/// Return an aggregated `SyncCommitteeContribution` matching the given `root`.
pub fn get_aggregated_sync_committee_contribution(
&self,
sync_contribution_data: &SyncContributionData,
) -> Option<SyncCommitteeContribution<T::EthSpec>> {
self.naive_sync_aggregation_pool
.read()
.get(sync_contribution_data)
}
/// Produce an unaggregated `Attestation` that is valid for the given `slot` and `index`.
///
/// The produced `Attestation` will not be valid until it has been signed by exactly one
/// validator that is in the committee for `slot` and `index` in the canonical chain.
///
/// Always attests to the canonical chain.
///
/// ## Errors
///
/// May return an error if the `request_slot` is too far behind the head state.
pub fn produce_unaggregated_attestation(
&self,
request_slot: Slot,
request_index: CommitteeIndex,
) -> Result<Attestation<T::EthSpec>, Error> {
let _total_timer = metrics::start_timer(&metrics::ATTESTATION_PRODUCTION_SECONDS);
// The early attester cache will return `Some(attestation)` in the scenario where there is a
// block being imported that will become the head block, but that block has not yet been
// inserted into the database and set as `self.canonical_head`.
//
// In effect, the early attester cache prevents slow database IO from causing missed
// head/target votes.
//
// The early attester cache should never contain an optimistically imported block.
match self
.early_attester_cache
.try_attest(request_slot, request_index, &self.spec)
{
// The cache matched this request, return the value.
Ok(Some(attestation)) => return Ok(attestation),
// The cache did not match this request, proceed with the rest of this function.
Ok(None) => (),
// The cache returned an error. Log the error and proceed with the rest of this
// function.
Err(e) => warn!(
self.log,
"Early attester cache failed";
"error" => ?e
),
}
let slots_per_epoch = T::EthSpec::slots_per_epoch();
let request_epoch = request_slot.epoch(slots_per_epoch);
/*
* Phase 1/2:
*
* Take a short-lived read-lock on the head and copy the necessary information from it.
*
* It is important that this first phase is as quick as possible; creating contention for
* the head-lock is not desirable.
*/
let head_state_slot;
let beacon_block_root;
let beacon_state_root;
let target;
let current_epoch_attesting_info: Option<(Checkpoint, usize)>;
let attester_cache_key;
let head_timer = metrics::start_timer(&metrics::ATTESTATION_PRODUCTION_HEAD_SCRAPE_SECONDS);
// The following braces are to prevent the `cached_head` Arc from being held for longer than
// required. It also helps reduce the diff for a very large PR (#3244).
{
let head = self.head_snapshot();
let head_state = &head.beacon_state;
head_state_slot = head_state.slot();
// There is no value in producing an attestation to a block that is pre-finalization and
// it is likely to cause expensive and pointless reads to the freezer database. Exit
// early if this is the case.
let finalized_slot = head_state
.finalized_checkpoint()
.epoch
.start_slot(slots_per_epoch);
if request_slot < finalized_slot {
return Err(Error::AttestingToFinalizedSlot {
finalized_slot,
request_slot,
});
}
// This function will eventually fail when trying to access a slot which is
// out-of-bounds of `state.block_roots`. This explicit error is intended to provide a
// clearer message to the user than an ambiguous `SlotOutOfBounds` error.
let slots_per_historical_root = T::EthSpec::slots_per_historical_root() as u64;
let lowest_permissible_slot =
head_state.slot().saturating_sub(slots_per_historical_root);
if request_slot < lowest_permissible_slot {
return Err(Error::AttestingToAncientSlot {
lowest_permissible_slot,
request_slot,
});
}
if request_slot >= head_state.slot() {
// When attesting to the head slot or later, always use the head of the chain.
beacon_block_root = head.beacon_block_root;
beacon_state_root = head.beacon_state_root();
} else {
// Permit attesting to slots *prior* to the current head. This is desirable when
// the VC and BN are out-of-sync due to time issues or overloading.
beacon_block_root = *head_state.get_block_root(request_slot)?;
beacon_state_root = *head_state.get_state_root(request_slot)?;
};
let target_slot = request_epoch.start_slot(T::EthSpec::slots_per_epoch());
let target_root = if head_state.slot() <= target_slot {
// If the state is earlier than the target slot then the target *must* be the head
// block root.
beacon_block_root
} else {
*head_state.get_block_root(target_slot)?
};
target = Checkpoint {
epoch: request_epoch,
root: target_root,
};
current_epoch_attesting_info = if head_state.current_epoch() == request_epoch {
// When the head state is in the same epoch as the request, all the information
// required to attest is available on the head state.
Some((
head_state.current_justified_checkpoint(),
head_state
.get_beacon_committee(request_slot, request_index)?
.committee
.len(),
))
} else {
// If the head state is in a *different* epoch to the request, more work is required
// to determine the justified checkpoint and committee length.
None
};
// Determine the key for `self.attester_cache`, in case it is required later in this
// routine.
attester_cache_key =
AttesterCacheKey::new(request_epoch, head_state, beacon_block_root)?;
}
drop(head_timer);
// Only attest to a block if it is fully verified (i.e. not optimistic or invalid).
match self
.canonical_head
.fork_choice_read_lock()
.get_block_execution_status(&beacon_block_root)
{
Some(execution_status) if execution_status.is_valid_or_irrelevant() => (),
Some(execution_status) => {
return Err(Error::HeadBlockNotFullyVerified {
beacon_block_root,
execution_status,
})
}
None => return Err(Error::HeadMissingFromForkChoice(beacon_block_root)),
};
/*
* Phase 2/2:
*
* If the justified checkpoint and committee length from the head are suitable for this
* attestation, use them. If not, try the attester cache. If the cache misses, load a state
* from disk and prime the cache with it.
*/
let cache_timer =
metrics::start_timer(&metrics::ATTESTATION_PRODUCTION_CACHE_INTERACTION_SECONDS);
let (justified_checkpoint, committee_len) =
if let Some((justified_checkpoint, committee_len)) = current_epoch_attesting_info {
// The head state is in the same epoch as the attestation, so there is no more
// required information.
(justified_checkpoint, committee_len)
} else if let Some(cached_values) = self.attester_cache.get::<T::EthSpec>(
&attester_cache_key,
request_slot,
request_index,
&self.spec,
)? {
// The suitable values were already cached. Return them.
cached_values
} else {
debug!(
self.log,
"Attester cache miss";
"beacon_block_root" => ?beacon_block_root,
"head_state_slot" => %head_state_slot,
"request_slot" => %request_slot,
);
// Neither the head state, nor the attester cache was able to produce the required
// information to attest in this epoch. So, load a `BeaconState` from disk and use
// it to fulfil the request (and prime the cache to avoid this next time).
let _cache_build_timer =
metrics::start_timer(&metrics::ATTESTATION_PRODUCTION_CACHE_PRIME_SECONDS);
self.attester_cache.load_and_cache_state(
beacon_state_root,
attester_cache_key,
request_slot,
request_index,
self,
)?
};
drop(cache_timer);
Ok(Attestation {
aggregation_bits: BitList::with_capacity(committee_len)?,
data: AttestationData {
slot: request_slot,
index: request_index,
beacon_block_root,
source: justified_checkpoint,
target,
},
signature: AggregateSignature::empty(),
})
}
/// Performs the same validation as `Self::verify_unaggregated_attestation_for_gossip`, but for
/// multiple attestations using batch BLS verification. Batch verification can provide
/// significant CPU-time savings compared to individual verification.
pub fn batch_verify_unaggregated_attestations_for_gossip<'a, I>(
&self,
attestations: I,
) -> Result<
Vec<Result<VerifiedUnaggregatedAttestation<'a, T>, AttestationError>>,
AttestationError,
>
where
I: Iterator<Item = (&'a Attestation<T::EthSpec>, Option<SubnetId>)> + ExactSizeIterator,
{
batch_verify_unaggregated_attestations(attestations, self)
}
/// Accepts some `Attestation` from the network and attempts to verify it, returning `Ok(_)` if
/// it is valid to be (re)broadcast on the gossip network.
///
/// The attestation must be "unaggregated", that is it must have exactly one
/// aggregation bit set.
pub fn verify_unaggregated_attestation_for_gossip<'a>(
&self,
unaggregated_attestation: &'a Attestation<T::EthSpec>,
subnet_id: Option<SubnetId>,
) -> Result<VerifiedUnaggregatedAttestation<'a, T>, AttestationError> {
metrics::inc_counter(&metrics::UNAGGREGATED_ATTESTATION_PROCESSING_REQUESTS);
let _timer =
metrics::start_timer(&metrics::UNAGGREGATED_ATTESTATION_GOSSIP_VERIFICATION_TIMES);
VerifiedUnaggregatedAttestation::verify(unaggregated_attestation, subnet_id, self).map(
|v| {
// This method is called for API and gossip attestations, so this covers all unaggregated attestation events
if let Some(event_handler) = self.event_handler.as_ref() {
if event_handler.has_attestation_subscribers() {
event_handler
.register(EventKind::Attestation(Box::new(v.attestation().clone())));
}
}
metrics::inc_counter(&metrics::UNAGGREGATED_ATTESTATION_PROCESSING_SUCCESSES);
v
},
)
}
/// Performs the same validation as `Self::verify_aggregated_attestation_for_gossip`, but for
/// multiple attestations using batch BLS verification. Batch verification can provide
/// significant CPU-time savings compared to individual verification.
pub fn batch_verify_aggregated_attestations_for_gossip<'a, I>(
&self,
aggregates: I,
) -> Result<Vec<Result<VerifiedAggregatedAttestation<'a, T>, AttestationError>>, AttestationError>
where
I: Iterator<Item = &'a SignedAggregateAndProof<T::EthSpec>> + ExactSizeIterator,
{
batch_verify_aggregated_attestations(aggregates, self)
}
/// Accepts some `SignedAggregateAndProof` from the network and attempts to verify it,
/// returning `Ok(_)` if it is valid to be (re)broadcast on the gossip network.
pub fn verify_aggregated_attestation_for_gossip<'a>(
&self,
signed_aggregate: &'a SignedAggregateAndProof<T::EthSpec>,
) -> Result<VerifiedAggregatedAttestation<'a, T>, AttestationError> {
metrics::inc_counter(&metrics::AGGREGATED_ATTESTATION_PROCESSING_REQUESTS);
let _timer =
metrics::start_timer(&metrics::AGGREGATED_ATTESTATION_GOSSIP_VERIFICATION_TIMES);
VerifiedAggregatedAttestation::verify(signed_aggregate, self).map(|v| {
// This method is called for API and gossip attestations, so this covers all aggregated attestation events
if let Some(event_handler) = self.event_handler.as_ref() {
if event_handler.has_attestation_subscribers() {
event_handler
.register(EventKind::Attestation(Box::new(v.attestation().clone())));
}
}
metrics::inc_counter(&metrics::AGGREGATED_ATTESTATION_PROCESSING_SUCCESSES);
v
})
}
/// Accepts some `SyncCommitteeMessage` from the network and attempts to verify it, returning `Ok(_)` if
/// it is valid to be (re)broadcast on the gossip network.
pub fn verify_sync_committee_message_for_gossip(
&self,
sync_message: SyncCommitteeMessage,
subnet_id: SyncSubnetId,
) -> Result<VerifiedSyncCommitteeMessage, SyncCommitteeError> {
metrics::inc_counter(&metrics::SYNC_MESSAGE_PROCESSING_REQUESTS);
let _timer = metrics::start_timer(&metrics::SYNC_MESSAGE_GOSSIP_VERIFICATION_TIMES);
VerifiedSyncCommitteeMessage::verify(sync_message, subnet_id, self).map(|v| {
metrics::inc_counter(&metrics::SYNC_MESSAGE_PROCESSING_SUCCESSES);
v
})
}
/// Accepts some `SignedContributionAndProof` from the network and attempts to verify it,
/// returning `Ok(_)` if it is valid to be (re)broadcast on the gossip network.
pub fn verify_sync_contribution_for_gossip(
&self,
sync_contribution: SignedContributionAndProof<T::EthSpec>,
) -> Result<VerifiedSyncContribution<T>, SyncCommitteeError> {
metrics::inc_counter(&metrics::SYNC_CONTRIBUTION_PROCESSING_REQUESTS);
let _timer = metrics::start_timer(&metrics::SYNC_CONTRIBUTION_GOSSIP_VERIFICATION_TIMES);
VerifiedSyncContribution::verify(sync_contribution, self).map(|v| {
if let Some(event_handler) = self.event_handler.as_ref() {
if event_handler.has_contribution_subscribers() {
event_handler.register(EventKind::ContributionAndProof(Box::new(
v.aggregate().clone(),
)));
}
}
metrics::inc_counter(&metrics::SYNC_CONTRIBUTION_PROCESSING_SUCCESSES);
v
})
}
/// Accepts some attestation-type object and attempts to verify it in the context of fork
/// choice. If it is valid it is applied to `self.fork_choice`.
///
/// Common items that implement `VerifiedAttestation`:
///
/// - `VerifiedUnaggregatedAttestation`
/// - `VerifiedAggregatedAttestation`
pub fn apply_attestation_to_fork_choice(
&self,
verified: &impl VerifiedAttestation<T>,
) -> Result<(), Error> {
let _timer = metrics::start_timer(&metrics::FORK_CHOICE_PROCESS_ATTESTATION_TIMES);
self.canonical_head
.fork_choice_write_lock()
.on_attestation(
self.slot()?,
verified.indexed_attestation(),
AttestationFromBlock::False,
&self.spec,
)
.map_err(Into::into)
}
/// Accepts an `VerifiedUnaggregatedAttestation` and attempts to apply it to the "naive
/// aggregation pool".
