lighthouse/beacon_node/http_api/tests/tests.rs
Eitan Seri-Levi a380f6ef1f
Add block-v3 SSZ tests (#4902)
* create block-v3 ssz tests

* fmt
2023-11-09 15:05:35 +11:00

5575 lines
177 KiB
Rust

use beacon_chain::test_utils::RelativeSyncCommittee;
use beacon_chain::{
test_utils::{AttestationStrategy, BeaconChainHarness, BlockStrategy, EphemeralHarnessType},
BeaconChain, ChainConfig, StateSkipConfig, WhenSlotSkipped,
};
use environment::null_logger;
use eth2::{
mixin::{RequestAccept, ResponseForkName, ResponseOptional},
reqwest::RequestBuilder,
types::{BlockId as CoreBlockId, ForkChoiceNode, StateId as CoreStateId, *},
BeaconNodeHttpClient, Error, StatusCode, Timeouts,
};
use execution_layer::test_utils::{
MockBuilder, Operation, DEFAULT_BUILDER_PAYLOAD_VALUE_WEI, DEFAULT_BUILDER_THRESHOLD_WEI,
DEFAULT_MOCK_EL_PAYLOAD_VALUE_WEI,
};
use futures::stream::{Stream, StreamExt};
use futures::FutureExt;
use http_api::{
test_utils::{create_api_server, ApiServer},
BlockId, StateId,
};
use lighthouse_network::{Enr, EnrExt, PeerId};
use network::NetworkReceivers;
use proto_array::ExecutionStatus;
use sensitive_url::SensitiveUrl;
use slot_clock::SlotClock;
use state_processing::per_block_processing::get_expected_withdrawals;
use state_processing::per_slot_processing;
use state_processing::state_advance::partial_state_advance;
use std::convert::TryInto;
use std::sync::Arc;
use tokio::time::Duration;
use tree_hash::TreeHash;
use types::application_domain::ApplicationDomain;
use types::{
AggregateSignature, BitList, Domain, EthSpec, ExecutionBlockHash, Hash256, Keypair,
MainnetEthSpec, RelativeEpoch, SelectionProof, SignedRoot, Slot,
};
type E = MainnetEthSpec;
const SECONDS_PER_SLOT: u64 = 12;
const SLOTS_PER_EPOCH: u64 = 32;
const VALIDATOR_COUNT: usize = SLOTS_PER_EPOCH as usize;
const CHAIN_LENGTH: u64 = SLOTS_PER_EPOCH * 5 - 1; // Make `next_block` an epoch transition
const JUSTIFIED_EPOCH: u64 = 4;
const FINALIZED_EPOCH: u64 = 3;
const EXTERNAL_ADDR: &str = "/ip4/0.0.0.0/tcp/9000";
/// Skipping the slots around the epoch boundary allows us to check that we're obtaining states
/// from skipped slots for the finalized and justified checkpoints (instead of the state from the
/// block that those roots point to).
const SKIPPED_SLOTS: &[u64] = &[
JUSTIFIED_EPOCH * SLOTS_PER_EPOCH - 1,
JUSTIFIED_EPOCH * SLOTS_PER_EPOCH,
FINALIZED_EPOCH * SLOTS_PER_EPOCH - 1,
FINALIZED_EPOCH * SLOTS_PER_EPOCH,
];
struct ApiTester {
harness: Arc<BeaconChainHarness<EphemeralHarnessType<E>>>,
chain: Arc<BeaconChain<EphemeralHarnessType<E>>>,
client: BeaconNodeHttpClient,
next_block: SignedBlockContents<E>,
reorg_block: SignedBlockContents<E>,
attestations: Vec<Attestation<E>>,
contribution_and_proofs: Vec<SignedContributionAndProof<E>>,
attester_slashing: AttesterSlashing<E>,
proposer_slashing: ProposerSlashing,
voluntary_exit: SignedVoluntaryExit,
network_rx: NetworkReceivers<E>,
local_enr: Enr,
external_peer_id: PeerId,
mock_builder: Option<Arc<MockBuilder<E>>>,
}
struct ApiTesterConfig {
spec: ChainSpec,
retain_historic_states: bool,
builder_threshold: Option<u128>,
}
impl Default for ApiTesterConfig {
fn default() -> Self {
let mut spec = E::default_spec();
spec.shard_committee_period = 2;
Self {
spec,
retain_historic_states: false,
builder_threshold: None,
}
}
}
impl ApiTesterConfig {
fn retain_historic_states(mut self) -> Self {
self.retain_historic_states = true;
self
}
}
impl ApiTester {
pub async fn new() -> Self {
// This allows for testing voluntary exits without building out a massive chain.
Self::new_from_config(ApiTesterConfig::default()).await
}
pub async fn new_with_hard_forks(altair: bool, bellatrix: bool) -> Self {
let mut config = ApiTesterConfig::default();
// Set whether the chain has undergone each hard fork.
if altair {
config.spec.altair_fork_epoch = Some(Epoch::new(0));
}
if bellatrix {
config.spec.bellatrix_fork_epoch = Some(Epoch::new(0));
}
Self::new_from_config(config).await
}
pub async fn new_from_config(config: ApiTesterConfig) -> Self {
let spec = config.spec;
let mut harness = BeaconChainHarness::builder(MainnetEthSpec)
.spec(spec.clone())
.chain_config(ChainConfig {
reconstruct_historic_states: config.retain_historic_states,
..ChainConfig::default()
})
.logger(logging::test_logger())
.deterministic_keypairs(VALIDATOR_COUNT)
.fresh_ephemeral_store()
.mock_execution_layer_with_config(config.builder_threshold)
.build();
harness
.mock_execution_layer
.as_ref()
.unwrap()
.server
.execution_block_generator()
.move_to_terminal_block()
.unwrap();
harness.advance_slot();
for _ in 0..CHAIN_LENGTH {
let slot = harness.chain.slot().unwrap().as_u64();
if !SKIPPED_SLOTS.contains(&slot) {
harness
.extend_chain(
1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
}
harness.advance_slot();
}
let head = harness.chain.head_snapshot();
assert_eq!(
harness.chain.slot().unwrap(),
head.beacon_block.slot() + 1,
"precondition: current slot is one after head"
);
let (next_block, _next_state) = harness
.make_block(head.beacon_state.clone(), harness.chain.slot().unwrap())
.await;
let next_block = SignedBlockContents::from(next_block);
// `make_block` adds random graffiti, so this will produce an alternate block
let (reorg_block, _reorg_state) = harness
.make_block(head.beacon_state.clone(), harness.chain.slot().unwrap() + 1)
.await;
let reorg_block = SignedBlockContents::from(reorg_block);
let head_state_root = head.beacon_state_root();
let attestations = harness
.get_unaggregated_attestations(
&AttestationStrategy::AllValidators,
&head.beacon_state,
head_state_root,
head.beacon_block_root,
harness.chain.slot().unwrap(),
)
.into_iter()
.flat_map(|vec| vec.into_iter().map(|(attestation, _subnet_id)| attestation))
.collect::<Vec<_>>();
assert!(
!attestations.is_empty(),
"precondition: attestations for testing"
);
let current_epoch = harness
.chain
.slot()
.expect("should get current slot")
.epoch(E::slots_per_epoch());
let is_altair = spec
.altair_fork_epoch
.map(|epoch| epoch <= current_epoch)
.unwrap_or(false);
let contribution_and_proofs = if is_altair {
harness
.make_sync_contributions(
&head.beacon_state,
head_state_root,
harness.chain.slot().unwrap(),
RelativeSyncCommittee::Current,
)
.into_iter()
.filter_map(|(_, contribution)| contribution)
.collect::<Vec<_>>()
} else {
vec![]
};
let attester_slashing = harness.make_attester_slashing(vec![0, 1]);
let proposer_slashing = harness.make_proposer_slashing(2);
let voluntary_exit = harness.make_voluntary_exit(3, harness.chain.epoch().unwrap());
let chain = harness.chain.clone();
assert_eq!(
chain
.canonical_head
.cached_head()
.finalized_checkpoint()
.epoch,
2,
"precondition: finality"
);
assert_eq!(
chain
.canonical_head
.cached_head()
.justified_checkpoint()
.epoch,
3,
"precondition: justification"
);
let log = null_logger().unwrap();
let ApiServer {
server,
listening_socket,
network_rx,
local_enr,
external_peer_id,
} = create_api_server(chain.clone(), &harness.runtime, log).await;
harness.runtime.task_executor.spawn(server, "api_server");
// Late-initalize the mock builder now that the mock execution node and beacon API ports
// have been allocated.
let beacon_api_port = listening_socket.port();
let beacon_url =
SensitiveUrl::parse(format!("http://127.0.0.1:{beacon_api_port}").as_str()).unwrap();
let mock_builder_server = harness.set_mock_builder(beacon_url.clone());
// Start the mock builder service prior to building the chain out.
harness.runtime.task_executor.spawn(
async move { mock_builder_server.await },
"mock_builder_server",
);
let mock_builder = harness.mock_builder.clone();
let client = BeaconNodeHttpClient::new(
beacon_url,
Timeouts::set_all(Duration::from_secs(SECONDS_PER_SLOT)),
);
Self {
harness: Arc::new(harness),
chain,
client,
next_block,
reorg_block,
attestations,
contribution_and_proofs,
attester_slashing,
proposer_slashing,
voluntary_exit,
network_rx,
local_enr,
external_peer_id,
mock_builder,
}
}
pub async fn new_from_genesis() -> Self {
let harness = Arc::new(
BeaconChainHarness::builder(MainnetEthSpec)
.default_spec()
.deterministic_keypairs(VALIDATOR_COUNT)
.fresh_ephemeral_store()
.build(),
);
harness.advance_slot();
let head = harness.chain.head_snapshot();
let (next_block, _next_state) = harness
.make_block(head.beacon_state.clone(), harness.chain.slot().unwrap())
.await;
let next_block = SignedBlockContents::from(next_block);
// `make_block` adds random graffiti, so this will produce an alternate block
let (reorg_block, _reorg_state) = harness
.make_block(head.beacon_state.clone(), harness.chain.slot().unwrap())
.await;
let reorg_block = SignedBlockContents::from(reorg_block);
let head_state_root = head.beacon_state_root();
let attestations = harness
.get_unaggregated_attestations(
&AttestationStrategy::AllValidators,
&head.beacon_state,
head_state_root,
head.beacon_block_root,
harness.chain.slot().unwrap(),
)
.into_iter()
.flat_map(|vec| vec.into_iter().map(|(attestation, _subnet_id)| attestation))
.collect::<Vec<_>>();
let attester_slashing = harness.make_attester_slashing(vec![0, 1]);
let proposer_slashing = harness.make_proposer_slashing(2);
let voluntary_exit = harness.make_voluntary_exit(3, harness.chain.epoch().unwrap());
let chain = harness.chain.clone();
let log = null_logger().unwrap();
let ApiServer {
server,
listening_socket,
network_rx,
local_enr,
external_peer_id,
} = create_api_server(chain.clone(), &harness.runtime, log).await;
harness.runtime.task_executor.spawn(server, "api_server");
let client = BeaconNodeHttpClient::new(
SensitiveUrl::parse(&format!(
"http://{}:{}",
listening_socket.ip(),
listening_socket.port()
))
.unwrap(),
Timeouts::set_all(Duration::from_secs(SECONDS_PER_SLOT)),
);
Self {
harness,
chain,
client,
next_block,
reorg_block,
attestations,
contribution_and_proofs: vec![],
attester_slashing,
proposer_slashing,
voluntary_exit,
network_rx,
local_enr,
external_peer_id,
mock_builder: None,
}
}
fn validator_keypairs(&self) -> &[Keypair] {
&self.harness.validator_keypairs
}
pub async fn new_mev_tester() -> Self {
let tester = Self::new_with_hard_forks(true, true)
.await
.test_post_validator_register_validator()
.await;
// Make sure bids always meet the minimum threshold.
