lighthouse/beacon_node/beacon_chain/tests/attestation_production.rs
Paul Hauner 02e2fd2fb8 Add early attester cache (#2872)
## Issue Addressed

NA

## Proposed Changes

Introduces a cache to attestation to produce atop blocks which will become the head, but are not fully imported (e.g., not inserted into the database).

Whilst attesting to a block before it's imported is rather easy, if we're going to produce that attestation then we also need to be able to:

1. Verify that attestation.
1. Respond to RPC requests for the `beacon_block_root`.

Attestation verification (1) is *partially* covered. Since we prime the shuffling cache before we insert the block into the early attester cache, we should be fine for all typical use-cases. However, it is possible that the cache is washed out before we've managed to insert the state into the database and then attestation verification will fail with a "missing beacon state"-type error.

Providing the block via RPC (2) is also partially covered, since we'll check the database *and* the early attester cache when responding a blocks-by-root request. However, we'll still omit the block from blocks-by-range requests (until the block lands in the DB). I *think* this is fine, since there's no guarantee that we return all blocks for those responses.

Another important consideration is whether or not the *parent* of the early attester block is available in the databse. If it were not, we might fail to respond to blocks-by-root request that are iterating backwards to collect a chain of blocks. I argue that *we will always have the parent of the early attester block in the database.* This is because we are holding the fork-choice write-lock when inserting the block into the early attester cache and we do not drop that until the block is in the database.
2022-01-11 01:35:55 +00:00

146 lines
5.0 KiB
Rust

#![cfg(not(debug_assertions))]
use beacon_chain::test_utils::{AttestationStrategy, BeaconChainHarness, BlockStrategy};
use beacon_chain::{StateSkipConfig, WhenSlotSkipped};
use lazy_static::lazy_static;
use tree_hash::TreeHash;
use types::{AggregateSignature, EthSpec, Keypair, MainnetEthSpec, RelativeEpoch, Slot};
pub const VALIDATOR_COUNT: usize = 16;
lazy_static! {
/// A cached set of keys.
static ref KEYPAIRS: Vec<Keypair> = types::test_utils::generate_deterministic_keypairs(VALIDATOR_COUNT);
}
/// This test builds a chain that is just long enough to finalize an epoch then it produces an
/// attestation at each slot from genesis through to three epochs past the head.
///
/// It checks the produced attestation against some locally computed values.
#[test]
fn produces_attestations() {
let num_blocks_produced = MainnetEthSpec::slots_per_epoch() * 4;
let additional_slots_tested = MainnetEthSpec::slots_per_epoch() * 3;
let harness = BeaconChainHarness::builder(MainnetEthSpec)
.default_spec()
.keypairs(KEYPAIRS[..].to_vec())
.fresh_ephemeral_store()
.build();
let chain = &harness.chain;
// Test all valid committee indices for all slots in the chain.
// for slot in 0..=current_slot.as_u64() + MainnetEthSpec::slots_per_epoch() * 3 {
for slot in 0..=num_blocks_produced + additional_slots_tested {
if slot > 0 && slot <= num_blocks_produced {
harness.advance_slot();
harness.extend_chain(
1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
);
}
let slot = Slot::from(slot);
let mut state = chain
.state_at_slot(slot, StateSkipConfig::WithStateRoots)
.expect("should get state");
let block_slot = if slot <= num_blocks_produced {
slot
} else {
Slot::from(num_blocks_produced)
};
let block = chain
.block_at_slot(block_slot, WhenSlotSkipped::Prev)
.expect("should get block")
.expect("block should not be skipped");
let block_root = block.message().tree_hash_root();
let epoch_boundary_slot = state
.current_epoch()
.start_slot(MainnetEthSpec::slots_per_epoch());
let target_root = if state.slot() == epoch_boundary_slot {
block_root
} else {
*state
.get_block_root(epoch_boundary_slot)
.expect("should get target block root")
};
state
.build_committee_cache(RelativeEpoch::Current, &harness.chain.spec)
.unwrap();
let committee_cache = state
.committee_cache(RelativeEpoch::Current)
.expect("should get committee_cache");
let committee_count = committee_cache.committees_per_slot();
for index in 0..committee_count {
let committee_len = committee_cache
.get_beacon_committee(slot, index)
.expect("should get committee for slot")
.committee
.len();
let attestation = chain
.produce_unaggregated_attestation(slot, index)
.expect("should produce attestation");
let data = &attestation.data;
assert_eq!(
attestation.aggregation_bits.len(),
committee_len,
"bad committee len"
);
assert!(
attestation.aggregation_bits.is_zero(),
"some committee bits are set"
);
assert_eq!(
attestation.signature,
AggregateSignature::empty(),
"bad signature"
);
assert_eq!(data.index, index, "bad index");
assert_eq!(data.slot, slot, "bad slot");
assert_eq!(data.beacon_block_root, block_root, "bad block root");
assert_eq!(
data.source,
state.current_justified_checkpoint(),
"bad source"
);
assert_eq!(
data.source,
state.current_justified_checkpoint(),
"bad source"
);
assert_eq!(data.target.epoch, state.current_epoch(), "bad target epoch");
assert_eq!(data.target.root, target_root, "bad target root");
let early_attestation = {
let proto_block = chain.fork_choice.read().get_block(&block_root).unwrap();
chain
.early_attester_cache
.add_head_block(block_root, block.clone(), proto_block, &state, &chain.spec)
.unwrap();
chain
.early_attester_cache
.try_attest(slot, index, &chain.spec)
.unwrap()
.unwrap()
};
assert_eq!(
attestation, early_attestation,
"early attester cache inconsistent"
);
}
}
}