///
/// The naive aggregation pool is used by local validators to produce
/// `SignedAggregateAndProof`.
///
/// If the attestation is too old (low slot) to be included in the pool it is simply dropped
/// and no error is returned.
pub fn add_to_naive_aggregation_pool(
&self,
unaggregated_attestation: &impl VerifiedAttestation<T>,
) -> Result<(), AttestationError> {
let _timer = metrics::start_timer(&metrics::ATTESTATION_PROCESSING_APPLY_TO_AGG_POOL);
let attestation = unaggregated_attestation.attestation();
match self.naive_aggregation_pool.write().insert(attestation) {
Ok(outcome) => trace!(
self.log,
"Stored unaggregated attestation";
"outcome" => ?outcome,
"index" => attestation.data.index,
"slot" => attestation.data.slot.as_u64(),
),
Err(NaiveAggregationError::SlotTooLow {
slot,
lowest_permissible_slot,
}) => {
trace!(
self.log,
"Refused to store unaggregated attestation";
"lowest_permissible_slot" => lowest_permissible_slot.as_u64(),
"slot" => slot.as_u64(),
);
}
Err(e) => {
error!(
self.log,
"Failed to store unaggregated attestation";
"error" => ?e,
"index" => attestation.data.index,
"slot" => attestation.data.slot.as_u64(),
);
return Err(Error::from(e).into());
}
};
Ok(())
}
/// Accepts a `VerifiedSyncCommitteeMessage` and attempts to apply it to the "naive
/// aggregation pool".
///
/// The naive aggregation pool is used by local validators to produce
/// `SignedContributionAndProof`.
///
/// If the sync message is too old (low slot) to be included in the pool it is simply dropped
/// and no error is returned.
pub fn add_to_naive_sync_aggregation_pool(
&self,
verified_sync_committee_message: VerifiedSyncCommitteeMessage,
) -> Result<VerifiedSyncCommitteeMessage, SyncCommitteeError> {
let sync_message = verified_sync_committee_message.sync_message();
let positions_by_subnet_id: &HashMap<SyncSubnetId, Vec<usize>> =
verified_sync_committee_message.subnet_positions();
for (subnet_id, positions) in positions_by_subnet_id.iter() {
for position in positions {
let _timer =
metrics::start_timer(&metrics::SYNC_CONTRIBUTION_PROCESSING_APPLY_TO_AGG_POOL);
let contribution = SyncCommitteeContribution::from_message(
sync_message,
subnet_id.into(),
*position,
)?;
match self
.naive_sync_aggregation_pool
.write()
.insert(&contribution)
{
Ok(outcome) => trace!(
self.log,
"Stored unaggregated sync committee message";
"outcome" => ?outcome,
"index" => sync_message.validator_index,
"slot" => sync_message.slot.as_u64(),
),
Err(NaiveAggregationError::SlotTooLow {
slot,
lowest_permissible_slot,
}) => {
trace!(
self.log,
"Refused to store unaggregated sync committee message";
"lowest_permissible_slot" => lowest_permissible_slot.as_u64(),
"slot" => slot.as_u64(),
);
}
Err(e) => {
error!(
self.log,
"Failed to store unaggregated sync committee message";
"error" => ?e,
"index" => sync_message.validator_index,
"slot" => sync_message.slot.as_u64(),
);
return Err(Error::from(e).into());
}
};
}
}
Ok(verified_sync_committee_message)
}
/// Accepts a `VerifiedAttestation` and attempts to apply it to `self.op_pool`.
///
/// The op pool is used by local block producers to pack blocks with operations.
pub fn add_to_block_inclusion_pool(
&self,
verified_attestation: &impl VerifiedAttestation<T>,
) -> Result<(), AttestationError> {
let _timer = metrics::start_timer(&metrics::ATTESTATION_PROCESSING_APPLY_TO_OP_POOL);
// If there's no eth1 chain then it's impossible to produce blocks and therefore
// useless to put things in the op pool.
if self.eth1_chain.is_some() {
let fork = self.canonical_head.cached_head().head_fork();
self.op_pool
.insert_attestation(
// TODO: address this clone.
verified_attestation.attestation().clone(),
&fork,
self.genesis_validators_root,
&self.spec,
)
.map_err(Error::from)?;
}
Ok(())
}
/// Accepts a `VerifiedSyncContribution` and attempts to apply it to `self.op_pool`.
///
/// The op pool is used by local block producers to pack blocks with operations.
pub fn add_contribution_to_block_inclusion_pool(
&self,
contribution: VerifiedSyncContribution<T>,
) -> Result<(), SyncCommitteeError> {
let _timer = metrics::start_timer(&metrics::SYNC_CONTRIBUTION_PROCESSING_APPLY_TO_OP_POOL);
// If there's no eth1 chain then it's impossible to produce blocks and therefore
// useless to put things in the op pool.
if self.eth1_chain.is_some() {
self.op_pool
.insert_sync_contribution(contribution.contribution())
.map_err(Error::from)?;
}
Ok(())
}
/// Filter an attestation from the op pool for shuffling compatibility.
///
/// Use the provided `filter_cache` map to memoize results.
pub fn filter_op_pool_attestation(
&self,
filter_cache: &mut HashMap<(Hash256, Epoch), bool>,
att: &Attestation<T::EthSpec>,
state: &BeaconState<T::EthSpec>,
) -> bool {
*filter_cache
.entry((att.data.beacon_block_root, att.data.target.epoch))
.or_insert_with(|| {
self.shuffling_is_compatible(
&att.data.beacon_block_root,
att.data.target.epoch,
state,
)
})
}
/// Check that the shuffling at `block_root` is equal to one of the shufflings of `state`.
///
/// The `target_epoch` argument determines which shuffling to check compatibility with, it
/// should be equal to the current or previous epoch of `state`, or else `false` will be
/// returned.
///
/// The compatibility check is designed to be fast: we check that the block that
/// determined the RANDAO mix for the `target_epoch` matches the ancestor of the block
/// identified by `block_root` (at that slot).
pub fn shuffling_is_compatible(
&self,
block_root: &Hash256,
target_epoch: Epoch,
state: &BeaconState<T::EthSpec>,
) -> bool {
let slots_per_epoch = T::EthSpec::slots_per_epoch();
let shuffling_lookahead = 1 + self.spec.min_seed_lookahead.as_u64();
// Shuffling can't have changed if we're in the first few epochs
if state.current_epoch() < shuffling_lookahead {
return true;
}
// Otherwise the shuffling is determined by the block at the end of the target epoch
// minus the shuffling lookahead (usually 2). We call this the "pivot".
let pivot_slot =
if target_epoch == state.previous_epoch() || target_epoch == state.current_epoch() {
(target_epoch - shuffling_lookahead).end_slot(slots_per_epoch)
} else {
return false;
};
let state_pivot_block_root = match state.get_block_root(pivot_slot) {
Ok(root) => *root,
Err(e) => {
warn!(
&self.log,
"Missing pivot block root for attestation";
"slot" => pivot_slot,
"error" => ?e,
);
return false;
}
};
// Use fork choice's view of the block DAG to quickly evaluate whether the attestation's
// pivot block is the same as the current state's pivot block. If it is, then the
// attestation's shuffling is the same as the current state's.
// To account for skipped slots, find the first block at *or before* the pivot slot.
let fork_choice_lock = self.canonical_head.fork_choice_read_lock();
let pivot_block_root = fork_choice_lock
.proto_array()
.core_proto_array()
.iter_block_roots(block_root)
.find(|(_, slot)| *slot <= pivot_slot)
.map(|(block_root, _)| block_root);
drop(fork_choice_lock);
match pivot_block_root {
Some(root) => root == state_pivot_block_root,
None => {
debug!(
&self.log,
"Discarding attestation because of missing ancestor";
"pivot_slot" => pivot_slot.as_u64(),
"block_root" => ?block_root,
);
false
}
}
}
/// Verify a voluntary exit before allowing it to propagate on the gossip network.
pub fn verify_voluntary_exit_for_gossip(
&self,
exit: SignedVoluntaryExit,
) -> Result<ObservationOutcome<SignedVoluntaryExit>, Error> {
// NOTE: this could be more efficient if it avoided cloning the head state
let wall_clock_state = self.wall_clock_state()?;
Ok(self
.observed_voluntary_exits
.lock()
.verify_and_observe(exit, &wall_clock_state, &self.spec)
.map(|exit| {
// this method is called for both API and gossip exits, so this covers all exit events
if let Some(event_handler) = self.event_handler.as_ref() {
if event_handler.has_exit_subscribers() {
if let ObservationOutcome::New(exit) = exit.clone() {
event_handler.register(EventKind::VoluntaryExit(exit.into_inner()));
}
}
}
exit
})?)
}
/// Accept a pre-verified exit and queue it for inclusion in an appropriate block.
pub fn import_voluntary_exit(&self, exit: SigVerifiedOp<SignedVoluntaryExit>) {
if self.eth1_chain.is_some() {
self.op_pool.insert_voluntary_exit(exit)
}
}
/// Verify a proposer slashing before allowing it to propagate on the gossip network.
pub fn verify_proposer_slashing_for_gossip(
&self,
proposer_slashing: ProposerSlashing,
) -> Result<ObservationOutcome<ProposerSlashing>, Error> {
let wall_clock_state = self.wall_clock_state()?;
Ok(self.observed_proposer_slashings.lock().verify_and_observe(
proposer_slashing,
&wall_clock_state,
&self.spec,
)?)
}
/// Accept some proposer slashing and queue it for inclusion in an appropriate block.
pub fn import_proposer_slashing(&self, proposer_slashing: SigVerifiedOp<ProposerSlashing>) {
if self.eth1_chain.is_some() {
self.op_pool.insert_proposer_slashing(proposer_slashing)
}
}
/// Verify an attester slashing before allowing it to propagate on the gossip network.
pub fn verify_attester_slashing_for_gossip(
&self,
attester_slashing: AttesterSlashing<T::EthSpec>,
) -> Result<ObservationOutcome<AttesterSlashing<T::EthSpec>>, Error> {
let wall_clock_state = self.wall_clock_state()?;
Ok(self.observed_attester_slashings.lock().verify_and_observe(
attester_slashing,
&wall_clock_state,
&self.spec,
)?)
}
/// Accept some attester slashing and queue it for inclusion in an appropriate block.
pub fn import_attester_slashing(
&self,
attester_slashing: SigVerifiedOp<AttesterSlashing<T::EthSpec>>,
) {
if self.eth1_chain.is_some() {
self.op_pool.insert_attester_slashing(
attester_slashing,
self.canonical_head.cached_head().head_fork(),
)
}
}
/// Attempt to obtain sync committee duties from the head.
pub fn sync_committee_duties_from_head(
&self,
epoch: Epoch,
validator_indices: &[u64],
) -> Result<Vec<Option<SyncDuty>>, Error> {
self.with_head(move |head| {
head.beacon_state
.get_sync_committee_duties(epoch, validator_indices, &self.spec)
.map_err(Error::SyncDutiesError)
})
}
/// A convenience method for spawning a blocking task. It maps an `Option` and
/// `tokio::JoinError` into a single `BeaconChainError`.
pub(crate) async fn spawn_blocking_handle<F, R>(
&self,
task: F,
name: &'static str,
) -> Result<R, Error>
where
F: FnOnce() -> R + Send + 'static,
R: Send + 'static,
{
let handle = self
.task_executor
.spawn_blocking_handle(task, name)
.ok_or(Error::RuntimeShutdown)?;
handle.await.map_err(Error::TokioJoin)
}
/// Accepts a `chain_segment` and filters out any uninteresting blocks (e.g., pre-finalization
/// or already-known).
///
/// This method is potentially long-running and should not run on the core executor.
pub fn filter_chain_segment(
self: &Arc<Self>,
chain_segment: Vec<Arc<SignedBeaconBlock<T::EthSpec>>>,
) -> Result<Vec<HashBlockTuple<T::EthSpec>>, ChainSegmentResult<T::EthSpec>> {
// This function will never import any blocks.
let imported_blocks = 0;
let mut filtered_chain_segment = Vec::with_capacity(chain_segment.len());
// Produce a list of the parent root and slot of the child of each block.
//
// E.g., `children[0] == (chain_segment[1].parent_root(), chain_segment[1].slot())`
let children = chain_segment
.iter()
.skip(1)
.map(|block| (block.parent_root(), block.slot()))
.collect::<Vec<_>>();
for (i, block) in chain_segment.into_iter().enumerate() {
// Ensure the block is the correct structure for the fork at `block.slot()`.
if let Err(e) = block.fork_name(&self.spec) {
return Err(ChainSegmentResult::Failed {
imported_blocks,
error: BlockError::InconsistentFork(e),
});
}
let block_root = get_block_root(&block);
if let Some((child_parent_root, child_slot)) = children.get(i) {
// If this block has a child in this chain segment, ensure that its parent root matches
// the root of this block.