tester
.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::Value(Uint256::from(
DEFAULT_BUILDER_THRESHOLD_WEI,
)));
tester
}
pub async fn new_mev_tester_no_builder_threshold() -> Self {
let mut config = ApiTesterConfig {
builder_threshold: Some(0),
retain_historic_states: false,
spec: E::default_spec(),
};
config.spec.altair_fork_epoch = Some(Epoch::new(0));
config.spec.bellatrix_fork_epoch = Some(Epoch::new(0));
let tester = Self::new_from_config(config)
.await
.test_post_validator_register_validator()
.await;
tester
.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::Value(Uint256::from(
DEFAULT_BUILDER_PAYLOAD_VALUE_WEI,
)));
tester
}
fn skip_slots(self, count: u64) -> Self {
for _ in 0..count {
self.chain
.slot_clock
.set_slot(self.chain.slot().unwrap().as_u64() + 1);
}
self
}
fn interesting_state_ids(&self) -> Vec<StateId> {
let mut ids = vec![
StateId(CoreStateId::Head),
StateId(CoreStateId::Genesis),
StateId(CoreStateId::Finalized),
StateId(CoreStateId::Justified),
StateId(CoreStateId::Slot(Slot::new(0))),
StateId(CoreStateId::Slot(Slot::new(32))),
StateId(CoreStateId::Slot(Slot::from(SKIPPED_SLOTS[0]))),
StateId(CoreStateId::Slot(Slot::from(SKIPPED_SLOTS[1]))),
StateId(CoreStateId::Slot(Slot::from(SKIPPED_SLOTS[2]))),
StateId(CoreStateId::Slot(Slot::from(SKIPPED_SLOTS[3]))),
StateId(CoreStateId::Root(Hash256::zero())),
];
ids.push(StateId(CoreStateId::Root(
self.chain.canonical_head.cached_head().head_state_root(),
)));
ids
}
fn interesting_block_ids(&self) -> Vec<BlockId> {
let mut ids = vec![
BlockId(CoreBlockId::Head),
BlockId(CoreBlockId::Genesis),
BlockId(CoreBlockId::Finalized),
BlockId(CoreBlockId::Justified),
BlockId(CoreBlockId::Slot(Slot::new(0))),
BlockId(CoreBlockId::Slot(Slot::new(32))),
BlockId(CoreBlockId::Slot(Slot::from(SKIPPED_SLOTS[0]))),
BlockId(CoreBlockId::Slot(Slot::from(SKIPPED_SLOTS[1]))),
BlockId(CoreBlockId::Slot(Slot::from(SKIPPED_SLOTS[2]))),
BlockId(CoreBlockId::Slot(Slot::from(SKIPPED_SLOTS[3]))),
BlockId(CoreBlockId::Root(Hash256::zero())),
];
ids.push(BlockId(CoreBlockId::Root(
self.chain.canonical_head.cached_head().head_block_root(),
)));
ids
}
pub async fn test_beacon_genesis(self) -> Self {
let result = self.client.get_beacon_genesis().await.unwrap().data;
let state = &self.chain.head_snapshot().beacon_state;
let expected = GenesisData {
genesis_time: state.genesis_time(),
genesis_validators_root: state.genesis_validators_root(),
genesis_fork_version: self.chain.spec.genesis_fork_version,
};
assert_eq!(result, expected);
self
}
// finalization tests
pub async fn test_beacon_states_root_finalized(self) -> Self {
for state_id in self.interesting_state_ids() {
let state_root = state_id.root(&self.chain);
let state = state_id.state(&self.chain);
// if .root or .state fail, skip the test. those would be errors outside the scope
// of this test, here we're testing the finalized field assuming the call to .is_finalized_state
// occurs after the state_root and state calls, and that the state_root and state calls
// were correct.
if state_root.is_err() || state.is_err() {
continue;
}
// now that we know the state is valid, we can unwrap() everything we need
let result = self
.client
.get_beacon_states_root(state_id.0)
.await
.unwrap()
.unwrap()
.finalized
.unwrap();
let (state_root, _, _) = state_root.unwrap();
let (state, _, _) = state.unwrap();
let state_slot = state.slot();
let expected = self
.chain
.is_finalized_state(&state_root, state_slot)
.unwrap();
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_beacon_states_fork_finalized(self) -> Self {
for state_id in self.interesting_state_ids() {
let state_root = state_id.root(&self.chain);
let state = state_id.state(&self.chain);
// if .root or .state fail, skip the test. those would be errors outside the scope
// of this test, here we're testing the finalized field assuming the call to .is_finalized_state
// occurs after the state_root and state calls, and that the state_root and state calls
// were correct.
if state_root.is_err() || state.is_err() {
continue;
}
// now that we know the state is valid, we can unwrap() everything we need
let result = self
.client
.get_beacon_states_fork(state_id.0)
.await
.unwrap()
.unwrap()
.finalized
.unwrap();
let (state_root, _, _) = state_root.unwrap();
let (state, _, _) = state.unwrap();
let state_slot = state.slot();
let expected = self
.chain
.is_finalized_state(&state_root, state_slot)
.unwrap();
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_beacon_states_finality_checkpoints_finalized(self) -> Self {
for state_id in self.interesting_state_ids() {
let state_root = state_id.root(&self.chain);
let state = state_id.state(&self.chain);
// if .root or .state fail, skip the test. those would be errors outside the scope
// of this test, here we're testing the finalized field assuming the call to .is_finalized_state
// occurs after the state_root and state calls, and that the state_root and state calls
// were correct.
if state_root.is_err() || state.is_err() {
continue;
}
// now that we know the state is valid, we can unwrap() everything we need
let result = self
.client
.get_beacon_states_finality_checkpoints(state_id.0)
.await
.unwrap()
.unwrap()
.finalized
.unwrap();
let (state_root, _, _) = state_root.unwrap();
let (state, _, _) = state.unwrap();
let state_slot = state.slot();
let expected = self
.chain
.is_finalized_state(&state_root, state_slot)
.unwrap();
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_beacon_headers_block_id_finalized(self) -> Self {
for block_id in self.interesting_block_ids() {
let block_root = block_id.root(&self.chain);
let block = block_id.full_block(&self.chain).await;
// if .root or .state fail, skip the test. those would be errors outside the scope
// of this test, here we're testing the finalized field assuming the call to .is_finalized_state
// occurs after the state_root and state calls, and that the state_root and state calls
// were correct.
if block_root.is_err() || block.is_err() {
continue;
}
// now that we know the block is valid, we can unwrap() everything we need
let result = self
.client
.get_beacon_headers_block_id(block_id.0)
.await
.unwrap()
.unwrap()
.finalized
.unwrap();
let (block_root, _, _) = block_root.unwrap();
let (block, _, _) = block.unwrap();
let block_slot = block.slot();
let expected = self
.chain
.is_finalized_block(&block_root, block_slot)
.unwrap();
assert_eq!(result, expected, "{:?}", block_id);
}
self
}
pub async fn test_beacon_blocks_finalized<T: EthSpec>(self) -> Self {
for block_id in self.interesting_block_ids() {
let block_root = block_id.root(&self.chain);
let block = block_id.full_block(&self.chain).await;
// if .root or .full_block fail, skip the test. those would be errors outside the scope
// of this test, here we're testing the finalized field assuming the call to .is_finalized_block
// occurs after those calls, and that they were correct.
if block_root.is_err() || block.is_err() {
continue;
}
// now that we know the block is valid, we can unwrap() everything we need
let result = self
.client
.get_beacon_blocks::<MainnetEthSpec>(block_id.0)
.await
.unwrap()
.unwrap()
.finalized
.unwrap();
let (block_root, _, _) = block_root.unwrap();
let (block, _, _) = block.unwrap();
let block_slot = block.slot();
let expected = self
.chain
.is_finalized_block(&block_root, block_slot)
.unwrap();
assert_eq!(result, expected, "{:?}", block_id);
}
self
}
pub async fn test_beacon_blinded_blocks_finalized<T: EthSpec>(self) -> Self {
for block_id in self.interesting_block_ids() {
let block_root = block_id.root(&self.chain);
let block = block_id.full_block(&self.chain).await;
// if .root or .full_block fail, skip the test. those would be errors outside the scope
// of this test, here we're testing the finalized field assuming the call to .is_finalized_block
// occurs after those calls, and that they were correct.
if block_root.is_err() || block.is_err() {
continue;
}
// now that we know the block is valid, we can unwrap() everything we need
let result = self
.client
.get_beacon_blinded_blocks::<MainnetEthSpec>(block_id.0)
.await
.unwrap()
.unwrap()
.finalized
.unwrap();
let (block_root, _, _) = block_root.unwrap();
let (block, _, _) = block.unwrap();
let block_slot = block.slot();
let expected = self
.chain
.is_finalized_block(&block_root, block_slot)
.unwrap();
assert_eq!(result, expected, "{:?}", block_id);
}
self
}
pub async fn test_debug_beacon_states_finalized(self) -> Self {
for state_id in self.interesting_state_ids() {
let state_root = state_id.root(&self.chain);
let state = state_id.state(&self.chain);
// if .root or .state fail, skip the test. those would be errors outside the scope
// of this test, here we're testing the finalized field assuming the call to .is_finalized_state
// occurs after the state_root and state calls, and that the state_root and state calls
// were correct.