//
// Without this check it would be possible to have a block verified using the
// incorrect shuffling. That would be bad, mmkay.
if block_root != *child_parent_root {
return Err(ChainSegmentResult::Failed {
imported_blocks,
error: BlockError::NonLinearParentRoots,
});
}
// Ensure that the slots are strictly increasing throughout the chain segment.
if *child_slot <= block.slot() {
return Err(ChainSegmentResult::Failed {
imported_blocks,
error: BlockError::NonLinearSlots,
});
}
}
match check_block_relevancy(&block, Some(block_root), self) {
// If the block is relevant, add it to the filtered chain segment.
Ok(_) => filtered_chain_segment.push((block_root, block)),
// If the block is already known, simply ignore this block.
Err(BlockError::BlockIsAlreadyKnown) => continue,
// If the block is the genesis block, simply ignore this block.
Err(BlockError::GenesisBlock) => continue,
// If the block is is for a finalized slot, simply ignore this block.
//
// The block is either:
//
// 1. In the canonical finalized chain.
// 2. In some non-canonical chain at a slot that has been finalized already.
//
// In the case of (1), there's no need to re-import and later blocks in this
// segement might be useful.
//
// In the case of (2), skipping the block is valid since we should never import it.
// However, we will potentially get a `ParentUnknown` on a later block. The sync
// protocol will need to ensure this is handled gracefully.
Err(BlockError::WouldRevertFinalizedSlot { .. }) => continue,
// The block has a known parent that does not descend from the finalized block.
// There is no need to process this block or any children.
Err(BlockError::NotFinalizedDescendant { block_parent_root }) => {
return Err(ChainSegmentResult::Failed {
imported_blocks,
error: BlockError::NotFinalizedDescendant { block_parent_root },
});
}
// If there was an error whilst determining if the block was invalid, return that
// error.
Err(BlockError::BeaconChainError(e)) => {
return Err(ChainSegmentResult::Failed {
imported_blocks,
error: BlockError::BeaconChainError(e),
});
}
// If the block was decided to be irrelevant for any other reason, don't include
// this block or any of it's children in the filtered chain segment.
_ => break,
}
}
Ok(filtered_chain_segment)
}
/// Attempt to verify and import a chain of blocks to `self`.
///
/// The provided blocks _must_ each reference the previous block via `block.parent_root` (i.e.,
/// be a chain). An error will be returned if this is not the case.
///
/// This operation is not atomic; if one of the blocks in the chain is invalid then some prior
/// blocks might be imported.
///
/// This method is generally much more efficient than importing each block using
/// `Self::process_block`.
pub async fn process_chain_segment(
self: &Arc<Self>,
chain_segment: Vec<Arc<SignedBeaconBlock<T::EthSpec>>>,
count_unrealized: CountUnrealized,
) -> ChainSegmentResult<T::EthSpec> {
let mut imported_blocks = 0;
// Filter uninteresting blocks from the chain segment in a blocking task.
let chain = self.clone();
let filtered_chain_segment_future = self.spawn_blocking_handle(
move || chain.filter_chain_segment(chain_segment),
"filter_chain_segment",
);
let mut filtered_chain_segment = match filtered_chain_segment_future.await {
Ok(Ok(filtered_segment)) => filtered_segment,
Ok(Err(segment_result)) => return segment_result,
Err(error) => {
return ChainSegmentResult::Failed {
imported_blocks,
error: BlockError::BeaconChainError(error),
}
}
};
while let Some((_root, block)) = filtered_chain_segment.first() {
// Determine the epoch of the first block in the remaining segment.
let start_epoch = block.slot().epoch(T::EthSpec::slots_per_epoch());
// The `last_index` indicates the position of the last block that is in the current
// epoch of `start_epoch`.
let last_index = filtered_chain_segment
.iter()
.position(|(_root, block)| {
block.slot().epoch(T::EthSpec::slots_per_epoch()) > start_epoch
})
.unwrap_or(filtered_chain_segment.len());
// Split off the first section blocks that are all either within the current epoch of
// the first block. These blocks can all be signature-verified with the same
// `BeaconState`.
let mut blocks = filtered_chain_segment.split_off(last_index);
std::mem::swap(&mut blocks, &mut filtered_chain_segment);
let chain = self.clone();
let signature_verification_future = self.spawn_blocking_handle(
move || signature_verify_chain_segment(blocks, &chain),
"signature_verify_chain_segment",
);
// Verify the signature of the blocks, returning early if the signature is invalid.
let signature_verified_blocks = match signature_verification_future.await {
Ok(Ok(blocks)) => blocks,
Ok(Err(error)) => {
return ChainSegmentResult::Failed {
imported_blocks,
error,
};
}
Err(error) => {
return ChainSegmentResult::Failed {
imported_blocks,
error: BlockError::BeaconChainError(error),
};
}
};
// Import the blocks into the chain.
for signature_verified_block in signature_verified_blocks {
match self
.process_block(signature_verified_block, count_unrealized)
.await
{
Ok(_) => imported_blocks += 1,
Err(error) => {
return ChainSegmentResult::Failed {
imported_blocks,
error,
};
}
}
}
}
ChainSegmentResult::Successful { imported_blocks }
}
/// Returns `Ok(GossipVerifiedBlock)` if the supplied `block` should be forwarded onto the
/// gossip network. The block is not imported into the chain, it is just partially verified.
///
/// The returned `GossipVerifiedBlock` should be provided to `Self::process_block` immediately
/// after it is returned, unless some other circumstance decides it should not be imported at
/// all.
///
/// ## Errors
///
/// Returns an `Err` if the given block was invalid, or an error was encountered during
pub async fn verify_block_for_gossip(
self: &Arc<Self>,
block: Arc<SignedBeaconBlock<T::EthSpec>>,
) -> Result<GossipVerifiedBlock<T>, BlockError<T::EthSpec>> {
let chain = self.clone();
self.task_executor
.clone()
.spawn_blocking_handle(
move || {
let slot = block.slot();
let graffiti_string = block.message().body().graffiti().as_utf8_lossy();
match GossipVerifiedBlock::new(block, &chain) {
Ok(verified) => {
debug!(
chain.log,
"Successfully processed gossip block";
"graffiti" => graffiti_string,
"slot" => slot,
"root" => ?verified.block_root(),
);
Ok(verified)
}
Err(e) => {
debug!(
chain.log,
"Rejected gossip block";
"error" => e.to_string(),
"graffiti" => graffiti_string,
"slot" => slot,
);
Err(e)
}
}
},
"payload_verification_handle",
)
.ok_or(BeaconChainError::RuntimeShutdown)?
.await
.map_err(BeaconChainError::TokioJoin)?
}
/// Returns `Ok(block_root)` if the given `unverified_block` was successfully verified and
/// imported into the chain.
///
/// Items that implement `IntoExecutionPendingBlock` include:
///
/// - `SignedBeaconBlock`
/// - `GossipVerifiedBlock`
///
/// ## Errors
///
/// Returns an `Err` if the given block was invalid, or an error was encountered during
/// verification.
pub async fn process_block<B: IntoExecutionPendingBlock<T>>(
self: &Arc<Self>,
unverified_block: B,
count_unrealized: CountUnrealized,
) -> Result<Hash256, BlockError<T::EthSpec>> {
// Start the Prometheus timer.
let _full_timer = metrics::start_timer(&metrics::BLOCK_PROCESSING_TIMES);
// Increment the Prometheus counter for block processing requests.
metrics::inc_counter(&metrics::BLOCK_PROCESSING_REQUESTS);
// Clone the block so we can provide it to the event handler.
let block = unverified_block.block().clone();
// A small closure to group the verification and import errors.
let chain = self.clone();
let import_block = async move {
let execution_pending = unverified_block.into_execution_pending_block(&chain)?;
chain
.import_execution_pending_block(execution_pending, count_unrealized)
.await
};
// Verify and import the block.
match import_block.await {
// The block was successfully verified and imported. Yay.
Ok(block_root) => {
trace!(
self.log,
"Beacon block imported";
"block_root" => ?block_root,
"block_slot" => %block.slot(),
);
// Increment the Prometheus counter for block processing successes.
metrics::inc_counter(&metrics::BLOCK_PROCESSING_SUCCESSES);
Ok(block_root)
}
Err(e @ BlockError::BeaconChainError(BeaconChainError::TokioJoin(_))) => {
debug!(
self.log,
"Beacon block processing cancelled";
"error" => ?e,
);
Err(e)
}
// There was an error whilst attempting to verify and import the block. The block might
// be partially verified or partially imported.
Err(BlockError::BeaconChainError(e)) => {
crit!(
self.log,
"Beacon block processing error";
"error" => ?e,
);
Err(BlockError::BeaconChainError(e))
}
// The block failed verification.
Err(other) => {
trace!(
self.log,
"Beacon block rejected";
"reason" => other.to_string(),
);
Err(other)
}
}
}
/// Accepts a fully-verified block and imports it into the chain without performing any
/// additional verification.
///
/// An error is returned if the block was unable to be imported. It may be partially imported
/// (i.e., this function is not atomic).
async fn import_execution_pending_block(
self: Arc<Self>,
execution_pending_block: ExecutionPendingBlock<T>,
count_unrealized: CountUnrealized,
) -> Result<Hash256, BlockError<T::EthSpec>> {
let ExecutionPendingBlock {
block,
block_root,
state,
parent_block: _,
confirmed_state_roots,
payload_verification_handle,
} = execution_pending_block;
let PayloadVerificationOutcome {
payload_verification_status,
is_valid_merge_transition_block,
} = payload_verification_handle
.await
.map_err(BeaconChainError::TokioJoin)?
.ok_or(BeaconChainError::RuntimeShutdown)??;
// Log the PoS pandas if a merge transition just occurred.
if is_valid_merge_transition_block {
info!(self.log, "{}", POS_PANDA_BANNER);
info!(
self.log,
"Proof of Stake Activated";
"slot" => block.slot()
);
info!(
self.log, "";
"Terminal POW Block Hash" => ?block
.message()
.execution_payload()?
.parent_hash()
.into_root()
);
info!(
self.log, "";
"Merge Transition Block Root" => ?block.message().tree_hash_root()
);
info!(
self.log, "";
"Merge Transition Execution Hash" => ?block
.message()
.execution_payload()?
.block_hash()
.into_root()
);
}
let chain = self.clone();
let block_hash = self
.spawn_blocking_handle(
move || {
chain.import_block(
block,
block_root,
state,
confirmed_state_roots,
payload_verification_status,
count_unrealized,
)
},
"payload_verification_handle",
)
.await??;
Ok(block_hash)
}
/// Accepts a fully-verified block and imports it into the chain without performing any
/// additional verification.
///
/// An error is returned if the block was unable to be imported. It may be partially imported
/// (i.e., this function is not atomic).
fn import_block(
&self,
signed_block: Arc<SignedBeaconBlock<T::EthSpec>>,
block_root: Hash256,
mut state: BeaconState<T::EthSpec>,
confirmed_state_roots: Vec<Hash256>,
payload_verification_status: PayloadVerificationStatus,
count_unrealized: CountUnrealized,
) -> Result<Hash256, BlockError<T::EthSpec>> {
let current_slot = self.slot()?;
let current_epoch = current_slot.epoch(T::EthSpec::slots_per_epoch());
let attestation_observation_timer =
metrics::start_timer(&metrics::BLOCK_PROCESSING_ATTESTATION_OBSERVATION);
// Iterate through the attestations in the block and register them as an "observed
// attestation". This will stop us from propagating them on the gossip network.
for a in signed_block.message().body().attestations() {
match self.observed_attestations.write().observe_item(a, None) {
// If the observation was successful or if the slot for the attestation was too
// low, continue.
//
// We ignore `SlotTooLow` since this will be very common whilst syncing.
Ok(_) | Err(AttestationObservationError::SlotTooLow { .. }) => {}
Err(e) => return Err(BlockError::BeaconChainError(e.into())),
}
}
metrics::stop_timer(attestation_observation_timer);
// If a slasher is configured, provide the attestations from the block.
if let Some(slasher) = self.slasher.as_ref() {
for attestation in signed_block.message().body().attestations() {
let committee =
state.get_beacon_committee(attestation.data.slot, attestation.data.index)?;
let indexed_attestation = get_indexed_attestation(committee.committee, attestation)
.map_err(|e| BlockError::BeaconChainError(e.into()))?;
slasher.accept_attestation(indexed_attestation);
}
}
// If there are new validators in this block, update our pubkey cache.
//
// We perform this _before_ adding the block to fork choice because the pubkey cache is
// used by attestation processing which will only process an attestation if the block is
// known to fork choice. This ordering ensure that the pubkey cache is always up-to-date.
self.validator_pubkey_cache
.try_write_for(VALIDATOR_PUBKEY_CACHE_LOCK_TIMEOUT)
.ok_or(Error::ValidatorPubkeyCacheLockTimeout)?
.import_new_pubkeys(&state)?;
// For the current and next epoch of this state, ensure we have the shuffling from this
// block in our cache.
for relative_epoch in &[RelativeEpoch::Current, RelativeEpoch::Next] {
let shuffling_id = AttestationShufflingId::new(block_root, &state, *relative_epoch)?;
let shuffling_is_cached = self
.shuffling_cache
.try_read_for(ATTESTATION_CACHE_LOCK_TIMEOUT)
.ok_or(Error::AttestationCacheLockTimeout)?
.contains(&shuffling_id);
if !shuffling_is_cached {
state.build_committee_cache(*relative_epoch, &self.spec)?;
let committee_cache = state.committee_cache(*relative_epoch)?;
self.shuffling_cache
.try_write_for(ATTESTATION_CACHE_LOCK_TIMEOUT)
.ok_or(Error::AttestationCacheLockTimeout)?
.insert(shuffling_id, committee_cache);
}
}
// Apply the state to the attester cache, only if it is from the previous epoch or later.
//
// In a perfect scenario there should be no need to add previous-epoch states to the cache.
// However, latency between the VC and the BN might cause the VC to produce attestations at
// a previous slot.
if state.current_epoch().saturating_add(1_u64) >= current_epoch {
self.attester_cache
.maybe_cache_state(&state, block_root, &self.spec)
.map_err(BeaconChainError::from)?;
}
// Alias for readability.
let block = signed_block.message();
// Only perform the weak subjectivity check if it was configured.
if let Some(wss_checkpoint) = self.config.weak_subjectivity_checkpoint {
// Note: we're using the finalized checkpoint from the head state, rather than fork
// choice.
//
// We are doing this to ensure that we detect changes in finalization. It's possible
// that fork choice has already been updated to the finalized checkpoint in the block
// we're importing.
let current_head_finalized_checkpoint =
self.canonical_head.cached_head().finalized_checkpoint();
// Compare the existing finalized checkpoint with the incoming block's finalized checkpoint.
let new_finalized_checkpoint = state.finalized_checkpoint();
// This ensures we only perform the check once.
if (current_head_finalized_checkpoint.epoch < wss_checkpoint.epoch)
&& (wss_checkpoint.epoch <= new_finalized_checkpoint.epoch)
{
if let Err(e) =
self.verify_weak_subjectivity_checkpoint(wss_checkpoint, block_root, &state)
{
let mut shutdown_sender = self.shutdown_sender();
crit!(
self.log,
"Weak subjectivity checkpoint verification failed while importing block!";
"block_root" => ?block_root,
"parent_root" => ?block.parent_root(),
"old_finalized_epoch" => ?current_head_finalized_checkpoint.epoch,
"new_finalized_epoch" => ?new_finalized_checkpoint.epoch,
"weak_subjectivity_epoch" => ?wss_checkpoint.epoch,
"error" => ?e,
);
crit!(self.log, "You must use the `--purge-db` flag to clear the database and restart sync. You may be on a hostile network.");
shutdown_sender
.try_send(ShutdownReason::Failure(
"Weak subjectivity checkpoint verification failed. Provided block root is not a checkpoint."
))
.map_err(|err| BlockError::BeaconChainError(BeaconChainError::WeakSubjectivtyShutdownError(err)))?;
return Err(BlockError::WeakSubjectivityConflict);
}
}
}
// Take an exclusive write-lock on fork choice. It's very important prevent deadlocks by
// avoiding taking other locks whilst holding this lock.
let mut fork_choice = self.canonical_head.fork_choice_write_lock();
// Do not import a block that doesn't descend from the finalized root.
check_block_is_finalized_descendant(self, &fork_choice, &signed_block)?;
// Register the new block with the fork choice service.
{
let _fork_choice_block_timer =
metrics::start_timer(&metrics::FORK_CHOICE_PROCESS_BLOCK_TIMES);
let block_delay = self
.slot_clock
.seconds_from_current_slot_start(self.spec.seconds_per_slot)
.ok_or(Error::UnableToComputeTimeAtSlot)?;
fork_choice
.on_block(
current_slot,
block,
block_root,
block_delay,
&state,
payload_verification_status,
&self.spec,
count_unrealized.and(self.config.count_unrealized.into()),
)
.map_err(|e| BlockError::BeaconChainError(e.into()))?;
}
// Allow the validator monitor to learn about a new valid state.
self.validator_monitor
.write()
.process_valid_state(current_slot.epoch(T::EthSpec::slots_per_epoch()), &state);
let validator_monitor = self.validator_monitor.read();
// Register each attestation in the block with the fork choice service.
for attestation in block.body().attestations() {
let _fork_choice_attestation_timer =
metrics::start_timer(&metrics::FORK_CHOICE_PROCESS_ATTESTATION_TIMES);
let attestation_target_epoch = attestation.data.target.epoch;
let committee =
state.get_beacon_committee(attestation.data.slot, attestation.data.index)?;
let indexed_attestation = get_indexed_attestation(committee.committee, attestation)
.map_err(|e| BlockError::BeaconChainError(e.into()))?;
match fork_choice.on_attestation(
current_slot,
&indexed_attestation,
AttestationFromBlock::True,
&self.spec,
) {
Ok(()) => Ok(()),
// Ignore invalid attestations whilst importing attestations from a block. The
// block might be very old and therefore the attestations useless to fork choice.
Err(ForkChoiceError::InvalidAttestation(_)) => Ok(()),
Err(e) => Err(BlockError::BeaconChainError(e.into())),
}?;
// To avoid slowing down sync, only register attestations for the
// `observed_block_attesters` if they are from the previous epoch or later.
if attestation_target_epoch + 1 >= current_epoch {
let mut observed_block_attesters = self.observed_block_attesters.write();
for &validator_index in &indexed_attestation.attesting_indices {
if let Err(e) = observed_block_attesters
.observe_validator(attestation_target_epoch, validator_index as usize)
{
debug!(
self.log,
"Failed to register observed block attester";
"error" => ?e,
"epoch" => attestation_target_epoch,
"validator_index" => validator_index,
)
}
}
}
// Only register this with the validator monitor when the block is sufficiently close to
// the current slot.
if VALIDATOR_MONITOR_HISTORIC_EPOCHS as u64 * T::EthSpec::slots_per_epoch()
+ block.slot().as_u64()
>= current_slot.as_u64()
{
match fork_choice.get_block(&block.parent_root()) {
Some(parent_block) => validator_monitor.register_attestation_in_block(
&indexed_attestation,
parent_block.slot,
&self.spec,
),
None => warn!(self.log, "Failed to get parent block"; "slot" => %block.slot()),
}
}
}
// If the block is recent enough and it was not optimistically imported, check to see if it
// becomes the head block. If so, apply it to the early attester cache. This will allow
// attestations to the block without waiting for the block and state to be inserted to the
// database.
//
// Only performing this check on recent blocks avoids slowing down sync with lots of calls
// to fork choice `get_head`.
//
// Optimistically imported blocks are not added to the cache since the cache is only useful
// for a small window of time and the complexity of keeping track of the optimistic status
// is not worth it.
if !payload_verification_status.is_optimistic()
&& block.slot() + EARLY_ATTESTER_CACHE_HISTORIC_SLOTS >= current_slot
{
let new_head_root = fork_choice
.get_head(current_slot, &self.spec)
.map_err(BeaconChainError::from)?;
if new_head_root == block_root {
if let Some(proto_block) = fork_choice.get_block(&block_root) {
if let Err(e) = self.early_attester_cache.add_head_block(
block_root,
signed_block.clone(),
proto_block,
&state,
&self.spec,
) {
warn!(
self.log,
"Early attester cache insert failed";
"error" => ?e
);
}
} else {
warn!(
self.log,
"Early attester block missing";
"block_root" => ?block_root
);
}
}
}
// Register sync aggregate with validator monitor
if let Ok(sync_aggregate) = block.body().sync_aggregate() {
// `SyncCommittee` for the sync_aggregate should correspond to the duty slot
let duty_epoch = block.slot().epoch(T::EthSpec::slots_per_epoch());
let sync_committee = self.sync_committee_at_epoch(duty_epoch)?;
let participant_pubkeys = sync_committee
.pubkeys
.iter()
.zip(sync_aggregate.sync_committee_bits.iter())
.filter_map(|(pubkey, bit)| bit.then(|| pubkey))
.collect::<Vec<_>>();
validator_monitor.register_sync_aggregate_in_block(
block.slot(),
block.parent_root(),
participant_pubkeys,
);
}
for exit in block.body().voluntary_exits() {
validator_monitor.register_block_voluntary_exit(&exit.message)
}
for slashing in block.body().attester_slashings() {
validator_monitor.register_block_attester_slashing(slashing)
}
for slashing in block.body().proposer_slashings() {
validator_monitor.register_block_proposer_slashing(slashing)
}
drop(validator_monitor);
// Only present some metrics for blocks from the previous epoch or later.
//
// This helps avoid noise in the metrics during sync.
if block.slot().epoch(T::EthSpec::slots_per_epoch()) + 1 >= self.epoch()? {
metrics::observe(
&metrics::OPERATIONS_PER_BLOCK_ATTESTATION,
block.body().attestations().len() as f64,
);
if let Ok(sync_aggregate) = block.body().sync_aggregate() {
metrics::set_gauge(
&metrics::BLOCK_SYNC_AGGREGATE_SET_BITS,
sync_aggregate.num_set_bits() as i64,
);
}
}
let db_write_timer = metrics::start_timer(&metrics::BLOCK_PROCESSING_DB_WRITE);
// Store the block and its state, and execute the confirmation batch for the intermediate
// states, which will delete their temporary flags.
// If the write fails, revert fork choice to the version from disk, else we can
// end up with blocks in fork choice that are missing from disk.
// See https://github.com/sigp/lighthouse/issues/2028
let mut ops: Vec<_> = confirmed_state_roots
.into_iter()
.map(StoreOp::DeleteStateTemporaryFlag)
.collect();
ops.push(StoreOp::PutBlock(block_root, signed_block.clone()));
ops.push(StoreOp::PutState(block.state_root(), &state));
let txn_lock = self.store.hot_db.begin_rw_transaction();
if let Err(e) = self.store.do_atomically(ops) {
error!(
self.log,
"Database write failed!";
"msg" => "Restoring fork choice from disk",
"error" => ?e,
);
// Since the write failed, try to revert the canonical head back to what was stored
// in the database. This attempts to prevent inconsistency between the database and
// fork choice.
if let Err(e) =
self.canonical_head
.restore_from_store(fork_choice, &self.store, &self.spec)
{
crit!(
self.log,
"No stored fork choice found to restore from";
"error" => ?e,
"warning" => "The database is likely corrupt now, consider --purge-db"
);
return Err(BlockError::BeaconChainError(e));
}
return Err(e.into());
}
drop(txn_lock);
// The fork choice write-lock is dropped *after* the on-disk database has been updated.
// This prevents inconsistency between the two at the expense of concurrency.
drop(fork_choice);
// We're declaring the block "imported" at this point, since fork choice and the DB know
// about it.
let block_time_imported = timestamp_now();
let parent_root = block.parent_root();
let slot = block.slot();
self.snapshot_cache
.try_write_for(BLOCK_PROCESSING_CACHE_LOCK_TIMEOUT)
.ok_or(Error::SnapshotCacheLockTimeout)
.map(|mut snapshot_cache| {
snapshot_cache.insert(
BeaconSnapshot {
beacon_state: state,
beacon_block: signed_block,
beacon_block_root: block_root,
},
None,
&self.spec,
)
})
.unwrap_or_else(|e| {
error!(
self.log,
"Failed to insert snapshot";
"error" => ?e,
"task" => "process block"
);
});
self.head_tracker
.register_block(block_root, parent_root, slot);
// Send an event to the `events` endpoint after fully processing the block.
if let Some(event_handler) = self.event_handler.as_ref() {
if event_handler.has_block_subscribers() {
event_handler.register(EventKind::Block(SseBlock {
slot,
block: block_root,
execution_optimistic: payload_verification_status.is_optimistic(),
}));
}
}
metrics::stop_timer(db_write_timer);
metrics::inc_counter(&metrics::BLOCK_PROCESSING_SUCCESSES);
let block_delay_total = get_slot_delay_ms(block_time_imported, slot, &self.slot_clock);
// Do not write to the cache for blocks older than 2 epochs, this helps reduce writes to
// the cache during sync.
if block_delay_total < self.slot_clock.slot_duration() * 64 {
// Store the timestamp of the block being imported into the cache.
self.block_times_cache.write().set_time_imported(
block_root,
current_slot,
block_time_imported,
);
}
// Do not store metrics if the block was > 4 slots old, this helps prevent noise during
// sync.
if block_delay_total < self.slot_clock.slot_duration() * 4 {
// Observe the delay between when we observed the block and when we imported it.
let block_delays = self.block_times_cache.read().get_block_delays(
block_root,
self.slot_clock
.start_of(current_slot)
.unwrap_or_else(|| Duration::from_secs(0)),
);
metrics::observe_duration(
&metrics::BEACON_BLOCK_IMPORTED_OBSERVED_DELAY_TIME,
block_delays
.imported
.unwrap_or_else(|| Duration::from_secs(0)),
);
}
// Inform the unknown block cache, in case it was waiting on this block.
self.pre_finalization_block_cache
.block_processed(block_root);
Ok(block_root)
}
/// If configured, wait for the fork choice run at the start of the slot to complete.
fn wait_for_fork_choice_before_block_production(
self: &Arc<Self>,
slot: Slot,
) -> Result<(), BlockProductionError> {
if let Some(rx) = &self.fork_choice_signal_rx {
let current_slot = self
.slot()
.map_err(|_| BlockProductionError::UnableToReadSlot)?;
let timeout = Duration::from_millis(self.config.fork_choice_before_proposal_timeout_ms);
if slot == current_slot || slot == current_slot + 1 {
match rx.wait_for_fork_choice(slot, timeout) {
ForkChoiceWaitResult::Success(fc_slot) => {
debug!(
self.log,
"Fork choice successfully updated before block production";
"slot" => slot,
"fork_choice_slot" => fc_slot,
);
}
ForkChoiceWaitResult::Behind(fc_slot) => {
warn!(
self.log,
"Fork choice notifier out of sync with block production";
"fork_choice_slot" => fc_slot,
"slot" => slot,
"message" => "this block may be orphaned",
);
}
ForkChoiceWaitResult::TimeOut => {
warn!(
self.log,
"Timed out waiting for fork choice before proposal";
"message" => "this block may be orphaned",
);
}
}
} else {
error!(
self.log,
"Producing block at incorrect slot";
"block_slot" => slot,
"current_slot" => current_slot,
"message" => "check clock sync, this block may be orphaned",
);
}
}
Ok(())
}
/// Produce a new block at the given `slot`.