if state_root.is_err() || state.is_err() {
continue;
}
// now that we know the state is valid, we can unwrap() everything we need
let result = self
.client
.get_debug_beacon_states::<MainnetEthSpec>(state_id.0)
.await
.unwrap()
.unwrap()
.finalized
.unwrap();
let (state_root, _, _) = state_root.unwrap();
let (state, _, _) = state.unwrap();
let state_slot = state.slot();
let expected = self
.chain
.is_finalized_state(&state_root, state_slot)
.unwrap();
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_beacon_states_root(self) -> Self {
for state_id in self.interesting_state_ids() {
let result = self
.client
.get_beacon_states_root(state_id.0)
.await
.unwrap()
.map(|res| res.data.root);
let expected = state_id
.root(&self.chain)
.ok()
.map(|(root, _execution_optimistic, _finalized)| root);
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_beacon_states_fork(self) -> Self {
for state_id in self.interesting_state_ids() {
let result = self
.client
.get_beacon_states_fork(state_id.0)
.await
.unwrap()
.map(|res| res.data);
let expected = state_id.fork(&self.chain).ok();
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_beacon_states_finality_checkpoints(self) -> Self {
for state_id in self.interesting_state_ids() {
let result = self
.client
.get_beacon_states_finality_checkpoints(state_id.0)
.await
.unwrap()
.map(|res| res.data);
let expected = state_id.state(&self.chain).ok().map(
|(state, _execution_optimistic, _finalized)| FinalityCheckpointsData {
previous_justified: state.previous_justified_checkpoint(),
current_justified: state.current_justified_checkpoint(),
finalized: state.finalized_checkpoint(),
},
);
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_beacon_states_validator_balances(self) -> Self {
for state_id in self.interesting_state_ids() {
for validator_indices in self.interesting_validator_indices() {
let state_opt = state_id.state(&self.chain).ok();
let validators: Vec<Validator> = match state_opt.as_ref() {
Some((state, _execution_optimistic, _finalized)) => {
state.validators().clone().into()
}
None => vec![],
};
let validator_index_ids = validator_indices
.iter()
.cloned()
.map(|i| ValidatorId::Index(i))
.collect::<Vec<ValidatorId>>();
let validator_pubkey_ids = validator_indices
.iter()
.cloned()
.map(|i| {
ValidatorId::PublicKey(
validators
.get(i as usize)
.map_or(PublicKeyBytes::empty(), |val| val.pubkey.clone()),
)
})
.collect::<Vec<ValidatorId>>();
let result_index_ids = self
.client
.get_beacon_states_validator_balances(
state_id.0,
Some(validator_index_ids.as_slice()),
)
.await
.unwrap()
.map(|res| res.data);
let result_pubkey_ids = self
.client
.get_beacon_states_validator_balances(
state_id.0,
Some(validator_pubkey_ids.as_slice()),
)
.await
.unwrap()
.map(|res| res.data);
let expected = state_opt.map(|(state, _execution_optimistic, _finalized)| {
let mut validators = Vec::with_capacity(validator_indices.len());
for i in validator_indices {
if i < state.balances().len() as u64 {
validators.push(ValidatorBalanceData {
index: i as u64,
balance: state.balances()[i as usize],
});
}
}
validators
});
assert_eq!(result_index_ids, expected, "{:?}", state_id);
assert_eq!(result_pubkey_ids, expected, "{:?}", state_id);
}
}
self
}
pub async fn test_beacon_states_validators(self) -> Self {
for state_id in self.interesting_state_ids() {
for statuses in self.interesting_validator_statuses() {
for validator_indices in self.interesting_validator_indices() {
let state_opt = state_id
.state(&self.chain)
.ok()
.map(|(state, _execution_optimistic, _finalized)| state);
let validators: Vec<Validator> = match state_opt.as_ref() {
Some(state) => state.validators().clone().into(),
None => vec![],
};
let validator_index_ids = validator_indices
.iter()
.cloned()
.map(|i| ValidatorId::Index(i))
.collect::<Vec<ValidatorId>>();
let validator_pubkey_ids = validator_indices
.iter()
.cloned()
.map(|i| {
ValidatorId::PublicKey(
validators
.get(i as usize)
.map_or(PublicKeyBytes::empty(), |val| val.pubkey.clone()),
)
})
.collect::<Vec<ValidatorId>>();
let result_index_ids = self
.client
.get_beacon_states_validators(
state_id.0,
Some(validator_index_ids.as_slice()),
None,
)
.await
.unwrap()
.map(|res| res.data);
let result_pubkey_ids = self
.client
.get_beacon_states_validators(
state_id.0,
Some(validator_pubkey_ids.as_slice()),
None,
)
.await
.unwrap()
.map(|res| res.data);
let expected = state_opt.map(|state| {
let epoch = state.current_epoch();
let far_future_epoch = self.chain.spec.far_future_epoch;
let mut validators = Vec::with_capacity(validator_indices.len());
for i in validator_indices {
if i >= state.validators().len() as u64 {
continue;
}
let validator = state.validators()[i as usize].clone();
let status = ValidatorStatus::from_validator(
&validator,
epoch,
far_future_epoch,
);
if statuses.contains(&status)
|| statuses.is_empty()
|| statuses.contains(&status.superstatus())
{
validators.push(ValidatorData {
index: i as u64,
balance: state.balances()[i as usize],
status,
validator,
});
}
}
validators
});
assert_eq!(result_index_ids, expected, "{:?}", state_id);
assert_eq!(result_pubkey_ids, expected, "{:?}", state_id);
}
}
}
self
}
pub async fn test_beacon_states_validator_id(self) -> Self {
for state_id in self.interesting_state_ids() {
let state_opt = state_id
.state(&self.chain)
.ok()
.map(|(state, _execution_optimistic, _finalized)| state);
let validators = match state_opt.as_ref() {
Some(state) => state.validators().clone().into(),
None => vec![],
};
for (i, validator) in validators.into_iter().enumerate() {
let validator_ids = &[
ValidatorId::PublicKey(validator.pubkey.clone()),
ValidatorId::Index(i as u64),
];
for validator_id in validator_ids {
let result = self
.client
.get_beacon_states_validator_id(state_id.0, validator_id)
.await
.unwrap()
.map(|res| res.data);
if result.is_none() && state_opt.is_none() {
continue;
}
let state = state_opt.as_ref().expect("result should be none");
let expected = {
let epoch = state.current_epoch();
let far_future_epoch = self.chain.spec.far_future_epoch;
ValidatorData {
index: i as u64,
balance: state.balances()[i],
status: ValidatorStatus::from_validator(
&validator,
epoch,
far_future_epoch,
),
validator: validator.clone(),
}
};
assert_eq!(result, Some(expected), "{:?}, {:?}", state_id, validator_id);
}
}
}
self
}
pub async fn test_beacon_states_committees(self) -> Self {
for state_id in self.interesting_state_ids() {
let mut state_opt = state_id
.state(&self.chain)
.ok()
.map(|(state, _execution_optimistic, _finalized)| state);
let epoch_opt = state_opt.as_ref().map(|state| state.current_epoch());
let results = self
.client
.get_beacon_states_committees(state_id.0, None, None, epoch_opt)
.await
.unwrap()
.map(|res| res.data);
if results.is_none() && state_opt.is_none() {
continue;
}
let state = state_opt.as_mut().expect("result should be none");
state.build_all_committee_caches(&self.chain.spec).unwrap();
let committees = state
.get_beacon_committees_at_epoch(RelativeEpoch::Current)
.unwrap();
for (i, result) in results.unwrap().into_iter().enumerate() {
let expected = &committees[i];
assert_eq!(result.index, expected.index, "{}", state_id);
assert_eq!(result.slot, expected.slot, "{}", state_id);
assert_eq!(
result
.validators
.into_iter()
.map(|i| i as usize)
.collect::<Vec<_>>(),
expected.committee.to_vec(),
"{}",
state_id
);
}
}
self
}
pub async fn test_beacon_states_randao(self) -> Self {
for state_id in self.interesting_state_ids() {
let mut state_opt = state_id
.state(&self.chain)
.ok()
.map(|(state, _execution_optimistic, _finalized)| state);
let epoch_opt = state_opt.as_ref().map(|state| state.current_epoch());
let result = self
.client
.get_beacon_states_randao(state_id.0, epoch_opt)
.await
.unwrap()
.map(|res| res.data);
if result.is_none() && state_opt.is_none() {
continue;
}
let state = state_opt.as_mut().expect("result should be none");
let randao_mix = state
.get_randao_mix(state.slot().epoch(E::slots_per_epoch()))
.unwrap();
assert_eq!(result.unwrap().randao, *randao_mix);
}
self
}
pub async fn test_beacon_headers_all_slots(self) -> Self {
for slot in 0..CHAIN_LENGTH {
let slot = Slot::from(slot);
let result = self
.client
.get_beacon_headers(Some(slot), None)
.await
.unwrap()
.map(|res| res.data);
let root = self
.chain
.block_root_at_slot(slot, WhenSlotSkipped::None)
.unwrap();
if root.is_none() && result.is_none() {
continue;
}
let root = root.unwrap();
let block = self
.chain
.block_at_slot(slot, WhenSlotSkipped::Prev)
.unwrap()
.unwrap();
let header = BlockHeaderData {
root,
canonical: true,
header: BlockHeaderAndSignature {
message: block.message().block_header(),
signature: block.signature().clone().into(),
},
};
let expected = vec![header];
assert_eq!(result.unwrap(), expected, "slot {:?}", slot);
}
self
}
pub async fn test_beacon_headers_all_parents(self) -> Self {
let mut roots = self
.chain
.forwards_iter_block_roots(Slot::new(0))
.unwrap()
.map(Result::unwrap)
.map(|(root, _slot)| root)
.collect::<Vec<_>>();
// The iterator natively returns duplicate roots for skipped slots.
roots.dedup();
for i in 1..roots.len() {
let parent_root = roots[i - 1];
let child_root = roots[i];
let result = self
.client
.get_beacon_headers(None, Some(parent_root))
.await
.unwrap()
.unwrap()
.data;
assert_eq!(result.len(), 1, "i {}", i);
assert_eq!(result[0].root, child_root, "i {}", i);
}
self
}
pub async fn test_beacon_headers_block_id(self) -> Self {
for block_id in self.interesting_block_ids() {
let result = self
.client
.get_beacon_headers_block_id(block_id.0)
.await
.unwrap()
.map(|res| res.data);
let block_root_opt = block_id
.root(&self.chain)
.ok()
.map(|(root, _execution_optimistic, _finalized)| root);
if let CoreBlockId::Slot(slot) = block_id.0 {
if block_root_opt.is_none() {
assert!(SKIPPED_SLOTS.contains(&slot.as_u64()));
} else {
assert!(!SKIPPED_SLOTS.contains(&slot.as_u64()));
}
}
let block_opt = block_id
.full_block(&self.chain)
.await
.ok()
.map(|(block, _execution_optimistic, _finalized)| block);
if block_opt.is_none() && result.is_none() {
continue;
}
let result = result.unwrap();
let block = block_opt.unwrap();
let block_root = block_root_opt.unwrap();
let canonical = self
.chain
.block_root_at_slot(block.slot(), WhenSlotSkipped::None)
.unwrap()
.map_or(false, |canonical| block_root == canonical);
assert_eq!(result.canonical, canonical, "{:?}", block_id);
assert_eq!(result.root, block_root, "{:?}", block_id);
assert_eq!(
result.header.message,
block.message().block_header(),
"{:?}",
block_id
);
assert_eq!(
result.header.signature,
block.signature().clone().into(),
"{:?}",
block_id
);
}
self
}
pub async fn test_beacon_blocks_root(self) -> Self {
for block_id in self.interesting_block_ids() {
let result = self
.client
.get_beacon_blocks_root(block_id.0)
.await
.unwrap()
.map(|res| res.data.root);
let expected = block_id
.root(&self.chain)
.ok()
.map(|(root, _execution_optimistic, _finalized)| root);
if let CoreBlockId::Slot(slot) = block_id.0 {
if expected.is_none() {
assert!(SKIPPED_SLOTS.contains(&slot.as_u64()));
} else {
assert!(!SKIPPED_SLOTS.contains(&slot.as_u64()));
}
}
assert_eq!(result, expected, "{:?}", block_id);
}
self
}
pub async fn test_post_beacon_blocks_valid(mut self) -> Self {
let next_block = self.next_block.clone();
self.client.post_beacon_blocks(&next_block).await.unwrap();
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"valid blocks should be sent to network"
);
self
}
pub async fn test_post_beacon_blocks_ssz_valid(mut self) -> Self {
let next_block = &self.next_block;
self.client
.post_beacon_blocks_ssz(next_block)
.await
.unwrap();
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"valid blocks should be sent to network"
);
self
}
pub async fn test_post_beacon_blocks_invalid(mut self) -> Self {
let block = self
.harness
.make_block_with_modifier(
self.harness.get_current_state(),
self.harness.get_current_slot(),
|b| {
*b.state_root_mut() = Hash256::zero();
},
)
.await
.0;
assert!(self
.client
.post_beacon_blocks(&SignedBlockContents::from(block))
.await
.is_err());
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"gossip valid blocks should be sent to network"
);
self
}
pub async fn test_post_beacon_blocks_ssz_invalid(mut self) -> Self {
let block = self
.harness
.make_block_with_modifier(
self.harness.get_current_state(),
self.harness.get_current_slot(),
|b| {
*b.state_root_mut() = Hash256::zero();
},
)
.await
.0;
assert!(self
.client
.post_beacon_blocks_ssz(&SignedBlockContents::from(block))
.await
.is_err());
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"gossip valid blocks should be sent to network"
);
self
}
pub async fn test_post_beacon_blocks_duplicate(self) -> Self {
let block_contents = self
.harness
.make_block(
self.harness.get_current_state(),
self.harness.get_current_slot(),
)
.await
.0
.into();
assert!(self
.client
.post_beacon_blocks(&block_contents)
.await
.is_ok());
let blinded_block_contents = block_contents.clone_as_blinded();
// Test all the POST methods in sequence, they should all behave the same.
let responses = vec![
self.client
.post_beacon_blocks(&block_contents)
.await
.unwrap_err(),
self.client
.post_beacon_blocks_v2(&block_contents, None)
.await
.unwrap_err(),
self.client
.post_beacon_blocks_ssz(&block_contents)
.await
.unwrap_err(),
self.client
.post_beacon_blocks_v2_ssz(&block_contents, None)
.await
.unwrap_err(),
self.client
.post_beacon_blinded_blocks(&blinded_block_contents)
.await
.unwrap_err(),
self.client
.post_beacon_blinded_blocks_v2(&blinded_block_contents, None)
.await
.unwrap_err(),
self.client
.post_beacon_blinded_blocks_ssz(&blinded_block_contents)
.await
.unwrap_err(),
self.client
.post_beacon_blinded_blocks_v2_ssz(&blinded_block_contents, None)
.await
.unwrap_err(),
];
for (i, response) in responses.into_iter().enumerate() {
assert_eq!(
response.status().unwrap(),
StatusCode::ACCEPTED,
"response {i}"
);
}
self
}
pub async fn test_beacon_blocks(self) -> Self {
for block_id in self.interesting_block_ids() {
let expected = block_id
.full_block(&self.chain)
.await
.ok()
.map(|(block, _execution_optimistic, _finalized)| block);
if let CoreBlockId::Slot(slot) = block_id.0 {
if expected.is_none() {
assert!(SKIPPED_SLOTS.contains(&slot.as_u64()));
} else {
assert!(!SKIPPED_SLOTS.contains(&slot.as_u64()));
}
}
// Check the JSON endpoint.
let json_result = self.client.get_beacon_blocks(block_id.0).await.unwrap();
if let (Some(json), Some(expected)) = (&json_result, &expected) {
assert_eq!(&json.data, expected.as_ref(), "{:?}", block_id);
assert_eq!(
json.version,
Some(expected.fork_name(&self.chain.spec).unwrap())
);
} else {
assert_eq!(json_result, None);
assert_eq!(expected, None);
}
// Check the SSZ endpoint.
let ssz_result = self
.client
.get_beacon_blocks_ssz(block_id.0, &self.chain.spec)
.await
.unwrap();
assert_eq!(
ssz_result.as_ref(),
expected.as_ref().map(|b| b.as_ref()),
"{:?}",
block_id
);
// Check that the legacy v1 API still works but doesn't return a version field.
let v1_result = self.client.get_beacon_blocks_v1(block_id.0).await.unwrap();
if let (Some(v1_result), Some(expected)) = (&v1_result, &expected) {
assert_eq!(v1_result.version, None);
assert_eq!(&v1_result.data, expected.as_ref());
} else {
assert_eq!(v1_result, None);
assert_eq!(expected, None);
}
// Check that version headers are provided.
let url = self.client.get_beacon_blocks_path(block_id.0).unwrap();
let builders: Vec<fn(RequestBuilder) -> RequestBuilder> = vec![
|b| b,
|b| b.accept(Accept::Ssz),
|b| b.accept(Accept::Json),
|b| b.accept(Accept::Any),
];
for req_builder in builders {
let raw_res = self
.client
.get_response(url.clone(), req_builder)
.await
.optional()
.unwrap();
if let (Some(raw_res), Some(expected)) = (&raw_res, &expected) {
assert_eq!(
raw_res.fork_name_from_header().unwrap(),
Some(expected.fork_name(&self.chain.spec).unwrap())
);
} else {
assert!(raw_res.is_none());
assert_eq!(expected, None);
}
}
}
self
}
pub async fn test_beacon_blinded_blocks(self) -> Self {
for block_id in self.interesting_block_ids() {
let expected = block_id
.blinded_block(&self.chain)
.ok()
.map(|(block, _execution_optimistic, _finalized)| block);
if let CoreBlockId::Slot(slot) = block_id.0 {
if expected.is_none() {
assert!(SKIPPED_SLOTS.contains(&slot.as_u64()));
} else {
assert!(!SKIPPED_SLOTS.contains(&slot.as_u64()));
}
}
// Check the JSON endpoint.
let json_result = self
.client
.get_beacon_blinded_blocks(block_id.0)
.await
.unwrap();
if let (Some(json), Some(expected)) = (&json_result, &expected) {
assert_eq!(&json.data, expected, "{:?}", block_id);
assert_eq!(
json.version,
Some(expected.fork_name(&self.chain.spec).unwrap())
);
} else {
assert_eq!(json_result, None);
assert_eq!(expected, None);
}
// Check the SSZ endpoint.
let ssz_result = self
.client
.get_beacon_blinded_blocks_ssz(block_id.0, &self.chain.spec)
.await
.unwrap();
assert_eq!(ssz_result.as_ref(), expected.as_ref(), "{:?}", block_id);
// Check that version headers are provided.
let url = self
.client
.get_beacon_blinded_blocks_path(block_id.0)
.unwrap();
let builders: Vec<fn(RequestBuilder) -> RequestBuilder> = vec![
|b| b,
|b| b.accept(Accept::Ssz),
|b| b.accept(Accept::Json),
|b| b.accept(Accept::Any),
];
for req_builder in builders {
let raw_res = self
.client
.get_response(url.clone(), req_builder)
.await
.optional()
.unwrap();
if let (Some(raw_res), Some(expected)) = (&raw_res, &expected) {
assert_eq!(
raw_res.fork_name_from_header().unwrap(),
Some(expected.fork_name(&self.chain.spec).unwrap())
);
} else {
assert!(raw_res.is_none());
assert_eq!(expected, None);
}
}
}
self
}
pub async fn test_beacon_blocks_attestations(self) -> Self {
for block_id in self.interesting_block_ids() {
let result = self
.client
.get_beacon_blocks_attestations(block_id.0)
.await
.unwrap()
.map(|res| res.data);
let expected = block_id.full_block(&self.chain).await.ok().map(
|(block, _execution_optimistic, _finalized)| {
block.message().body().attestations().clone().into()
},
);
if let CoreBlockId::Slot(slot) = block_id.0 {
if expected.is_none() {
assert!(SKIPPED_SLOTS.contains(&slot.as_u64()));
} else {
assert!(!SKIPPED_SLOTS.contains(&slot.as_u64()));
}
}
assert_eq!(result, expected, "{:?}", block_id);
}
self
}
pub async fn test_post_beacon_pool_attestations_valid(mut self) -> Self {
self.client
.post_beacon_pool_attestations(self.attestations.as_slice())
.await
.unwrap();
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"valid attestation should be sent to network"
);
self
}
pub async fn test_post_beacon_pool_attestations_invalid(mut self) -> Self {
let mut attestations = Vec::new();
for attestation in &self.attestations {
let mut invalid_attestation = attestation.clone();
invalid_attestation.data.slot += 1;
// add both to ensure we only fail on invalid attestations
attestations.push(attestation.clone());
attestations.push(invalid_attestation);
}
let err = self
.client
.post_beacon_pool_attestations(attestations.as_slice())
.await
.unwrap_err();
match err {
Error::ServerIndexedMessage(IndexedErrorMessage {
code,
message: _,
failures,
}) => {
assert_eq!(code, 400);
assert_eq!(failures.len(), self.attestations.len());
}
_ => panic!("query did not fail correctly"),
}
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"if some attestations are valid, we should send them to the network"
);
self
}
pub async fn test_get_beacon_pool_attestations(self) -> Self {
let result = self
.client
.get_beacon_pool_attestations(None, None)
.await
.unwrap()
.data;
let mut expected = self.chain.op_pool.get_all_attestations();
expected.extend(self.chain.naive_aggregation_pool.read().iter().cloned());
assert_eq!(result, expected);
self
}
pub async fn test_post_beacon_pool_attester_slashings_valid(mut self) -> Self {
self.client
.post_beacon_pool_attester_slashings(&self.attester_slashing)
.await
.unwrap();
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"valid attester slashing should be sent to network"
);
self
}
pub async fn test_post_beacon_pool_attester_slashings_invalid(mut self) -> Self {
let mut slashing = self.attester_slashing.clone();
slashing.attestation_1.data.slot += 1;
self.client
.post_beacon_pool_attester_slashings(&slashing)
.await
.unwrap_err();
assert!(
self.network_rx.network_recv.recv().now_or_never().is_none(),
"invalid attester slashing should not be sent to network"
);
self
}
pub async fn test_get_beacon_pool_attester_slashings(self) -> Self {
let result = self
.client
.get_beacon_pool_attester_slashings()
.await
.unwrap()
.data;
let expected = self.chain.op_pool.get_all_attester_slashings();
assert_eq!(result, expected);
self
}
pub async fn test_post_beacon_pool_proposer_slashings_valid(mut self) -> Self {
self.client
.post_beacon_pool_proposer_slashings(&self.proposer_slashing)
.await
.unwrap();
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"valid proposer slashing should be sent to network"
);
self
}
pub async fn test_post_beacon_pool_proposer_slashings_invalid(mut self) -> Self {
let mut slashing = self.proposer_slashing.clone();
slashing.signed_header_1.message.slot += 1;
self.client
.post_beacon_pool_proposer_slashings(&slashing)
.await
.unwrap_err();
assert!(
self.network_rx.network_recv.recv().now_or_never().is_none(),
"invalid proposer slashing should not be sent to network"
);
self
}
pub async fn test_get_beacon_pool_proposer_slashings(self) -> Self {
let result = self
.client
.get_beacon_pool_proposer_slashings()
.await
.unwrap()
.data;
let expected = self.chain.op_pool.get_all_proposer_slashings();
assert_eq!(result, expected);
self
}
pub async fn test_post_beacon_pool_voluntary_exits_valid(mut self) -> Self {
self.client
.post_beacon_pool_voluntary_exits(&self.voluntary_exit)
.await
.unwrap();
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"valid exit should be sent to network"
);
self
}
pub async fn test_post_beacon_pool_voluntary_exits_invalid(mut self) -> Self {
let mut exit = self.voluntary_exit.clone();
exit.message.epoch += 1;
self.client
.post_beacon_pool_voluntary_exits(&exit)
.await
.unwrap_err();
assert!(
self.network_rx.network_recv.recv().now_or_never().is_none(),
"invalid exit should not be sent to network"
);
self
}
pub async fn test_get_beacon_pool_voluntary_exits(self) -> Self {
let result = self
.client
.get_beacon_pool_voluntary_exits()
.await
.unwrap()
.data;
let expected = self.chain.op_pool.get_all_voluntary_exits();
assert_eq!(result, expected);
self
}
pub async fn test_get_config_fork_schedule(self) -> Self {
let result = self.client.get_config_fork_schedule().await.unwrap().data;
let expected: Vec<Fork> = ForkName::list_all()
.into_iter()
.filter_map(|fork| self.chain.spec.fork_for_name(fork))
.collect();
assert_eq!(result, expected);
self
}
pub async fn test_get_config_spec(self) -> Self {
let result = self
.client
.get_config_spec::<ConfigAndPresetDeneb>()
.await
.map(|res| ConfigAndPreset::Deneb(res.data))
.unwrap();
let expected = ConfigAndPreset::from_chain_spec::<E>(&self.chain.spec, None);
assert_eq!(result, expected);
self
}
pub async fn test_get_config_deposit_contract(self) -> Self {
let result = self
.client
.get_config_deposit_contract()
.await
.unwrap()
.data;
let expected = DepositContractData {
address: self.chain.spec.deposit_contract_address,
chain_id: self.chain.spec.deposit_chain_id,
};
assert_eq!(result, expected);
self
}
pub async fn test_get_node_version(self) -> Self {
let result = self.client.get_node_version().await.unwrap().data;
let expected = VersionData {
version: lighthouse_version::version_with_platform(),
};
assert_eq!(result, expected);
self
}
pub async fn test_get_node_syncing(self) -> Self {
let result = self.client.get_node_syncing().await.unwrap().data;
let head_slot = self.chain.canonical_head.cached_head().head_slot();
let sync_distance = self.chain.slot().unwrap() - head_slot;
let expected = SyncingData {
is_syncing: false,
is_optimistic: Some(false),
// these tests run without the Bellatrix fork enabled
el_offline: Some(true),
head_slot,
sync_distance,
};
assert_eq!(result, expected);
self
}
pub async fn test_get_node_identity(self) -> Self {
let result = self.client.get_node_identity().await.unwrap().data;
let expected = IdentityData {
peer_id: self.local_enr.peer_id().to_string(),
enr: self.local_enr.clone(),
p2p_addresses: self.local_enr.multiaddr_p2p_tcp(),
discovery_addresses: self.local_enr.multiaddr_p2p_udp(),
metadata: eth2::types::MetaData {
seq_number: 0,
attnets: "0x0000000000000000".to_string(),
syncnets: "0x00".to_string(),
},
};
assert_eq!(result, expected);
self
}
pub async fn test_get_node_health(self) -> Self {
let status = self.client.get_node_health().await;
match status {
Ok(_) => {
panic!("should return 503 error status code");
}
Err(e) => {
assert_eq!(e.status().unwrap(), 503);
}
}
self
}
pub async fn test_get_node_peers_by_id(self) -> Self {
let result = self
.client
.get_node_peers_by_id(self.external_peer_id.clone())
.await
.unwrap()
.data;
let expected = PeerData {
peer_id: self.external_peer_id.to_string(),
enr: None,
last_seen_p2p_address: EXTERNAL_ADDR.to_string(),
state: PeerState::Connected,
direction: PeerDirection::Inbound,
};
assert_eq!(result, expected);
self
}
pub async fn test_get_node_peers(self) -> Self {
let peer_states: Vec<Option<&[PeerState]>> = vec![
Some(&[PeerState::Connected]),
Some(&[PeerState::Connecting]),
Some(&[PeerState::Disconnected]),
Some(&[PeerState::Disconnecting]),
None,
Some(&[PeerState::Connected, PeerState::Connecting]),
];
let peer_dirs: Vec<Option<&[PeerDirection]>> = vec![
Some(&[PeerDirection::Outbound]),
Some(&[PeerDirection::Inbound]),
Some(&[PeerDirection::Inbound, PeerDirection::Outbound]),
None,
];
for states in peer_states {
for dirs in peer_dirs.clone() {
let result = self.client.get_node_peers(states, dirs).await.unwrap();
let expected_peer = PeerData {
peer_id: self.external_peer_id.to_string(),
enr: None,
last_seen_p2p_address: EXTERNAL_ADDR.to_string(),
state: PeerState::Connected,
direction: PeerDirection::Inbound,
};
let state_match =
states.map_or(true, |states| states.contains(&PeerState::Connected));
let dir_match = dirs.map_or(true, |dirs| dirs.contains(&PeerDirection::Inbound));
let mut expected_peers = Vec::new();
if state_match && dir_match {
expected_peers.push(expected_peer);
}
assert_eq!(
result,
PeersData {
meta: PeersMetaData {
count: expected_peers.len() as u64
},
data: expected_peers,
}
);
}
}
self
}
pub async fn test_get_node_peer_count(self) -> Self {
let result = self.client.get_node_peer_count().await.unwrap().data;
assert_eq!(
result,
PeerCount {
connected: 1,
connecting: 0,
disconnected: 0,
disconnecting: 0,
}
);
self
}
pub async fn test_get_debug_beacon_states(self) -> Self {
for state_id in self.interesting_state_ids() {
let result_json = self
.client
.get_debug_beacon_states(state_id.0)
.await
.unwrap();
let mut expected = state_id
.state(&self.chain)
.ok()
.map(|(state, _execution_optimistic, _finalized)| state);
expected.as_mut().map(|state| state.drop_all_caches());
if let (Some(json), Some(expected)) = (&result_json, &expected) {
assert_eq!(json.data, *expected, "{:?}", state_id);
assert_eq!(
json.version,
Some(expected.fork_name(&self.chain.spec).unwrap())
);
} else {
assert_eq!(result_json, None);
assert_eq!(expected, None);
}
// Check SSZ API.