///
/// The produced block will not be inherently valid, it must be signed by a block producer.
/// Block signing is out of the scope of this function and should be done by a separate program.
pub async fn produce_block<Payload: ExecPayload<T::EthSpec>>(
self: &Arc<Self>,
randao_reveal: Signature,
slot: Slot,
validator_graffiti: Option<Graffiti>,
) -> Result<BeaconBlockAndState<T::EthSpec, Payload>, BlockProductionError> {
self.produce_block_with_verification(
randao_reveal,
slot,
validator_graffiti,
ProduceBlockVerification::VerifyRandao,
)
.await
}
/// Same as `produce_block` but allowing for configuration of RANDAO-verification.
pub async fn produce_block_with_verification<Payload: ExecPayload<T::EthSpec>>(
self: &Arc<Self>,
randao_reveal: Signature,
slot: Slot,
validator_graffiti: Option<Graffiti>,
verification: ProduceBlockVerification,
) -> Result<BeaconBlockAndState<T::EthSpec, Payload>, BlockProductionError> {
// Part 1/2 (blocking)
//
// Load the parent state from disk.
let chain = self.clone();
let (state, state_root_opt) = self
.task_executor
.spawn_blocking_handle(
move || chain.load_state_for_block_production::<Payload>(slot),
"produce_partial_beacon_block",
)
.ok_or(BlockProductionError::ShuttingDown)?
.await
.map_err(BlockProductionError::TokioJoin)??;
// Part 2/2 (async, with some blocking components)
//
// Produce the block upon the state
self.produce_block_on_state::<Payload>(
state,
state_root_opt,
slot,
randao_reveal,
validator_graffiti,
verification,
)
.await
}
/// Load a beacon state from the database for block production. This is a long-running process
/// that should not be performed in an `async` context.
fn load_state_for_block_production<Payload: ExecPayload<T::EthSpec>>(
self: &Arc<Self>,
slot: Slot,
) -> Result<(BeaconState<T::EthSpec>, Option<Hash256>), BlockProductionError> {
metrics::inc_counter(&metrics::BLOCK_PRODUCTION_REQUESTS);
let _complete_timer = metrics::start_timer(&metrics::BLOCK_PRODUCTION_TIMES);
let fork_choice_timer = metrics::start_timer(&metrics::BLOCK_PRODUCTION_FORK_CHOICE_TIMES);
self.wait_for_fork_choice_before_block_production(slot)?;
drop(fork_choice_timer);
// Producing a block requires the tree hash cache, so clone a full state corresponding to
// the head from the snapshot cache. Unfortunately we can't move the snapshot out of the
// cache (which would be fast), because we need to re-process the block after it has been
// signed. If we miss the cache or we're producing a block that conflicts with the head,
// fall back to getting the head from `slot - 1`.
let state_load_timer = metrics::start_timer(&metrics::BLOCK_PRODUCTION_STATE_LOAD_TIMES);
// Atomically read some values from the head whilst avoiding holding cached head `Arc` any
// longer than necessary.
let (head_slot, head_block_root) = {
let head = self.canonical_head.cached_head();
(head.head_slot(), head.head_block_root())
};
let (state, state_root_opt) = if head_slot < slot {
// Normal case: proposing a block atop the current head. Use the snapshot cache.
if let Some(pre_state) = self
.snapshot_cache
.try_read_for(BLOCK_PROCESSING_CACHE_LOCK_TIMEOUT)
.and_then(|snapshot_cache| {
snapshot_cache.get_state_for_block_production(head_block_root)
})
{
(pre_state.pre_state, pre_state.state_root)
} else {
warn!(
self.log,
"Block production cache miss";
"message" => "this block is more likely to be orphaned",
"slot" => slot,
);
let state = self
.state_at_slot(slot - 1, StateSkipConfig::WithStateRoots)
.map_err(|_| BlockProductionError::UnableToProduceAtSlot(slot))?;
(state, None)
}
} else {
warn!(
self.log,
"Producing block that conflicts with head";
"message" => "this block is more likely to be orphaned",
"slot" => slot,
);
let state = self
.state_at_slot(slot - 1, StateSkipConfig::WithStateRoots)
.map_err(|_| BlockProductionError::UnableToProduceAtSlot(slot))?;
(state, None)
};
drop(state_load_timer);
Ok((state, state_root_opt))
}
/// Produce a block for some `slot` upon the given `state`.
///
/// Typically the `self.produce_block()` function should be used, instead of calling this
/// function directly. This function is useful for purposefully creating forks or blocks at
/// non-current slots.
///
/// If required, the given state will be advanced to the given `produce_at_slot`, then a block
/// will be produced at that slot height.
///
/// The provided `state_root_opt` should only ever be set to `Some` if the contained value is
/// equal to the root of `state`. Providing this value will serve as an optimization to avoid
/// performing a tree hash in some scenarios.
pub async fn produce_block_on_state<Payload: ExecPayload<T::EthSpec>>(
self: &Arc<Self>,
state: BeaconState<T::EthSpec>,
state_root_opt: Option<Hash256>,
produce_at_slot: Slot,
randao_reveal: Signature,
validator_graffiti: Option<Graffiti>,
verification: ProduceBlockVerification,
) -> Result<BeaconBlockAndState<T::EthSpec, Payload>, BlockProductionError> {
// Part 1/3 (blocking)
//
// Perform the state advance and block-packing functions.
let chain = self.clone();
let mut partial_beacon_block = self
.task_executor
.spawn_blocking_handle(
move || {
chain.produce_partial_beacon_block(
state,
state_root_opt,
produce_at_slot,
randao_reveal,
validator_graffiti,
)
},
"produce_partial_beacon_block",
)
.ok_or(BlockProductionError::ShuttingDown)?
.await
.map_err(BlockProductionError::TokioJoin)??;
// Part 2/3 (async)
//
// Wait for the execution layer to return an execution payload (if one is required).
let prepare_payload_handle = partial_beacon_block.prepare_payload_handle.take();
let execution_payload = if let Some(prepare_payload_handle) = prepare_payload_handle {
let execution_payload = prepare_payload_handle
.await
.map_err(BlockProductionError::TokioJoin)?
.ok_or(BlockProductionError::ShuttingDown)??;
Some(execution_payload)
} else {
None
};
// Part 3/3 (blocking)
//
// Perform the final steps of combining all the parts and computing the state root.
let chain = self.clone();
self.task_executor
.spawn_blocking_handle(
move || {
chain.complete_partial_beacon_block(
partial_beacon_block,
execution_payload,
verification,
)
},
"complete_partial_beacon_block",
)
.ok_or(BlockProductionError::ShuttingDown)?
.await
.map_err(BlockProductionError::TokioJoin)?
}
fn produce_partial_beacon_block<Payload: ExecPayload<T::EthSpec>>(
self: &Arc<Self>,
mut state: BeaconState<T::EthSpec>,
state_root_opt: Option<Hash256>,
produce_at_slot: Slot,
randao_reveal: Signature,
validator_graffiti: Option<Graffiti>,
) -> Result<PartialBeaconBlock<T::EthSpec, Payload>, BlockProductionError> {
let eth1_chain = self
.eth1_chain
.as_ref()
.ok_or(BlockProductionError::NoEth1ChainConnection)?;
// It is invalid to try to produce a block using a state from a future slot.
if state.slot() > produce_at_slot {
return Err(BlockProductionError::StateSlotTooHigh {
produce_at_slot,
state_slot: state.slot(),
});
}
let slot_timer = metrics::start_timer(&metrics::BLOCK_PRODUCTION_SLOT_PROCESS_TIMES);
// Ensure the state has performed a complete transition into the required slot.
complete_state_advance(&mut state, state_root_opt, produce_at_slot, &self.spec)?;
drop(slot_timer);
state.build_committee_cache(RelativeEpoch::Current, &self.spec)?;
let parent_root = if state.slot() > 0 {
*state
.get_block_root(state.slot() - 1)
.map_err(|_| BlockProductionError::UnableToGetBlockRootFromState)?
} else {
state.latest_block_header().canonical_root()
};
let proposer_index = state.get_beacon_proposer_index(state.slot(), &self.spec)? as u64;
let pubkey_opt = state
.validators()
.get(proposer_index as usize)
.map(|v| v.pubkey);
// If required, start the process of loading an execution payload from the EL early. This
// allows it to run concurrently with things like attestation packing.
let prepare_payload_handle = match &state {
BeaconState::Base(_) | BeaconState::Altair(_) => None,
BeaconState::Merge(_) => {
let prepare_payload_handle =
get_execution_payload(self.clone(), &state, proposer_index, pubkey_opt)?;
Some(prepare_payload_handle)
}
};
let (proposer_slashings, attester_slashings, voluntary_exits) =
self.op_pool.get_slashings_and_exits(&state, &self.spec);
let eth1_data = eth1_chain.eth1_data_for_block_production(&state, &self.spec)?;
let deposits = eth1_chain.deposits_for_block_inclusion(&state, &eth1_data, &self.spec)?;
// Iterate through the naive aggregation pool and ensure all the attestations from there
// are included in the operation pool.
let unagg_import_timer =
metrics::start_timer(&metrics::BLOCK_PRODUCTION_UNAGGREGATED_TIMES);
for attestation in self.naive_aggregation_pool.read().iter() {
if let Err(e) = self.op_pool.insert_attestation(
attestation.clone(),
&state.fork(),
state.genesis_validators_root(),
&self.spec,
) {
// Don't stop block production if there's an error, just create a log.
error!(
self.log,
"Attestation did not transfer to op pool";
"reason" => ?e
);
}
}
drop(unagg_import_timer);
// Override the beacon node's graffiti with graffiti from the validator, if present.
let graffiti = match validator_graffiti {
Some(graffiti) => graffiti,
None => self.graffiti,
};
let attestation_packing_timer =
metrics::start_timer(&metrics::BLOCK_PRODUCTION_ATTESTATION_TIMES);
let mut prev_filter_cache = HashMap::new();
let prev_attestation_filter = |att: &&Attestation<T::EthSpec>| {
self.filter_op_pool_attestation(&mut prev_filter_cache, *att, &state)
};
let mut curr_filter_cache = HashMap::new();
let curr_attestation_filter = |att: &&Attestation<T::EthSpec>| {
self.filter_op_pool_attestation(&mut curr_filter_cache, *att, &state)
};
let attestations = self
.op_pool
.get_attestations(
&state,
prev_attestation_filter,
curr_attestation_filter,
&self.spec,
)
.map_err(BlockProductionError::OpPoolError)?;
drop(attestation_packing_timer);
let slot = state.slot();
let proposer_index = state.get_beacon_proposer_index(state.slot(), &self.spec)? as u64;
let sync_aggregate = if matches!(&state, BeaconState::Base(_)) {
None
} else {
let sync_aggregate = self
.op_pool
.get_sync_aggregate(&state)
.map_err(BlockProductionError::OpPoolError)?