let result_ssz = self
.client
.get_debug_beacon_states_ssz(state_id.0, &self.chain.spec)
.await
.unwrap();
assert_eq!(result_ssz, expected, "{:?}", state_id);
// Check that version headers are provided.
let url = self
.client
.get_debug_beacon_states_path(state_id.0)
.unwrap();
let builders: Vec<fn(RequestBuilder) -> RequestBuilder> =
vec![|b| b, |b| b.accept(Accept::Ssz)];
for req_builder in builders {
let raw_res = self
.client
.get_response(url.clone(), req_builder)
.await
.optional()
.unwrap();
if let (Some(raw_res), Some(expected)) = (&raw_res, &expected) {
assert_eq!(
raw_res.fork_name_from_header().unwrap(),
Some(expected.fork_name(&self.chain.spec).unwrap())
);
} else {
assert!(raw_res.is_none());
assert_eq!(expected, None);
}
}
}
self
}
pub async fn test_get_debug_beacon_heads(self) -> Self {
let result = self
.client
.get_debug_beacon_heads()
.await
.unwrap()
.data
.into_iter()
.map(|head| (head.root, head.slot))
.collect::<Vec<_>>();
let expected = self.chain.heads();
assert_eq!(result, expected);
self
}
pub async fn test_get_debug_fork_choice(self) -> Self {
let result = self.client.get_debug_fork_choice().await.unwrap();
let beacon_fork_choice = self.chain.canonical_head.fork_choice_read_lock();
let expected_proto_array = beacon_fork_choice.proto_array().core_proto_array();
assert_eq!(
result.justified_checkpoint,
expected_proto_array.justified_checkpoint
);
assert_eq!(
result.finalized_checkpoint,
expected_proto_array.finalized_checkpoint
);
let expected_fork_choice_nodes: Vec<ForkChoiceNode> = expected_proto_array
.nodes
.iter()
.map(|node| {
let execution_status = if node.execution_status.is_execution_enabled() {
Some(node.execution_status.to_string())
} else {
None
};
ForkChoiceNode {
slot: node.slot,
block_root: node.root,
parent_root: node
.parent
.and_then(|index| expected_proto_array.nodes.get(index))
.map(|parent| parent.root),
justified_epoch: node.justified_checkpoint.epoch,
finalized_epoch: node.finalized_checkpoint.epoch,
weight: node.weight,
validity: execution_status,
execution_block_hash: node
.execution_status
.block_hash()
.map(|block_hash| block_hash.into_root()),
}
})
.collect();
assert_eq!(result.fork_choice_nodes, expected_fork_choice_nodes);
// need to drop beacon_fork_choice here, else borrow checker will complain
// that self cannot be moved out since beacon_fork_choice borrowed self.chain
// and might still live after self is moved out
drop(beacon_fork_choice);
self
}
fn validator_count(&self) -> usize {
self.chain.head_snapshot().beacon_state.validators().len()
}
fn interesting_validator_indices(&self) -> Vec<Vec<u64>> {
let validator_count = self.validator_count() as u64;
let mut interesting = vec![
vec![],
vec![0],
vec![0, 1],
vec![0, 1, 3],
vec![validator_count],
vec![validator_count, 1],
vec![validator_count, 1, 3],
vec![u64::max_value()],
vec![u64::max_value(), 1],
vec![u64::max_value(), 1, 3],
];
interesting.push((0..validator_count).collect());
interesting
}
fn interesting_validator_statuses(&self) -> Vec<Vec<ValidatorStatus>> {
let interesting = vec![
vec![],
vec![ValidatorStatus::Active],
vec![
ValidatorStatus::PendingInitialized,
ValidatorStatus::PendingQueued,
ValidatorStatus::ActiveOngoing,
ValidatorStatus::ActiveExiting,
ValidatorStatus::ActiveSlashed,
ValidatorStatus::ExitedUnslashed,
ValidatorStatus::ExitedSlashed,
ValidatorStatus::WithdrawalPossible,
ValidatorStatus::WithdrawalDone,
ValidatorStatus::Active,
ValidatorStatus::Pending,
ValidatorStatus::Exited,
ValidatorStatus::Withdrawal,
],
];
interesting
}
pub async fn test_get_validator_duties_attester(self) -> Self {
let current_epoch = self.chain.epoch().unwrap().as_u64();
let half = current_epoch / 2;
let first = current_epoch - half;
let last = current_epoch + half;
for epoch in first..=last {
for indices in self.interesting_validator_indices() {
let epoch = Epoch::from(epoch);
// The endpoint does not allow getting duties past the next epoch.
if epoch > current_epoch + 1 {
assert_eq!(
self.client
.post_validator_duties_attester(epoch, indices.as_slice())
.await
.unwrap_err()
.status()
.map(Into::into),
Some(400)
);
continue;
}
let results = self
.client
.post_validator_duties_attester(epoch, indices.as_slice())
.await
.unwrap();
let dependent_root = self
.chain
.block_root_at_slot(
(epoch - 1).start_slot(E::slots_per_epoch()) - 1,
WhenSlotSkipped::Prev,
)
.unwrap()
.unwrap_or(self.chain.head_beacon_block_root());
assert_eq!(results.dependent_root, dependent_root);
let result_duties = results.data;
let mut state = self
.chain
.state_at_slot(
epoch.start_slot(E::slots_per_epoch()),
StateSkipConfig::WithStateRoots,
)
.unwrap();
state
.build_committee_cache(RelativeEpoch::Current, &self.chain.spec)
.unwrap();
let expected_len = indices
.iter()
.filter(|i| **i < state.validators().len() as u64)
.count();
assert_eq!(result_duties.len(), expected_len);
for (indices_set, &i) in indices.iter().enumerate() {
if let Some(duty) = state
.get_attestation_duties(i as usize, RelativeEpoch::Current)
.unwrap()
{
let expected = AttesterData {
pubkey: state.validators()[i as usize].pubkey.clone().into(),
validator_index: i,
committees_at_slot: duty.committees_at_slot,
committee_index: duty.index,
committee_length: duty.committee_len as u64,
validator_committee_index: duty.committee_position as u64,
slot: duty.slot,
};
let result = result_duties
.iter()
.find(|duty| duty.validator_index == i)
.unwrap();
assert_eq!(
*result, expected,
"epoch: {}, indices_set: {}",
epoch, indices_set
);
} else {
assert!(
!result_duties.iter().any(|duty| duty.validator_index == i),
"validator index should not exist in response"
);
}
}
}
}
self
}
pub async fn test_get_validator_duties_proposer(self) -> Self {
let current_epoch = self.chain.epoch().unwrap();
for epoch in 0..=self.chain.epoch().unwrap().as_u64() + 1 {
let epoch = Epoch::from(epoch);
let dependent_root = self
.chain
.block_root_at_slot(
epoch.start_slot(E::slots_per_epoch()) - 1,
WhenSlotSkipped::Prev,
)
.unwrap()
.unwrap_or(self.chain.head_beacon_block_root());
// Presently, the beacon chain harness never runs the code that primes the proposer
// cache. If this changes in the future then we'll need some smarter logic here, but
// this is succinct and effective for the time being.
assert!(
self.chain
.beacon_proposer_cache
.lock()
.get_epoch::<E>(dependent_root, epoch)
.is_none(),
"the proposer cache should miss initially"
);
let result = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap();
// Check that current-epoch requests prime the proposer cache, whilst non-current
// requests don't.
if epoch == current_epoch {
assert!(
self.chain
.beacon_proposer_cache
.lock()
.get_epoch::<E>(dependent_root, epoch)
.is_some(),
"a current-epoch request should prime the proposer cache"
);
} else {
assert!(
self.chain
.beacon_proposer_cache
.lock()
.get_epoch::<E>(dependent_root, epoch)
.is_none(),
"a non-current-epoch request should not prime the proposer cache"
);
}
let mut state = self
.chain
.state_at_slot(
epoch.start_slot(E::slots_per_epoch()),
StateSkipConfig::WithStateRoots,
)
.unwrap();
state
.build_committee_cache(RelativeEpoch::Current, &self.chain.spec)
.unwrap();
let expected_duties = epoch
.slot_iter(E::slots_per_epoch())
.map(|slot| {
let index = state
.get_beacon_proposer_index(slot, &self.chain.spec)
.unwrap();
let pubkey = state.validators()[index].pubkey.clone().into();
ProposerData {
pubkey,
validator_index: index as u64,
slot,
}
})
.collect::<Vec<_>>();
let expected = DutiesResponse {
data: expected_duties,
execution_optimistic: Some(false),
dependent_root,
};
assert_eq!(result, expected);
// If it's the current epoch, check the function with a primed proposer cache.
if epoch == current_epoch {
// This is technically a double-check, but it's defensive.
assert!(
self.chain
.beacon_proposer_cache
.lock()
.get_epoch::<E>(dependent_root, epoch)
.is_some(),
"the request should prime the proposer cache"
);
let result = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap();
assert_eq!(result, expected);
}
}
// Requests to the epochs after the next epoch should fail.
self.client
.get_validator_duties_proposer(current_epoch + 2)
.await
.unwrap_err();
self
}
pub async fn test_get_validator_duties_early(self) -> Self {
let current_epoch = self.chain.epoch().unwrap();
let next_epoch = current_epoch + 1;
let current_epoch_start = self
.chain
.slot_clock
.start_of(current_epoch.start_slot(E::slots_per_epoch()))
.unwrap();
self.chain.slot_clock.set_current_time(
current_epoch_start
- self.chain.spec.maximum_gossip_clock_disparity()
- Duration::from_millis(1),
);
let dependent_root = self
.chain
.block_root_at_slot(
current_epoch.start_slot(E::slots_per_epoch()) - 1,
WhenSlotSkipped::Prev,
)
.unwrap()
.unwrap_or(self.chain.head_beacon_block_root());
self.client
.get_validator_duties_proposer(current_epoch)
.await
.expect("should get proposer duties for the next epoch outside of tolerance");
assert!(
self.chain
.beacon_proposer_cache
.lock()
.get_epoch::<E>(dependent_root, current_epoch)
.is_none(),
"should not prime the proposer cache outside of tolerance"
);
assert_eq!(
self.client
.post_validator_duties_attester(next_epoch, &[0])
.await
.unwrap_err()
.status()
.map(Into::into),
Some(400),
"should not get attester duties outside of tolerance"
);
self.chain.slot_clock.set_current_time(
current_epoch_start - self.chain.spec.maximum_gossip_clock_disparity(),
);
self.client
.get_validator_duties_proposer(current_epoch)
.await
.expect("should get proposer duties within tolerance");
assert!(
self.chain
.beacon_proposer_cache
.lock()
.get_epoch::<E>(dependent_root, current_epoch)
.is_some(),
"should prime the proposer cache inside the tolerance"
);
self.client
.post_validator_duties_attester(next_epoch, &[0])
.await
.expect("should get attester duties within tolerance");
self
}
pub async fn test_block_production(self) -> Self {
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
for _ in 0..E::slots_per_epoch() * 3 {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let proposer_pubkey_bytes = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap()
.data
.into_iter()
.find(|duty| duty.slot == slot)
.map(|duty| duty.pubkey)
.unwrap();
let proposer_pubkey = (&proposer_pubkey_bytes).try_into().unwrap();
let sk = self
.validator_keypairs()
.iter()
.find(|kp| kp.pk == proposer_pubkey)
.map(|kp| kp.sk.clone())
.unwrap();
let randao_reveal = {
let domain = self.chain.spec.get_domain(
epoch,
Domain::Randao,
&fork,
genesis_validators_root,
);
let message = epoch.signing_root(domain);
sk.sign(message).into()
};
let block = self
.client
.get_validator_blocks::<E, FullPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.deconstruct()
.0;
let signed_block = block.sign(&sk, &fork, genesis_validators_root, &self.chain.spec);
let signed_block_contents =
SignedBlockContents::try_from(signed_block.clone()).unwrap();
self.client
.post_beacon_blocks(&signed_block_contents)
.await
.unwrap();
assert_eq!(self.chain.head_beacon_block().as_ref(), &signed_block);
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
self
}
pub async fn test_block_production_ssz(self) -> Self {
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
for _ in 0..E::slots_per_epoch() * 3 {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let proposer_pubkey_bytes = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap()
.data
.into_iter()
.find(|duty| duty.slot == slot)
.map(|duty| duty.pubkey)
.unwrap();
let proposer_pubkey = (&proposer_pubkey_bytes).try_into().unwrap();
let sk = self
.validator_keypairs()
.iter()
.find(|kp| kp.pk == proposer_pubkey)
.map(|kp| kp.sk.clone())
.unwrap();
let randao_reveal = {
let domain = self.chain.spec.get_domain(
epoch,
Domain::Randao,
&fork,
genesis_validators_root,
);
let message = epoch.signing_root(domain);
sk.sign(message).into()
};
let block_bytes = self
.client
.get_validator_blocks_ssz::<E, FullPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.expect("block bytes");
let block_contents =
BlockContents::<E, FullPayload<E>>::from_ssz_bytes(&block_bytes, &self.chain.spec)
.expect("block contents bytes can be decoded");
let signed_block_contents =
block_contents.sign(&sk, &fork, genesis_validators_root, &self.chain.spec);
self.client
.post_beacon_blocks_ssz(&signed_block_contents)
.await
.unwrap();
assert_eq!(
self.chain.head_beacon_block().as_ref(),
signed_block_contents.signed_block()
);
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
self
}
pub async fn test_block_production_v3_ssz(self) -> Self {
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
for _ in 0..E::slots_per_epoch() * 3 {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let proposer_pubkey_bytes = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap()
.data
.into_iter()
.find(|duty| duty.slot == slot)
.map(|duty| duty.pubkey)
.unwrap();
let proposer_pubkey = (&proposer_pubkey_bytes).try_into().unwrap();
let sk = self
.validator_keypairs()
.iter()
.find(|kp| kp.pk == proposer_pubkey)
.map(|kp| kp.sk.clone())
.unwrap();
let randao_reveal = {
let domain = self.chain.spec.get_domain(
epoch,
Domain::Randao,
&fork,
genesis_validators_root,
);
let message = epoch.signing_root(domain);
sk.sign(message).into()
};
let (fork_version_response_bytes, is_blinded_payload) = self
.client
.get_validator_blocks_v3_ssz::<E>(slot, &randao_reveal, None)
.await
.unwrap();
if is_blinded_payload {
let block_contents = <BlockContents<E, BlindedPayload<E>>>::from_ssz_bytes(
&fork_version_response_bytes.unwrap(),
&self.chain.spec,
)
.expect("block contents bytes can be decoded");
let signed_block_contents =
block_contents.sign(&sk, &fork, genesis_validators_root, &self.chain.spec);
self.client
.post_beacon_blocks_ssz(&signed_block_contents)
.await
.unwrap();
// This converts the generic `Payload` to a concrete type for comparison.
let signed_block = signed_block_contents.deconstruct().0;
let head_block = SignedBeaconBlock::from(signed_block.clone());
assert_eq!(head_block, signed_block);
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
} else {
let block_contents = <BlockContents<E, FullPayload<E>>>::from_ssz_bytes(
&fork_version_response_bytes.unwrap(),
&self.chain.spec,
)
.expect("block contents bytes can be decoded");
let signed_block_contents =
block_contents.sign(&sk, &fork, genesis_validators_root, &self.chain.spec);
self.client
.post_beacon_blocks_ssz(&signed_block_contents)
.await
.unwrap();
assert_eq!(
self.chain.head_beacon_block().as_ref(),
signed_block_contents.signed_block()
);
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
}
self
}
pub async fn test_block_production_no_verify_randao(self) -> Self {
for _ in 0..E::slots_per_epoch() {
let slot = self.chain.slot().unwrap();
let block = self
.client
.get_validator_blocks_modular::<E, FullPayload<E>>(
slot,
&Signature::infinity().unwrap().into(),
None,
SkipRandaoVerification::Yes,
)
.await
.unwrap()
.data
.deconstruct()
.0;
assert_eq!(block.slot(), slot);
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
self
}
pub async fn test_block_production_verify_randao_invalid(self) -> Self {
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
for _ in 0..E::slots_per_epoch() {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let proposer_pubkey_bytes = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap()
.data
.into_iter()
.find(|duty| duty.slot == slot)
.map(|duty| duty.pubkey)
.unwrap();
let proposer_pubkey = (&proposer_pubkey_bytes).try_into().unwrap();
let sk = self
.validator_keypairs()
.iter()
.find(|kp| kp.pk == proposer_pubkey)
.map(|kp| kp.sk.clone())
.unwrap();
let bad_randao_reveal = {
let domain = self.chain.spec.get_domain(
epoch,
Domain::Randao,
&fork,
genesis_validators_root,
);
let message = (epoch + 1).signing_root(domain);
sk.sign(message).into()
};
// Check failure with no `skip_randao_verification` passed.
self.client
.get_validator_blocks::<E, FullPayload<E>>(slot, &bad_randao_reveal, None)
.await
.unwrap_err();
// Check failure with `skip_randao_verification` (requires infinity sig).
self.client
.get_validator_blocks_modular::<E, FullPayload<E>>(
slot,
&bad_randao_reveal,
None,
SkipRandaoVerification::Yes,
)
.await
.unwrap_err();
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
self
}
pub async fn test_blinded_block_production<Payload: AbstractExecPayload<E>>(&self) {
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
for _ in 0..E::slots_per_epoch() * 3 {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let proposer_pubkey_bytes = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap()
.data
.into_iter()
.find(|duty| duty.slot == slot)
.map(|duty| duty.pubkey)
.unwrap();
let proposer_pubkey = (&proposer_pubkey_bytes).try_into().unwrap();
let sk = self
.validator_keypairs()
.iter()
.find(|kp| kp.pk == proposer_pubkey)
.map(|kp| kp.sk.clone())
.unwrap();
let randao_reveal = {
let domain = self.chain.spec.get_domain(
epoch,
Domain::Randao,
&fork,
genesis_validators_root,
);
let message = epoch.signing_root(domain);
sk.sign(message).into()
};
let block = self
.client
.get_validator_blinded_blocks::<E, Payload>(slot, &randao_reveal, None)
.await
.unwrap()
.data;
let signed_block_contents =
block.sign(&sk, &fork, genesis_validators_root, &self.chain.spec);
self.client
.post_beacon_blinded_blocks(&signed_block_contents)
.await
.unwrap();
// This converts the generic `Payload` to a concrete type for comparison.
let signed_block = signed_block_contents.deconstruct().0;
let head_block = SignedBeaconBlock::from(signed_block.clone());
assert_eq!(head_block, signed_block);
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
}
pub async fn test_blinded_block_production_ssz<Payload: AbstractExecPayload<E>>(&self) {
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
for _ in 0..E::slots_per_epoch() * 3 {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let proposer_pubkey_bytes = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap()
.data
.into_iter()
.find(|duty| duty.slot == slot)
.map(|duty| duty.pubkey)
.unwrap();
let proposer_pubkey = (&proposer_pubkey_bytes).try_into().unwrap();
let sk = self
.validator_keypairs()
.iter()
.find(|kp| kp.pk == proposer_pubkey)
.map(|kp| kp.sk.clone())
.unwrap();
let randao_reveal = {
let domain = self.chain.spec.get_domain(
epoch,
Domain::Randao,
&fork,
genesis_validators_root,
);
let message = epoch.signing_root(domain);
sk.sign(message).into()
};
let block_contents_bytes = self
.client
.get_validator_blinded_blocks_ssz::<E, Payload>(slot, &randao_reveal, None)
.await
.unwrap()
.expect("block bytes");
let block_contents = BlockContents::<E, Payload>::from_ssz_bytes(
&block_contents_bytes,
&self.chain.spec,
)
.expect("block contents bytes can be decoded");
let signed_block_contents =
block_contents.sign(&sk, &fork, genesis_validators_root, &self.chain.spec);
self.client
.post_beacon_blinded_blocks_ssz(&signed_block_contents)
.await
.unwrap();
// This converts the generic `Payload` to a concrete type for comparison.
let signed_block = signed_block_contents.deconstruct().0;
let head_block = SignedBeaconBlock::from(signed_block.clone());
assert_eq!(head_block, signed_block);
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
}
pub async fn test_blinded_block_production_no_verify_randao<Payload: AbstractExecPayload<E>>(
self,
) -> Self {
for _ in 0..E::slots_per_epoch() {
let slot = self.chain.slot().unwrap();
let block_contents = self
.client
.get_validator_blinded_blocks_modular::<E, Payload>(
slot,
&Signature::infinity().unwrap().into(),
None,
SkipRandaoVerification::Yes,
)
.await
.unwrap()
.data;
assert_eq!(block_contents.block().slot(), slot);
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
self
}
pub async fn test_blinded_block_production_verify_randao_invalid<
Payload: AbstractExecPayload<E>,
>(
self,
) -> Self {
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
for _ in 0..E::slots_per_epoch() {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let proposer_pubkey_bytes = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap()
.data
.into_iter()
.find(|duty| duty.slot == slot)
.map(|duty| duty.pubkey)
.unwrap();
let proposer_pubkey = (&proposer_pubkey_bytes).try_into().unwrap();
let sk = self
.validator_keypairs()
.iter()
.find(|kp| kp.pk == proposer_pubkey)
.map(|kp| kp.sk.clone())
.unwrap();
let bad_randao_reveal = {
let domain = self.chain.spec.get_domain(
epoch,
Domain::Randao,
&fork,
genesis_validators_root,
);
let message = (epoch + 1).signing_root(domain);
sk.sign(message).into()
};
// Check failure with full randao verification enabled.
self.client
.get_validator_blinded_blocks::<E, Payload>(slot, &bad_randao_reveal, None)
.await
.unwrap_err();
// Check failure with `skip_randao_verification` (requires infinity sig).