.unwrap_or_else(|| {
warn!(
self.log,
"Producing block with no sync contributions";
"slot" => state.slot(),
);
SyncAggregate::new()
});
Some(sync_aggregate)
};
Ok(PartialBeaconBlock {
state,
slot,
proposer_index,
parent_root,
randao_reveal,
eth1_data,
graffiti,
proposer_slashings,
attester_slashings,
attestations,
deposits,
voluntary_exits,
sync_aggregate,
prepare_payload_handle,
})
}
fn complete_partial_beacon_block<Payload: ExecPayload<T::EthSpec>>(
&self,
partial_beacon_block: PartialBeaconBlock<T::EthSpec, Payload>,
execution_payload: Option<Payload>,
verification: ProduceBlockVerification,
) -> Result<BeaconBlockAndState<T::EthSpec, Payload>, BlockProductionError> {
let PartialBeaconBlock {
mut state,
slot,
proposer_index,
parent_root,
randao_reveal,
eth1_data,
graffiti,
proposer_slashings,
attester_slashings,
attestations,
deposits,
voluntary_exits,
sync_aggregate,
// We don't need the prepare payload handle since the `execution_payload` is passed into
// this function. We can assume that the handle has already been consumed in order to
// produce said `execution_payload`.
prepare_payload_handle: _,
} = partial_beacon_block;
let inner_block = match &state {
BeaconState::Base(_) => BeaconBlock::Base(BeaconBlockBase {
slot,
proposer_index,
parent_root,
state_root: Hash256::zero(),
body: BeaconBlockBodyBase {
randao_reveal,
eth1_data,
graffiti,
proposer_slashings: proposer_slashings.into(),
attester_slashings: attester_slashings.into(),
attestations: attestations.into(),
deposits: deposits.into(),
voluntary_exits: voluntary_exits.into(),
_phantom: PhantomData,
},
}),
BeaconState::Altair(_) => BeaconBlock::Altair(BeaconBlockAltair {
slot,
proposer_index,
parent_root,
state_root: Hash256::zero(),
body: BeaconBlockBodyAltair {
randao_reveal,
eth1_data,
graffiti,
proposer_slashings: proposer_slashings.into(),
attester_slashings: attester_slashings.into(),
attestations: attestations.into(),
deposits: deposits.into(),
voluntary_exits: voluntary_exits.into(),
sync_aggregate: sync_aggregate
.ok_or(BlockProductionError::MissingSyncAggregate)?,
_phantom: PhantomData,
},
}),
BeaconState::Merge(_) => BeaconBlock::Merge(BeaconBlockMerge {
slot,
proposer_index,
parent_root,
state_root: Hash256::zero(),
body: BeaconBlockBodyMerge {
randao_reveal,
eth1_data,
graffiti,
proposer_slashings: proposer_slashings.into(),
attester_slashings: attester_slashings.into(),
attestations: attestations.into(),
deposits: deposits.into(),
voluntary_exits: voluntary_exits.into(),
sync_aggregate: sync_aggregate
.ok_or(BlockProductionError::MissingSyncAggregate)?,
execution_payload: execution_payload
.ok_or(BlockProductionError::MissingExecutionPayload)?,
},
}),
};
let block = SignedBeaconBlock::from_block(
inner_block,
// The block is not signed here, that is the task of a validator client.
Signature::empty(),
);
let block_size = block.ssz_bytes_len();
debug!(
self.log,
"Produced block on state";
"block_size" => block_size,
);
metrics::observe(&metrics::BLOCK_SIZE, block_size as f64);
if block_size > self.config.max_network_size {
return Err(BlockProductionError::BlockTooLarge(block_size));
}
let process_timer = metrics::start_timer(&metrics::BLOCK_PRODUCTION_PROCESS_TIMES);
let signature_strategy = match verification {
ProduceBlockVerification::VerifyRandao => BlockSignatureStrategy::VerifyRandao,
ProduceBlockVerification::NoVerification => BlockSignatureStrategy::NoVerification,
};
per_block_processing(
&mut state,
&block,
None,
signature_strategy,
VerifyBlockRoot::True,
&self.spec,
)?;
drop(process_timer);
let state_root_timer = metrics::start_timer(&metrics::BLOCK_PRODUCTION_STATE_ROOT_TIMES);
let state_root = state.update_tree_hash_cache()?;
drop(state_root_timer);
let (mut block, _) = block.deconstruct();
*block.state_root_mut() = state_root;
metrics::inc_counter(&metrics::BLOCK_PRODUCTION_SUCCESSES);
trace!(
self.log,
"Produced beacon block";
"parent" => ?block.parent_root(),
"attestations" => block.body().attestations().len(),
"slot" => block.slot()
);
Ok((block, state))
}
/// This method must be called whenever an execution engine indicates that a payload is
/// invalid.
///
/// Fork choice will be run after the invalidation. The client may be shut down if the `op`
/// results in the justified checkpoint being invalidated.
///
/// See the documentation of `InvalidationOperation` for information about defining `op`.
pub async fn process_invalid_execution_payload(
self: &Arc<Self>,
op: &InvalidationOperation,
) -> Result<(), Error> {
debug!(
self.log,
"Invalid execution payload in block";
"latest_valid_ancestor" => ?op.latest_valid_ancestor(),
"block_root" => ?op.block_root(),
);
// Update the execution status in fork choice.
//
// Use a blocking task since it interacts with the `canonical_head` lock. Lock contention
// on the core executor is bad.
let chain = self.clone();
let inner_op = op.clone();
let fork_choice_result = self
.spawn_blocking_handle(
move || {
chain
.canonical_head
.fork_choice_write_lock()
.on_invalid_execution_payload(&inner_op)
},
"invalid_payload_fork_choice_update",
)
.await?;
// Update fork choice.
if let Err(e) = fork_choice_result {
crit!(
self.log,
"Failed to process invalid payload";
"error" => ?e,
"latest_valid_ancestor" => ?op.latest_valid_ancestor(),
"block_root" => ?op.block_root(),
);
}
// Run fork choice since it's possible that the payload invalidation might result in a new
// head.
//
// Don't return early though, since invalidating the justified checkpoint might cause an
// error here.
if let Err(e) = self.recompute_head_at_current_slot().await {
crit!(
self.log,
"Failed to run fork choice routine";
"error" => ?e,
);
}
// Obtain the justified root from fork choice.
//
// Use a blocking task since it interacts with the `canonical_head` lock. Lock contention
// on the core executor is bad.
let chain = self.clone();
let justified_block = self
.spawn_blocking_handle(
move || {
chain
.canonical_head
.fork_choice_read_lock()
.get_justified_block()
},
"invalid_payload_fork_choice_get_justified",
)
.await??;
if justified_block.execution_status.is_invalid() {
crit!(
self.log,
"The justified checkpoint is invalid";
"msg" => "ensure you are not connected to a malicious network. This error is not \
recoverable, please reach out to the lighthouse developers for assistance."
);
let mut shutdown_sender = self.shutdown_sender();
if let Err(e) = shutdown_sender.try_send(ShutdownReason::Failure(
INVALID_JUSTIFIED_PAYLOAD_SHUTDOWN_REASON,
)) {
crit!(
self.log,
"Unable to trigger client shut down";
"msg" => "shut down may already be under way",
"error" => ?e
);
}
// Return an error here to try and prevent progression by upstream functions.
return Err(Error::JustifiedPayloadInvalid {
justified_root: justified_block.root,
execution_block_hash: justified_block.execution_status.block_hash(),
});
}
Ok(())
}
pub fn block_is_known_to_fork_choice(&self, root: &Hash256) -> bool {
self.canonical_head
.fork_choice_read_lock()
.contains_block(root)
}
/// Determines the beacon proposer for the next slot. If that proposer is registered in the
/// `execution_layer`, provide the `execution_layer` with the necessary information to produce
/// `PayloadAttributes` for future calls to fork choice.
///
/// The `PayloadAttributes` are used by the EL to give it a look-ahead for preparing an optimal
/// set of transactions for a new `ExecutionPayload`.
///
/// This function will result in a call to `forkchoiceUpdated` on the EL if:
///
/// 1. We're in the tail-end of the slot (as defined by PAYLOAD_PREPARATION_LOOKAHEAD_FACTOR)
/// 2. The head block is one slot (or less) behind the prepare slot (e.g., we're preparing for
/// the next slot and the block at the current slot is already known).
pub async fn prepare_beacon_proposer(
self: &Arc<Self>,
current_slot: Slot,
) -> Result<(), Error> {
let prepare_slot = current_slot + 1;
let prepare_epoch = prepare_slot.epoch(T::EthSpec::slots_per_epoch());
// There's no need to run the proposer preparation routine before the bellatrix fork.
if self.slot_is_prior_to_bellatrix(prepare_slot) {
return Ok(());
}
let execution_layer = self
.execution_layer
.clone()
.ok_or(Error::ExecutionLayerMissing)?;
// Nothing to do if there are no proposers registered with the EL, exit early to avoid
// wasting cycles.
if !execution_layer.has_any_proposer_preparation_data().await {
return Ok(());
}
// Atomically read some values from the canonical head, whilst avoiding holding the cached
// head `Arc` any longer than necessary.
//
// Use a blocking task since blocking the core executor on the canonical head read lock can
// block the core tokio executor.
let chain = self.clone();
let (head_slot, head_root, head_decision_root, head_random, forkchoice_update_params) =
self.spawn_blocking_handle(
move || {
let cached_head = chain.canonical_head.cached_head();
let head_block_root = cached_head.head_block_root();
let decision_root = cached_head
.snapshot
.beacon_state
.proposer_shuffling_decision_root(head_block_root)?;
Ok::<_, Error>((
cached_head.head_slot(),
head_block_root,
decision_root,
cached_head.head_random()?,
cached_head.forkchoice_update_parameters(),
))
},
"prepare_beacon_proposer_fork_choice_read",
)
.await??;
let head_epoch = head_slot.epoch(T::EthSpec::slots_per_epoch());
// Don't bother with proposer prep if the head is more than
// `PREPARE_PROPOSER_HISTORIC_EPOCHS` prior to the current slot.
//
// This prevents the routine from running during sync.
if head_slot + T::EthSpec::slots_per_epoch() * PREPARE_PROPOSER_HISTORIC_EPOCHS
< current_slot
{
debug!(
self.log,
"Head too old for proposer prep";
"head_slot" => head_slot,
"current_slot" => current_slot,
);
return Ok(());
}
// Ensure that the shuffling decision root is correct relative to the epoch we wish to
// query.
let shuffling_decision_root = if head_epoch == prepare_epoch {
head_decision_root
} else {
head_root
};
// Read the proposer from the proposer cache.
let cached_proposer = self
.beacon_proposer_cache
.lock()
.get_slot::<T::EthSpec>(shuffling_decision_root, prepare_slot);
let proposer = if let Some(proposer) = cached_proposer {
proposer.index
} else {
if head_epoch + 2 < prepare_epoch {
warn!(
self.log,
"Skipping proposer preparation";
"msg" => "this is a non-critical issue that can happen on unhealthy nodes or \
networks.",
"prepare_epoch" => prepare_epoch,
"head_epoch" => head_epoch,
);
// Don't skip the head forward more than two epochs. This avoids burdening an
// unhealthy node.
//
// Although this node might miss out on preparing for a proposal, they should still
// be able to propose. This will prioritise beacon chain health over efficient
// packing of execution blocks.
return Ok(());
}
let (proposers, decision_root, _, fork) =
compute_proposer_duties_from_head(prepare_epoch, self)?;
let proposer_index = prepare_slot.as_usize() % (T::EthSpec::slots_per_epoch() as usize);
let proposer = *proposers
.get(proposer_index)
.ok_or(BeaconChainError::NoProposerForSlot(prepare_slot))?;
self.beacon_proposer_cache.lock().insert(
prepare_epoch,
decision_root,
proposers,
fork,
)?;
// It's possible that the head changes whilst computing these duties. If so, abandon
// this routine since the change of head would have also spawned another instance of
// this routine.
//
// Exit now, after updating the cache.
if decision_root != shuffling_decision_root {
warn!(
self.log,
"Head changed during proposer preparation";
);
return Ok(());
}
proposer
};
// If the execution layer doesn't have any proposer data for this validator then we assume
// it's not connected to this BN and no action is required.
if !execution_layer
.has_proposer_preparation_data(proposer as u64)
.await
{
return Ok(());
}
let payload_attributes = PayloadAttributes {
timestamp: self
.slot_clock
.start_of(prepare_slot)
.ok_or(Error::InvalidSlot(prepare_slot))?
.as_secs(),
prev_randao: head_random,
suggested_fee_recipient: execution_layer
.get_suggested_fee_recipient(proposer as u64)
.await,
};
debug!(
self.log,
"Preparing beacon proposer";
"payload_attributes" => ?payload_attributes,
"head_root" => ?head_root,
"prepare_slot" => prepare_slot,
"validator" => proposer,
);
let already_known = execution_layer
.insert_proposer(prepare_slot, head_root, proposer as u64, payload_attributes)
.await;
// Only push a log to the user if this is the first time we've seen this proposer for this
// slot.
if !already_known {
info!(
self.log,
"Prepared beacon proposer";
"already_known" => already_known,
"prepare_slot" => prepare_slot,
"validator" => proposer,
);
}
let till_prepare_slot =
if let Some(duration) = self.slot_clock.duration_to_slot(prepare_slot) {
duration
} else {
// `SlotClock::duration_to_slot` will return `None` when we are past the start
// of `prepare_slot`. Don't bother sending a `forkchoiceUpdated` in that case,
// it's too late.
//
// This scenario might occur on an overloaded/under-resourced node.
warn!(
self.log,
"Delayed proposer preparation";
"prepare_slot" => prepare_slot,
"validator" => proposer,
);
return Ok(());
};
// If either of the following are true, send a fork-choice update message to the
// EL:
//
// 1. We're in the tail-end of the slot (as defined by
// PAYLOAD_PREPARATION_LOOKAHEAD_FACTOR)
// 2. The head block is one slot (or less) behind the prepare slot (e.g., we're
// preparing for the next slot and the block at the current slot is already
// known).
if till_prepare_slot
<= self.slot_clock.slot_duration() / PAYLOAD_PREPARATION_LOOKAHEAD_FACTOR
|| head_slot + 1 >= prepare_slot
{
debug!(
self.log,
"Pushing update to prepare proposer";
"till_prepare_slot" => ?till_prepare_slot,
"prepare_slot" => prepare_slot
);
self.update_execution_engine_forkchoice(current_slot, forkchoice_update_params)
.await?;
}
Ok(())
}
pub async fn update_execution_engine_forkchoice(
self: &Arc<Self>,
current_slot: Slot,
params: ForkchoiceUpdateParameters,
) -> Result<(), Error> {
let next_slot = current_slot + 1;
// There is no need to issue a `forkchoiceUpdated` (fcU) message unless the Bellatrix fork
// has:
//
// 1. Already happened.
// 2. Will happen in the next slot.
//
// The reason for a fcU message in the slot prior to the Bellatrix fork is in case the
// terminal difficulty has already been reached and a payload preparation message needs to
// be issued.
if self.slot_is_prior_to_bellatrix(next_slot) {
return Ok(());
}
let execution_layer = self
.execution_layer
.as_ref()
.ok_or(Error::ExecutionLayerMissing)?;
// Take the global lock for updating the execution engine fork choice.
//
// Whilst holding this lock we must:
//
// 1. Read the canonical head.
// 2. Issue a forkchoiceUpdated call to the execution engine.
//
// This will allow us to ensure that we provide the execution layer with an *ordered* view
// of the head. I.e., we will never communicate a past head after communicating a later
// one.
//
// There is a "deadlock warning" in this function. The downside of this nice ordering is the
// potential for deadlock. I would advise against any other use of
// `execution_engine_forkchoice_lock` apart from the one here.
let forkchoice_lock = execution_layer.execution_engine_forkchoice_lock().await;
let (head_block_root, head_hash, justified_hash, finalized_hash) = if let Some(head_hash) =
params.head_hash
{
(
params.head_root,
head_hash,
params
.justified_hash
.unwrap_or_else(ExecutionBlockHash::zero),
params
.finalized_hash
.unwrap_or_else(ExecutionBlockHash::zero),
)
} else {
// The head block does not have an execution block hash. We must check to see if we
// happen to be the proposer of the transition block, in which case we still need to
// send forkchoice_updated.
match self.spec.fork_name_at_slot::<T::EthSpec>(next_slot) {
// We are pre-bellatrix; no need to update the EL.
ForkName::Base | ForkName::Altair => return Ok(()),
_ => {
// We are post-bellatrix
if let Some(payload_attributes) = execution_layer
.payload_attributes(next_slot, params.head_root)
.await
{
// We are a proposer, check for terminal_pow_block_hash
if let Some(terminal_pow_block_hash) = execution_layer
.get_terminal_pow_block_hash(&self.spec, payload_attributes.timestamp)
.await
.map_err(Error::ForkchoiceUpdate)?
{
info!(
self.log,
"Prepared POS transition block proposer"; "slot" => next_slot
);
(
params.head_root,
terminal_pow_block_hash,
params
.justified_hash
.unwrap_or_else(ExecutionBlockHash::zero),
params
.finalized_hash
.unwrap_or_else(ExecutionBlockHash::zero),
)
} else {
// TTD hasn't been reached yet, no need to update the EL.
return Ok(());
}
} else {
// We are not a proposer, no need to update the EL.
return Ok(());
}
}
}
};
let forkchoice_updated_response = execution_layer
.notify_forkchoice_updated(
head_hash,
justified_hash,
finalized_hash,
current_slot,
head_block_root,
)
.await
.map_err(Error::ExecutionForkChoiceUpdateFailed);
// The head has been read and the execution layer has been updated. It is now valid to send
// another fork choice update.
drop(forkchoice_lock);
match forkchoice_updated_response {
Ok(status) => match status {
PayloadStatus::Valid => {
// Ensure that fork choice knows that the block is no longer optimistic.
let chain = self.clone();
let fork_choice_update_result = self
.spawn_blocking_handle(
move || {
chain
.canonical_head
.fork_choice_write_lock()
.on_valid_execution_payload(head_block_root)
},
"update_execution_engine_valid_payload",
)
.await?;
if let Err(e) = fork_choice_update_result {
error!(
self.log,
"Failed to validate payload";
"error" => ?e
)
};
Ok(())
}
// There's nothing to be done for a syncing response. If the block is already
// `SYNCING` in fork choice, there's nothing to do. If already known to be `VALID`
// or `INVALID` then we don't want to change it to syncing.
PayloadStatus::Syncing => Ok(()),
// The specification doesn't list `ACCEPTED` as a valid response to a fork choice
// update. This response *seems* innocent enough, so we won't return early with an
// error. However, we create a log to bring attention to the issue.
PayloadStatus::Accepted => {
warn!(
self.log,
"Fork choice update received ACCEPTED";
"msg" => "execution engine provided an unexpected response to a fork \
choice update. although this is not a serious issue, please raise \
an issue."
);
Ok(())
}
PayloadStatus::Invalid {
latest_valid_hash, ..
} => {
warn!(
self.log,
"Fork choice update invalidated payload";
"status" => ?status
);
// The execution engine has stated that all blocks between the
// `head_execution_block_hash` and `latest_valid_hash` are invalid.
self.process_invalid_execution_payload(
&InvalidationOperation::InvalidateMany {
head_block_root,
always_invalidate_head: true,
latest_valid_ancestor: latest_valid_hash,
},
)
.await?;
Err(BeaconChainError::ExecutionForkChoiceUpdateInvalid { status })
}
PayloadStatus::InvalidTerminalBlock { .. }
| PayloadStatus::InvalidBlockHash { .. } => {
warn!(
self.log,
"Fork choice update invalidated payload";
"status" => ?status
);
// The execution engine has stated that the head block is invalid, however it
// hasn't returned a latest valid ancestor.
//
// Using a `None` latest valid ancestor will result in only the head block
// being invalidated (no ancestors).
self.process_invalid_execution_payload(&InvalidationOperation::InvalidateOne {
block_root: head_block_root,
})
.await?;
Err(BeaconChainError::ExecutionForkChoiceUpdateInvalid { status })
}
},
Err(e) => Err(e),
}
}
/// Returns `true` if the given slot is prior to the `bellatrix_fork_epoch`.
pub fn slot_is_prior_to_bellatrix(&self, slot: Slot) -> bool {
self.spec.bellatrix_fork_epoch.map_or(true, |bellatrix| {
slot.epoch(T::EthSpec::slots_per_epoch()) < bellatrix
})
}
/// Returns the value of `execution_optimistic` for `block`.
///
/// Returns `Ok(false)` if the block is pre-Bellatrix, or has `ExecutionStatus::Valid`.
/// Returns `Ok(true)` if the block has `ExecutionStatus::Optimistic`.
pub fn is_optimistic_block<Payload: ExecPayload<T::EthSpec>>(
&self,
block: &SignedBeaconBlock<T::EthSpec, Payload>,
) -> Result<bool, BeaconChainError> {
// Check if the block is pre-Bellatrix.
if self.slot_is_prior_to_bellatrix(block.slot()) {
Ok(false)
} else {
self.canonical_head
.fork_choice_read_lock()
.is_optimistic_block(&block.canonical_root())
.map_err(BeaconChainError::ForkChoiceError)
}
}
/// Returns the value of `execution_optimistic` for `head_block`.
///
/// Returns `Ok(false)` if the block is pre-Bellatrix, or has `ExecutionStatus::Valid`.
/// Returns `Ok(true)` if the block has `ExecutionStatus::Optimistic`.
///
/// This function will return an error if `head_block` is not present in the fork choice store
/// and so should only be used on the head block or when the block *should* be present in the
/// fork choice store.
///
/// There is a potential race condition when syncing where the block_root of `head_block` could
/// be pruned from the fork choice store before being read.
pub fn is_optimistic_head_block<Payload: ExecPayload<T::EthSpec>>(
&self,
head_block: &SignedBeaconBlock<T::EthSpec, Payload>,
) -> Result<bool, BeaconChainError> {
// Check if the block is pre-Bellatrix.
if self.slot_is_prior_to_bellatrix(head_block.slot()) {
Ok(false)
} else {
self.canonical_head
.fork_choice_read_lock()
.is_optimistic_block_no_fallback(&head_block.canonical_root())
.map_err(BeaconChainError::ForkChoiceError)
}
}
/// Returns the value of `execution_optimistic` for the current head block.
/// You can optionally provide `head_info` if it was computed previously.
///
/// Returns `Ok(false)` if the head block is pre-Bellatrix, or has `ExecutionStatus::Valid`.
/// Returns `Ok(true)` if the head block has `ExecutionStatus::Optimistic`.
///
/// There is a potential race condition when syncing where the block root of `head_info` could
/// be pruned from the fork choice store before being read.
pub fn is_optimistic_head(&self) -> Result<bool, BeaconChainError> {
self.canonical_head
.head_execution_status()
.map(|status| status.is_optimistic())
}
pub fn is_optimistic_block_root(
&self,
block_slot: Slot,
block_root: &Hash256,
) -> Result<bool, BeaconChainError> {
// Check if the block is pre-Bellatrix.
if self.slot_is_prior_to_bellatrix(block_slot) {
Ok(false)
} else {
self.canonical_head
.fork_choice_read_lock()
.is_optimistic_block_no_fallback(block_root)
.map_err(BeaconChainError::ForkChoiceError)
}
}
/// This function takes a configured weak subjectivity `Checkpoint` and the latest finalized `Checkpoint`.
/// If the weak subjectivity checkpoint and finalized checkpoint share the same epoch, we compare
/// roots. If we the weak subjectivity checkpoint is from an older epoch, we iterate back through
/// roots in the canonical chain until we reach the finalized checkpoint from the correct epoch, and
/// compare roots. This must called on startup and during verification of any block which causes a finality
/// change affecting the weak subjectivity checkpoint.
pub fn verify_weak_subjectivity_checkpoint(
&self,
wss_checkpoint: Checkpoint,
beacon_block_root: Hash256,
state: &BeaconState<T::EthSpec>,
) -> Result<(), BeaconChainError> {
let finalized_checkpoint = state.finalized_checkpoint();
info!(self.log, "Verifying the configured weak subjectivity checkpoint"; "weak_subjectivity_epoch" => wss_checkpoint.epoch, "weak_subjectivity_root" => ?wss_checkpoint.root);
// If epochs match, simply compare roots.
if wss_checkpoint.epoch == finalized_checkpoint.epoch
&& wss_checkpoint.root != finalized_checkpoint.root
{
crit!(
self.log,
"Root found at the specified checkpoint differs";
"weak_subjectivity_root" => ?wss_checkpoint.root,
"finalized_checkpoint_root" => ?finalized_checkpoint.root
);
return Err(BeaconChainError::WeakSubjectivtyVerificationFailure);
} else if wss_checkpoint.epoch < finalized_checkpoint.epoch {
let slot = wss_checkpoint
.epoch
.start_slot(T::EthSpec::slots_per_epoch());
// Iterate backwards through block roots from the given state. If first slot of the epoch is a skip-slot,
// this will return the root of the closest prior non-skipped slot.
match self.root_at_slot_from_state(slot, beacon_block_root, state)? {
Some(root) => {
if root != wss_checkpoint.root {
crit!(
self.log,
"Root found at the specified checkpoint differs";
"weak_subjectivity_root" => ?wss_checkpoint.root,
"finalized_checkpoint_root" => ?finalized_checkpoint.root
);
return Err(BeaconChainError::WeakSubjectivtyVerificationFailure);
}
}
None => {
crit!(self.log, "The root at the start slot of the given epoch could not be found";
"wss_checkpoint_slot" => ?slot);
return Err(BeaconChainError::WeakSubjectivtyVerificationFailure);
}
}
}
Ok(())
}
/// Called by the timer on every slot.
///
/// Note: this function **MUST** be called from a non-async context since
/// it contains a call to `fork_choice` which may eventually call
/// `tokio::runtime::block_on` in certain cases.
pub async fn per_slot_task(self: &Arc<Self>) {
trace!(self.log, "Running beacon chain per slot tasks");
if let Some(slot) = self.slot_clock.now() {
// Always run the light-weight pruning tasks (these structures should be empty during
// sync anyway).
self.naive_aggregation_pool.write().prune(slot);
self.block_times_cache.write().prune(slot);
// Don't run heavy-weight tasks during sync.
if self.best_slot() + MAX_PER_SLOT_FORK_CHOICE_DISTANCE < slot {
return;
}
// Run fork choice and signal to any waiting task that it has completed.
if let Err(e) = self.recompute_head_at_current_slot().await {
error!(
self.log,
"Fork choice error at slot start";
"error" => ?e,
"slot" => slot,
);
}
// Send the notification regardless of fork choice success, this is a "best effort"
// notification and we don't want block production to hit the timeout in case of error.
// Use a blocking task to avoid blocking the core executor whilst waiting for locks
// in `ForkChoiceSignalTx`.
let chain = self.clone();
self.task_executor.clone().spawn_blocking(
move || {
// Signal block proposal for the next slot (if it happens to be waiting).
if let Some(tx) = &chain.fork_choice_signal_tx {
if let Err(e) = tx.notify_fork_choice_complete(slot) {
warn!(
chain.log,
"Error signalling fork choice waiter";
"error" => ?e,
"slot" => slot,
);
}
}
},
"per_slot_task_fc_signal_tx",
);
}
}
/// Runs the `map_fn` with the committee cache for `shuffling_epoch` from the chain with head
/// `head_block_root`. The `map_fn` will be supplied two values:
///
/// - `&CommitteeCache`: the committee cache that serves the given parameters.
/// - `Hash256`: the "shuffling decision root" which uniquely identifies the `CommitteeCache`.
///
/// It's not necessary that `head_block_root` matches our current view of the chain, it can be
/// any block that is:
///
/// - Known to us.
/// - The finalized block or a descendant of the finalized block.