self.client
.get_validator_blinded_blocks_modular::<E, Payload>(
slot,
&bad_randao_reveal,
None,
SkipRandaoVerification::Yes,
)
.await
.unwrap_err();
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
self
}
pub async fn test_get_validator_attestation_data(self) -> Self {
let mut state = self.chain.head_beacon_state_cloned();
let slot = state.slot();
state
.build_committee_cache(RelativeEpoch::Current, &self.chain.spec)
.unwrap();
for index in 0..state.get_committee_count_at_slot(slot).unwrap() {
let result = self
.client
.get_validator_attestation_data(slot, index)
.await
.unwrap()
.data;
let expected = self
.chain
.produce_unaggregated_attestation(slot, index)
.unwrap()
.data;
assert_eq!(result, expected);
}
self
}
pub async fn test_get_validator_aggregate_attestation(self) -> Self {
let attestation = self
.chain
.head_beacon_block()
.message()
.body()
.attestations()[0]
.clone();
let result = self
.client
.get_validator_aggregate_attestation(
attestation.data.slot,
attestation.data.tree_hash_root(),
)
.await
.unwrap()
.unwrap()
.data;
let expected = attestation;
assert_eq!(result, expected);
self
}
pub async fn get_aggregate(&mut self) -> SignedAggregateAndProof<E> {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let mut head = self.chain.head_snapshot().as_ref().clone();
while head.beacon_state.current_epoch() < epoch {
per_slot_processing(&mut head.beacon_state, None, &self.chain.spec).unwrap();
}
head.beacon_state
.build_committee_cache(RelativeEpoch::Current, &self.chain.spec)
.unwrap();
let committee_len = head.beacon_state.get_committee_count_at_slot(slot).unwrap();
let fork = head.beacon_state.fork();
let genesis_validators_root = self.chain.genesis_validators_root;
let duties = self
.client
.post_validator_duties_attester(
epoch,
(0..self.validator_keypairs().len() as u64)
.collect::<Vec<u64>>()
.as_slice(),
)
.await
.unwrap()
.data;
let (i, kp, duty, proof) = self
.validator_keypairs()
.iter()
.enumerate()
.find_map(|(i, kp)| {
let duty = duties[i].clone();
let proof = SelectionProof::new::<E>(
duty.slot,
&kp.sk,
&fork,
genesis_validators_root,
&self.chain.spec,
);
if proof
.is_aggregator(committee_len as usize, &self.chain.spec)
.unwrap()
{
Some((i, kp, duty, proof))
} else {
None
}
})
.expect("there is at least one aggregator for this epoch")
.clone();
if duty.slot > slot {
self.chain.slot_clock.set_slot(duty.slot.into());
}
let attestation_data = self
.client
.get_validator_attestation_data(duty.slot, duty.committee_index)
.await
.unwrap()
.data;
let mut attestation = Attestation {
aggregation_bits: BitList::with_capacity(duty.committee_length as usize).unwrap(),
data: attestation_data,
signature: AggregateSignature::infinity(),
};
attestation
.sign(
&kp.sk,
duty.validator_committee_index as usize,
&fork,
genesis_validators_root,
&self.chain.spec,
)
.unwrap();
SignedAggregateAndProof::from_aggregate(
i as u64,
attestation,
Some(proof),
&kp.sk,
&fork,
genesis_validators_root,
&self.chain.spec,
)
}
pub async fn test_get_validator_aggregate_and_proofs_valid(mut self) -> Self {
let aggregate = self.get_aggregate().await;
self.client
.post_validator_aggregate_and_proof::<E>(&[aggregate])
.await
.unwrap();
assert!(self.network_rx.network_recv.recv().await.is_some());
self
}
pub async fn test_get_validator_aggregate_and_proofs_invalid(mut self) -> Self {
let mut aggregate = self.get_aggregate().await;
aggregate.message.aggregate.data.slot += 1;
self.client
.post_validator_aggregate_and_proof::<E>(&[aggregate])
.await
.unwrap_err();
assert!(self.network_rx.network_recv.recv().now_or_never().is_none());
self
}
pub async fn test_get_validator_beacon_committee_subscriptions(mut self) -> Self {
let subscription = BeaconCommitteeSubscription {
validator_index: 0,
committee_index: 0,
committees_at_slot: 1,
slot: Slot::new(1),
is_aggregator: true,
};
self.client
.post_validator_beacon_committee_subscriptions(&[subscription])
.await
.unwrap();
self.network_rx
.validator_subscription_recv
.recv()
.now_or_never()
.unwrap();
self
}
pub async fn test_post_validator_register_validator(self) -> Self {
let mut registrations = vec![];
let mut fee_recipients = vec![];
let genesis_epoch = self.chain.spec.genesis_slot.epoch(E::slots_per_epoch());
let fork = Fork {
current_version: self.chain.spec.genesis_fork_version,
previous_version: self.chain.spec.genesis_fork_version,
epoch: genesis_epoch,
};
let expected_gas_limit = 11_111_111;
for (val_index, keypair) in self.validator_keypairs().iter().enumerate() {
let pubkey = keypair.pk.compress();
let fee_recipient = Address::from_low_u64_be(val_index as u64);
let data = ValidatorRegistrationData {
fee_recipient,
gas_limit: expected_gas_limit,
timestamp: 0,
pubkey,
};
let domain = self.chain.spec.get_domain(
genesis_epoch,
Domain::ApplicationMask(ApplicationDomain::Builder),
&fork,
Hash256::zero(),
);
let message = data.signing_root(domain);
let signature = keypair.sk.sign(message);
let signed = SignedValidatorRegistrationData {
message: data,
signature,
};
fee_recipients.push(fee_recipient);
registrations.push(signed);
}
self.client
.post_validator_register_validator(&registrations)
.await
.unwrap();
for (val_index, (_, fee_recipient)) in self
.chain
.head_snapshot()
.beacon_state
.validators()
.into_iter()
.zip(fee_recipients.into_iter())
.enumerate()
{
let actual = self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_suggested_fee_recipient(val_index as u64)
.await;
assert_eq!(actual, fee_recipient);
}
self
}
pub async fn test_post_validator_register_validator_slashed(self) -> Self {
// slash a validator
self.client
.post_beacon_pool_attester_slashings(&self.attester_slashing)
.await
.unwrap();
self.harness
.extend_chain(
1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
let mut registrations = vec![];
let mut fee_recipients = vec![];
let genesis_epoch = self.chain.spec.genesis_slot.epoch(E::slots_per_epoch());
let fork = Fork {
current_version: self.chain.spec.genesis_fork_version,
previous_version: self.chain.spec.genesis_fork_version,
epoch: genesis_epoch,
};
let expected_gas_limit = 11_111_111;
for (val_index, keypair) in self.validator_keypairs().iter().enumerate() {
let pubkey = keypair.pk.compress();
let fee_recipient = Address::from_low_u64_be(val_index as u64);
let data = ValidatorRegistrationData {
fee_recipient,
gas_limit: expected_gas_limit,
timestamp: 0,
pubkey,
};
let domain = self.chain.spec.get_domain(
genesis_epoch,
Domain::ApplicationMask(ApplicationDomain::Builder),
&fork,
Hash256::zero(),
);
let message = data.signing_root(domain);
let signature = keypair.sk.sign(message);
let signed = SignedValidatorRegistrationData {
message: data,
signature,
};
fee_recipients.push(fee_recipient);
registrations.push(signed);
}
self.client
.post_validator_register_validator(&registrations)
.await
.unwrap();
for (val_index, (_, fee_recipient)) in self
.chain
.head_snapshot()
.beacon_state
.validators()
.into_iter()
.zip(fee_recipients.into_iter())
.enumerate()
{
let actual = self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_suggested_fee_recipient(val_index as u64)
.await;
if val_index == 0 || val_index == 1 {
assert_eq!(actual, Address::from_low_u64_be(val_index as u64));
} else {
assert_eq!(actual, fee_recipient);
}
}
self
}
pub async fn test_post_validator_liveness_epoch(self) -> Self {
let epoch = self.chain.epoch().unwrap();
let head_state = self.chain.head_beacon_state_cloned();
let indices = (0..head_state.validators().len())
.map(|i| i as u64)
.collect::<Vec<_>>();
// Construct the expected response
let expected: Vec<StandardLivenessResponseData> = head_state
.validators()
.iter()
.enumerate()
.map(|(index, _)| StandardLivenessResponseData {
index: index as u64,
is_live: false,
})
.collect();
let result = self
.client
.post_validator_liveness_epoch(epoch, indices.clone())
.await
.unwrap()
.data;
assert_eq!(result, expected);
// Attest to the current slot
self.client
.post_beacon_pool_attestations(self.attestations.as_slice())
.await
.unwrap();
let result = self
.client
.post_validator_liveness_epoch(epoch, indices.clone())
.await
.unwrap()
.data;
let committees = head_state
.get_beacon_committees_at_slot(self.chain.slot().unwrap())
.unwrap();
let attesting_validators: Vec<usize> = committees
.into_iter()
.flat_map(|committee| committee.committee.iter().cloned())
.collect();
// All attesters should now be considered live
let expected = expected
.into_iter()
.map(|mut a| {
if attesting_validators.contains(&(a.index as usize)) {
a.is_live = true;
}
a
})
.collect::<Vec<_>>();
assert_eq!(result, expected);
self
}
// Helper function for tests that require a valid RANDAO signature.
async fn get_test_randao(&self, slot: Slot, epoch: Epoch) -> (u64, SignatureBytes) {
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
let (proposer_pubkey_bytes, proposer_index) = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap()
.data
.into_iter()
.find(|duty| duty.slot == slot)
.map(|duty| (duty.pubkey, duty.validator_index))
.unwrap();
let proposer_pubkey = (&proposer_pubkey_bytes).try_into().unwrap();
let sk = self
.validator_keypairs()
.iter()
.find(|kp| kp.pk == proposer_pubkey)
.map(|kp| kp.sk.clone())
.unwrap();
let randao_reveal = {
let domain =
self.chain
.spec
.get_domain(epoch, Domain::Randao, &fork, genesis_validators_root);
let message = epoch.signing_root(domain);
sk.sign(message).into()
};
(proposer_index, randao_reveal)
}
pub async fn test_payload_respects_registration(self) -> Self {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (proposer_index, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
let expected_fee_recipient = Address::from_low_u64_be(proposer_index as u64);
assert_eq!(payload.fee_recipient(), expected_fee_recipient);
assert_eq!(payload.gas_limit(), 11_111_111);
// If this cache is empty, it indicates fallback was not used, so the payload came from the
// mock builder.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_none());
self
}
pub async fn test_payload_accepts_mutated_gas_limit(self) -> Self {
// Mutate gas limit.
self.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::GasLimit(30_000_000));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (proposer_index, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
let expected_fee_recipient = Address::from_low_u64_be(proposer_index as u64);
assert_eq!(payload.fee_recipient(), expected_fee_recipient);
assert_eq!(payload.gas_limit(), 30_000_000);
// This cache should not be populated because fallback should not have been used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_none());
self
}
pub async fn test_payload_accepts_changed_fee_recipient(self) -> Self {
let test_fee_recipient = "0x4242424242424242424242424242424242424242"
.parse::<Address>()
.unwrap();
// Mutate fee recipient.
self.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::FeeRecipient(test_fee_recipient));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
assert_eq!(payload.fee_recipient(), test_fee_recipient);
// This cache should not be populated because fallback should not have been used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_none());
self
}
pub async fn test_payload_rejects_invalid_parent_hash(self) -> Self {
let invalid_parent_hash =
"0x4242424242424242424242424242424242424242424242424242424242424242"
.parse::<Hash256>()
.unwrap();
// Mutate parent hash.
self.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::ParentHash(invalid_parent_hash));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let expected_parent_hash = self
.chain
.head_snapshot()
.beacon_state
.latest_execution_payload_header()
.unwrap()
.block_hash();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
assert_eq!(payload.parent_hash(), expected_parent_hash);
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_payload_rejects_invalid_prev_randao(self) -> Self {
let invalid_prev_randao =
"0x4242424242424242424242424242424242424242424242424242424242424242"
.parse::<Hash256>()
.unwrap();
// Mutate prev randao.
self.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::PrevRandao(invalid_prev_randao));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let expected_prev_randao = self
.chain
.canonical_head
.cached_head()
.head_random()
.unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
assert_eq!(payload.prev_randao(), expected_prev_randao);
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_payload_rejects_invalid_block_number(self) -> Self {
let invalid_block_number = 2;
// Mutate block number.
self.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::BlockNumber(invalid_block_number));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let expected_block_number = self
.chain
.head_snapshot()
.beacon_state
.latest_execution_payload_header()
.unwrap()
.block_number()
+ 1;
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
assert_eq!(payload.block_number(), expected_block_number);
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_payload_rejects_invalid_timestamp(self) -> Self {
let invalid_timestamp = 2;
// Mutate timestamp.
self.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::Timestamp(invalid_timestamp));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let min_expected_timestamp = self
.chain
.head_snapshot()
.beacon_state
.latest_execution_payload_header()
.unwrap()
.timestamp();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
assert!(payload.timestamp() > min_expected_timestamp);
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_payload_rejects_invalid_signature(self) -> Self {
self.mock_builder.as_ref().unwrap().invalid_signatures();
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_builder_chain_health_skips(self) -> Self {
let slot = self.chain.slot().unwrap();
// Since we are proposing this slot, start the count from the previous slot.
let prev_slot = slot - Slot::new(1);
let head_slot = self.chain.canonical_head.cached_head().head_slot();
let epoch = self.chain.epoch().unwrap();
// Inclusive here to make sure we advance one slot past the threshold.
for _ in (prev_slot - head_slot).as_usize()..=self.chain.config.builder_fallback_skips {
self.harness.advance_slot();
}
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_builder_chain_health_skips_per_epoch(self) -> Self {
// Fill an epoch with `builder_fallback_skips_per_epoch` skip slots.