///
/// It would be quite common for attestation verification operations to use a `head_block_root`
/// that differs from our view of the head.
///
/// ## Important
///
/// This function is **not** suitable for determining proposer duties (only attester duties).
///
/// ## Notes
///
/// This function exists in this odd "map" pattern because efficiently obtaining a committee
/// can be complex. It might involve reading straight from the `beacon_chain.shuffling_cache`
/// or it might involve reading it from a state from the DB. Due to the complexities of
/// `RwLock`s on the shuffling cache, a simple `Cow` isn't suitable here.
///
/// If the committee for `(head_block_root, shuffling_epoch)` isn't found in the
/// `shuffling_cache`, we will read a state from disk and then update the `shuffling_cache`.
pub(crate) fn with_committee_cache<F, R>(
&self,
head_block_root: Hash256,
shuffling_epoch: Epoch,
map_fn: F,
) -> Result<R, Error>
where
F: Fn(&CommitteeCache, Hash256) -> Result<R, Error>,
{
let head_block = self
.canonical_head
.fork_choice_read_lock()
.get_block(&head_block_root)
.ok_or(Error::MissingBeaconBlock(head_block_root))?;
let shuffling_id = BlockShufflingIds {
current: head_block.current_epoch_shuffling_id.clone(),
next: head_block.next_epoch_shuffling_id.clone(),
block_root: head_block.root,
}
.id_for_epoch(shuffling_epoch)
.ok_or_else(|| Error::InvalidShufflingId {
shuffling_epoch,
head_block_epoch: head_block.slot.epoch(T::EthSpec::slots_per_epoch()),
})?;
// Obtain the shuffling cache, timing how long we wait.
let cache_wait_timer =
metrics::start_timer(&metrics::ATTESTATION_PROCESSING_SHUFFLING_CACHE_WAIT_TIMES);
let mut shuffling_cache = self
.shuffling_cache
.try_write_for(ATTESTATION_CACHE_LOCK_TIMEOUT)
.ok_or(Error::AttestationCacheLockTimeout)?;
metrics::stop_timer(cache_wait_timer);
if let Some(committee_cache) = shuffling_cache.get(&shuffling_id) {
map_fn(committee_cache, shuffling_id.shuffling_decision_block)
} else {
// Drop the shuffling cache to avoid holding the lock for any longer than
// required.
drop(shuffling_cache);
debug!(
self.log,
"Committee cache miss";
"shuffling_id" => ?shuffling_epoch,
"head_block_root" => head_block_root.to_string(),
);
let state_read_timer =
metrics::start_timer(&metrics::ATTESTATION_PROCESSING_STATE_READ_TIMES);
// If the head of the chain can serve this request, use it.
//
// This code is a little awkward because we need to ensure that the head we read and
// the head we copy is identical. Taking one lock to read the head values and another
// to copy the head is liable to race-conditions.
let head_state_opt = self.with_head(|head| {
if head.beacon_block_root == head_block_root {
Ok(Some((
head.beacon_state
.clone_with(CloneConfig::committee_caches_only()),
head.beacon_state_root(),
)))
} else {
Ok::<_, Error>(None)
}
})?;
// If the head state is useful for this request, use it. Otherwise, read a state from
// disk.
let (mut state, state_root) = if let Some((state, state_root)) = head_state_opt {
(state, state_root)
} else {
let state_root = head_block.state_root;
let state = self
.store
.get_inconsistent_state_for_attestation_verification_only(
&state_root,
Some(head_block.slot),
)?
.ok_or(Error::MissingBeaconState(head_block.state_root))?;
(state, state_root)
};
/*
* IMPORTANT
*
* Since it's possible that
* `Store::get_inconsistent_state_for_attestation_verification_only` was used to obtain
* the state, we cannot rely upon the following fields:
*
* - `state.state_roots`
* - `state.block_roots`
*
* These fields should not be used for the rest of this function.
*/
metrics::stop_timer(state_read_timer);
let state_skip_timer =
metrics::start_timer(&metrics::ATTESTATION_PROCESSING_STATE_SKIP_TIMES);
// If the state is in an earlier epoch, advance it. If it's from a later epoch, reject
// it.
if state.current_epoch() + 1 < shuffling_epoch {
// Since there's a one-epoch look-ahead on the attester shuffling, it suffices to
// only advance into the slot prior to the `shuffling_epoch`.
let target_slot = shuffling_epoch
.saturating_sub(1_u64)
.start_slot(T::EthSpec::slots_per_epoch());
// Advance the state into the required slot, using the "partial" method since the state
// roots are not relevant for the shuffling.
partial_state_advance(&mut state, Some(state_root), target_slot, &self.spec)?;
} else if state.current_epoch() > shuffling_epoch {
return Err(Error::InvalidStateForShuffling {
state_epoch: state.current_epoch(),
shuffling_epoch,
});
}
metrics::stop_timer(state_skip_timer);
let committee_building_timer =
metrics::start_timer(&metrics::ATTESTATION_PROCESSING_COMMITTEE_BUILDING_TIMES);
let relative_epoch = RelativeEpoch::from_epoch(state.current_epoch(), shuffling_epoch)
.map_err(Error::IncorrectStateForAttestation)?;
state.build_committee_cache(relative_epoch, &self.spec)?;
let committee_cache = state.committee_cache(relative_epoch)?;
let shuffling_decision_block = shuffling_id.shuffling_decision_block;
self.shuffling_cache
.try_write_for(ATTESTATION_CACHE_LOCK_TIMEOUT)
.ok_or(Error::AttestationCacheLockTimeout)?
.insert(shuffling_id, committee_cache);
metrics::stop_timer(committee_building_timer);
map_fn(committee_cache, shuffling_decision_block)
}
}
/// Dumps the entire canonical chain, from the head to genesis to a vector for analysis.
///
/// This could be a very expensive operation and should only be done in testing/analysis
/// activities.
#[allow(clippy::type_complexity)]
pub fn chain_dump(
&self,
) -> Result<Vec<BeaconSnapshot<T::EthSpec, BlindedPayload<T::EthSpec>>>, Error> {
let mut dump = vec![];
let mut last_slot = {
let head = self.canonical_head.cached_head();
BeaconSnapshot {
beacon_block: Arc::new(head.snapshot.beacon_block.clone_as_blinded()),
beacon_block_root: head.snapshot.beacon_block_root,
beacon_state: head.snapshot.beacon_state.clone(),
}
};
dump.push(last_slot.clone());
loop {
let beacon_block_root = last_slot.beacon_block.parent_root();
if beacon_block_root == Hash256::zero() {
break; // Genesis has been reached.
}
let beacon_block = self
.store
.get_blinded_block(&beacon_block_root)?
.ok_or_else(|| {
Error::DBInconsistent(format!("Missing block {}", beacon_block_root))
})?;
let beacon_state_root = beacon_block.state_root();
let beacon_state = self
.store
.get_state(&beacon_state_root, Some(beacon_block.slot()))?
.ok_or_else(|| {
Error::DBInconsistent(format!("Missing state {:?}", beacon_state_root))
})?;
let slot = BeaconSnapshot {
beacon_block: Arc::new(beacon_block),
beacon_block_root,
beacon_state,
};
dump.push(slot.clone());
last_slot = slot;
}
dump.reverse();
Ok(dump)
}
/// Gets the current `EnrForkId`.
pub fn enr_fork_id(&self) -> EnrForkId {
// If we are unable to read the slot clock we assume that it is prior to genesis and
// therefore use the genesis slot.
let slot = self.slot().unwrap_or(self.spec.genesis_slot);
self.spec
.enr_fork_id::<T::EthSpec>(slot, self.genesis_validators_root)
}
/// Calculates the `Duration` to the next fork if it exists and returns it
/// with it's corresponding `ForkName`.
pub fn duration_to_next_fork(&self) -> Option<(ForkName, Duration)> {
// If we are unable to read the slot clock we assume that it is prior to genesis and
// therefore use the genesis slot.
let slot = self.slot().unwrap_or(self.spec.genesis_slot);
let (fork_name, epoch) = self.spec.next_fork_epoch::<T::EthSpec>(slot)?;
self.slot_clock
.duration_to_slot(epoch.start_slot(T::EthSpec::slots_per_epoch()))
.map(|duration| (fork_name, duration))
}
pub fn dump_as_dot<W: Write>(&self, output: &mut W) {
let canonical_head_hash = self.canonical_head.cached_head().head_block_root();
let mut visited: HashSet<Hash256> = HashSet::new();
let mut finalized_blocks: HashSet<Hash256> = HashSet::new();
let mut justified_blocks: HashSet<Hash256> = HashSet::new();
let genesis_block_hash = Hash256::zero();
writeln!(output, "digraph beacon {{").unwrap();
writeln!(output, "\t_{:?}[label=\"zero\"];", genesis_block_hash).unwrap();
// Canonical head needs to be processed first as otherwise finalized blocks aren't detected
// properly.
let heads = {
let mut heads = self.heads();
let canonical_head_index = heads
.iter()
.position(|(block_hash, _)| *block_hash == canonical_head_hash)
.unwrap();
let (canonical_head_hash, canonical_head_slot) =
heads.swap_remove(canonical_head_index);
heads.insert(0, (canonical_head_hash, canonical_head_slot));
heads
};
for (head_hash, _head_slot) in heads {
for maybe_pair in ParentRootBlockIterator::new(&*self.store, head_hash) {
let (block_hash, signed_beacon_block) = maybe_pair.unwrap();
if visited.contains(&block_hash) {
break;
}
visited.insert(block_hash);
if signed_beacon_block.slot() % T::EthSpec::slots_per_epoch() == 0 {
let block = self.get_blinded_block(&block_hash).unwrap().unwrap();
let state = self
.get_state(&block.state_root(), Some(block.slot()))
.unwrap()
.unwrap();
finalized_blocks.insert(state.finalized_checkpoint().root);
justified_blocks.insert(state.current_justified_checkpoint().root);
justified_blocks.insert(state.previous_justified_checkpoint().root);
}
if block_hash == canonical_head_hash {
writeln!(
output,
"\t_{:?}[label=\"{} ({})\" shape=box3d];",
block_hash,
block_hash,
signed_beacon_block.slot()
)
.unwrap();
} else if finalized_blocks.contains(&block_hash) {
writeln!(
output,
"\t_{:?}[label=\"{} ({})\" shape=Msquare];",
block_hash,
block_hash,
signed_beacon_block.slot()
)
.unwrap();
} else if justified_blocks.contains(&block_hash) {
writeln!(
output,
"\t_{:?}[label=\"{} ({})\" shape=cds];",
block_hash,
block_hash,
signed_beacon_block.slot()
)
.unwrap();
} else {
writeln!(
output,
"\t_{:?}[label=\"{} ({})\" shape=box];",
block_hash,
block_hash,
signed_beacon_block.slot()
)
.unwrap();
}
writeln!(
output,
"\t_{:?} -> _{:?};",
block_hash,
signed_beacon_block.parent_root()
)
.unwrap();
}
}
writeln!(output, "}}").unwrap();
}
/// Get a channel to request shutting down.
pub fn shutdown_sender(&self) -> Sender<ShutdownReason> {
self.shutdown_sender.clone()
}
// Used for debugging
#[allow(dead_code)]
pub fn dump_dot_file(&self, file_name: &str) {
let mut file = std::fs::File::create(file_name).unwrap();
self.dump_as_dot(&mut file);
}
/// Checks if attestations have been seen from the given `validator_index` at the
/// given `epoch`.
pub fn validator_seen_at_epoch(&self, validator_index: usize, epoch: Epoch) -> bool {
// It's necessary to assign these checks to intermediate variables to avoid a deadlock.
//
// See: https://github.com/sigp/lighthouse/pull/2230#discussion_r620013993
let gossip_attested = self
.observed_gossip_attesters
.read()
.index_seen_at_epoch(validator_index, epoch);
let block_attested = self
.observed_block_attesters
.read()
.index_seen_at_epoch(validator_index, epoch);
let aggregated = self
.observed_aggregators
.read()
.index_seen_at_epoch(validator_index, epoch);
let produced_block = self
.observed_block_producers
.read()
.index_seen_at_epoch(validator_index as u64, epoch);
gossip_attested || block_attested || aggregated || produced_block
}
}
impl<T: BeaconChainTypes> Drop for BeaconChain<T> {
fn drop(&mut self) {
let drop = || -> Result<(), Error> {
self.persist_head_and_fork_choice()?;
self.persist_op_pool()?;
self.persist_eth1_cache()
};
if let Err(e) = drop() {
error!(
self.log,
"Failed to persist on BeaconChain drop";
"error" => ?e
)
} else {
info!(
self.log,
"Saved beacon chain to disk";
)
}
}
}
impl From<DBError> for Error {
fn from(e: DBError) -> Error {
Error::DBError(e)
}
}
impl From<ForkChoiceError> for Error {
fn from(e: ForkChoiceError) -> Error {
Error::ForkChoiceError(e)
}
}
impl From<BeaconStateError> for Error {
fn from(e: BeaconStateError) -> Error {
Error::BeaconStateError(e)
}
}
impl<T: EthSpec> ChainSegmentResult<T> {
pub fn into_block_error(self) -> Result<(), BlockError<T>> {
match self {
ChainSegmentResult::Failed { error, .. } => Err(error),
ChainSegmentResult::Successful { .. } => Ok(()),
}
}
}