for i in 0..E::slots_per_epoch() {
if i == 0 || i as usize > self.chain.config.builder_fallback_skips_per_epoch {
self.harness
.extend_chain(
1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
}
self.harness.advance_slot();
}
let next_slot = self.chain.slot().unwrap();
let (_, randao_reveal) = self
.get_test_randao(next_slot, next_slot.epoch(E::slots_per_epoch()))
.await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(next_slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
// This cache should not be populated because fallback should not have been used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_none());
// Without proposing, advance into the next slot, this should make us cross the threshold
// number of skips, causing us to use the fallback.
self.harness.advance_slot();
let next_slot = self.chain.slot().unwrap();
let (_, randao_reveal) = self
.get_test_randao(next_slot, next_slot.epoch(E::slots_per_epoch()))
.await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(next_slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_builder_chain_health_epochs_since_finalization(self) -> Self {
let skips = E::slots_per_epoch()
* self.chain.config.builder_fallback_epochs_since_finalization as u64;
for _ in 0..skips {
self.harness.advance_slot();
}
// Fill the next epoch with blocks, should be enough to justify, not finalize.
for _ in 0..E::slots_per_epoch() {
self.harness
.extend_chain(
1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
self.harness.advance_slot();
}
let next_slot = self.chain.slot().unwrap();
let (_, randao_reveal) = self
.get_test_randao(next_slot, next_slot.epoch(E::slots_per_epoch()))
.await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(next_slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
// Fill another epoch with blocks, should be enough to finalize. (Sneaky plus 1 because this
// scenario starts at an epoch boundary).
for _ in 0..E::slots_per_epoch() + 1 {
self.harness
.extend_chain(
1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
self.harness.advance_slot();
}
let next_slot = self.chain.slot().unwrap();
let (_, randao_reveal) = self
.get_test_randao(next_slot, next_slot.epoch(E::slots_per_epoch()))
.await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(next_slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
// This cache should not be populated because fallback should not have been used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_none());
self
}
pub async fn test_builder_chain_health_optimistic_head(self) -> Self {
// Make sure the next payload verification will return optimistic before advancing the chain.
self.harness.mock_execution_layer.as_ref().map(|el| {
el.server.all_payloads_syncing(true);
el
});
self.harness
.extend_chain(
1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
self.harness.advance_slot();
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (proposer_index, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
let expected_fee_recipient = Address::from_low_u64_be(proposer_index as u64);
assert_eq!(payload.fee_recipient(), expected_fee_recipient);
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_payload_rejects_inadequate_builder_threshold(self) -> Self {
// Mutate value.
self.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::Value(Uint256::from(
DEFAULT_BUILDER_THRESHOLD_WEI - 1,
)));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_builder_payload_chosen_when_more_profitable(self) -> Self {
// Mutate value.
self.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::Value(Uint256::from(
DEFAULT_MOCK_EL_PAYLOAD_VALUE_WEI + 1,
)));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
// The builder's payload should've been chosen, so this cache should not be populated
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_none());
self
}
pub async fn test_local_payload_chosen_when_equally_profitable(self) -> Self {
// Mutate value.
self.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::Value(Uint256::from(
DEFAULT_MOCK_EL_PAYLOAD_VALUE_WEI,
)));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
// The local payload should've been chosen, so this cache should be populated
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_local_payload_chosen_when_more_profitable(self) -> Self {
// Mutate value.
self.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::Value(Uint256::from(
DEFAULT_MOCK_EL_PAYLOAD_VALUE_WEI - 1,
)));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
// The local payload should've been chosen, so this cache should be populated
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_builder_works_post_capella(self) -> Self {
// Ensure builder payload is chosen
self.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::Value(Uint256::from(
DEFAULT_MOCK_EL_PAYLOAD_VALUE_WEI + 1,
)));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
// The builder's payload should've been chosen, so this cache should not be populated
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_none());
self
}
pub async fn test_builder_works_post_deneb(self) -> Self {
// Ensure builder payload is chosen
self.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::Value(Uint256::from(
DEFAULT_MOCK_EL_PAYLOAD_VALUE_WEI + 1,
)));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let block_contents = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data;
let (block, maybe_sidecars) = block_contents.deconstruct();
// Response should contain blob sidecars
assert!(maybe_sidecars.is_some());
// The builder's payload should've been chosen, so this cache should not be populated
let payload: BlindedPayload<E> = block.body().execution_payload().unwrap().into();
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_none());
self
}
pub async fn test_lighthouse_rejects_invalid_withdrawals_root(self) -> Self {
// Ensure builder payload *would be* chosen
self.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::Value(Uint256::from(
DEFAULT_MOCK_EL_PAYLOAD_VALUE_WEI + 1,
)));
// Set withdrawals root to something invalid
self.mock_builder
.as_ref()
.unwrap()
.add_operation(Operation::WithdrawalsRoot(Hash256::repeat_byte(0x42)));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.block()
.body()
.execution_payload()
.unwrap()
.into();
// The local payload should've been chosen because the builder's was invalid
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
#[cfg(target_os = "linux")]
pub async fn test_get_lighthouse_health(self) -> Self {
self.client.get_lighthouse_health().await.unwrap();
self
}
#[cfg(not(target_os = "linux"))]
pub async fn test_get_lighthouse_health(self) -> Self {
self.client.get_lighthouse_health().await.unwrap_err();
self
}
pub async fn test_get_lighthouse_syncing(self) -> Self {
self.client.get_lighthouse_syncing().await.unwrap();
self
}
pub async fn test_get_lighthouse_proto_array(self) -> Self {
self.client.get_lighthouse_proto_array().await.unwrap();
self
}
pub async fn test_get_lighthouse_validator_inclusion_global(self) -> Self {
let epoch = self.chain.epoch().unwrap() - 1;
self.client
.get_lighthouse_validator_inclusion_global(epoch)
.await
.unwrap();
self
}
pub async fn test_get_lighthouse_validator_inclusion(self) -> Self {
let epoch = self.chain.epoch().unwrap() - 1;
self.client
.get_lighthouse_validator_inclusion(epoch, ValidatorId::Index(0))
.await
.unwrap();
self
}
pub async fn test_get_lighthouse_eth1_syncing(self) -> Self {
self.client.get_lighthouse_eth1_syncing().await.unwrap();
self
}
pub async fn test_get_lighthouse_eth1_block_cache(self) -> Self {
let blocks = self.client.get_lighthouse_eth1_block_cache().await.unwrap();
assert!(blocks.data.is_empty());
self
}
pub async fn test_get_lighthouse_eth1_deposit_cache(self) -> Self {
let deposits = self
.client
.get_lighthouse_eth1_deposit_cache()
.await
.unwrap();
assert!(deposits.data.is_empty());
self
}
pub async fn test_get_lighthouse_beacon_states_ssz(self) -> Self {
for state_id in self.interesting_state_ids() {
let result = self
.client
.get_lighthouse_beacon_states_ssz(&state_id.0, &self.chain.spec)
.await
.unwrap();
let mut expected = state_id
.state(&self.chain)
.ok()
.map(|(state, _execution_optimistic, _finalized)| state);
expected.as_mut().map(|state| state.drop_all_caches());
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_get_lighthouse_staking(self) -> Self {
let result = self.client.get_lighthouse_staking().await.unwrap();
assert_eq!(result, self.chain.eth1_chain.is_some());
self
}
pub async fn test_get_lighthouse_database_info(self) -> Self {
let info = self.client.get_lighthouse_database_info().await.unwrap();
assert_eq!(info.anchor, self.chain.store.get_anchor_info());
assert_eq!(info.split, self.chain.store.get_split_info());
assert_eq!(
info.schema_version,
store::metadata::CURRENT_SCHEMA_VERSION.as_u64()
);
self
}
pub async fn test_post_lighthouse_database_reconstruct(self) -> Self {
let response = self
.client
.post_lighthouse_database_reconstruct()
.await
.unwrap();
assert_eq!(response, "success");
self
}
pub async fn test_post_lighthouse_liveness(self) -> Self {
let epoch = self.chain.epoch().unwrap();
let head_state = self.chain.head_beacon_state_cloned();
let indices = (0..head_state.validators().len())
.map(|i| i as u64)
.collect::<Vec<_>>();
// Construct the expected response
let expected: Vec<LivenessResponseData> = head_state
.validators()
.iter()
.enumerate()
.map(|(index, _)| LivenessResponseData {
index: index as u64,
is_live: false,
epoch,
})
.collect();
let result = self
.client
.post_lighthouse_liveness(indices.as_slice(), epoch)
.await
.unwrap()
.data;
assert_eq!(result, expected);
// Attest to the current slot
self.client
.post_beacon_pool_attestations(self.attestations.as_slice())
.await
.unwrap();
let result = self
.client
.post_lighthouse_liveness(indices.as_slice(), epoch)
.await
.unwrap()
.data;
let committees = head_state
.get_beacon_committees_at_slot(self.chain.slot().unwrap())
.unwrap();
let attesting_validators: Vec<usize> = committees
.into_iter()
.flat_map(|committee| committee.committee.iter().cloned())
.collect();
// All attesters should now be considered live
let expected = expected
.into_iter()
.map(|mut a| {
if attesting_validators.contains(&(a.index as usize)) {
a.is_live = true;
}
a
})
.collect::<Vec<_>>();
assert_eq!(result, expected);
self
}
pub async fn test_get_events(self) -> Self {
// Subscribe to all events
let topics = vec![
EventTopic::Attestation,
EventTopic::VoluntaryExit,
EventTopic::Block,
EventTopic::Head,
EventTopic::FinalizedCheckpoint,
];
let mut events_future = self
.client
.get_events::<E>(topics.as_slice())
.await
.unwrap();
let expected_attestation_len = self.attestations.len();
self.client
.post_beacon_pool_attestations(self.attestations.as_slice())
.await
.unwrap();
let attestation_events = poll_events(
&mut events_future,
expected_attestation_len,
Duration::from_millis(10000),
)
.await;
assert_eq!(
attestation_events.as_slice(),
self.attestations
.clone()
.into_iter()
.map(|attestation| EventKind::Attestation(Box::new(attestation)))
.collect::<Vec<_>>()
.as_slice()
);
// Produce a voluntary exit event
self.client
.post_beacon_pool_voluntary_exits(&self.voluntary_exit)
.await
.unwrap();
let exit_events = poll_events(&mut events_future, 1, Duration::from_millis(10000)).await;
assert_eq!(
exit_events.as_slice(),
&[EventKind::VoluntaryExit(self.voluntary_exit.clone())]
);
// Submit the next block, which is on an epoch boundary, so this will produce a finalized
// checkpoint event, head event, and block event
let block_root = self.next_block.signed_block().canonical_root();
// current_duty_dependent_root = block root because this is the first slot of the epoch
let current_duty_dependent_root = self.chain.head_beacon_block_root();
let current_slot = self.chain.slot().unwrap();
let next_slot = self.next_block.signed_block().slot();
let finalization_distance = E::slots_per_epoch() * 2;
let expected_block = EventKind::Block(SseBlock {
block: block_root,
slot: next_slot,
execution_optimistic: false,
});
let expected_head = EventKind::Head(SseHead {
block: block_root,
slot: next_slot,
state: self.next_block.signed_block().state_root(),
current_duty_dependent_root,
previous_duty_dependent_root: self
.chain
.block_root_at_slot(current_slot - E::slots_per_epoch(), WhenSlotSkipped::Prev)
.unwrap()
.unwrap(),
epoch_transition: true,
execution_optimistic: false,
});
let finalized_block_root = self
.chain
.block_root_at_slot(next_slot - finalization_distance, WhenSlotSkipped::Prev)
.unwrap()
.unwrap();
let finalized_block = self
.chain
.get_blinded_block(&finalized_block_root)
.unwrap()
.unwrap();
let finalized_state_root = finalized_block.state_root();
let expected_finalized = EventKind::FinalizedCheckpoint(SseFinalizedCheckpoint {
block: finalized_block_root,
state: finalized_state_root,
epoch: Epoch::new(3),
execution_optimistic: false,
});
self.client
.post_beacon_blocks(&self.next_block)
.await
.unwrap();
let block_events = poll_events(&mut events_future, 3, Duration::from_millis(10000)).await;
assert_eq!(
block_events.as_slice(),
&[expected_block, expected_head, expected_finalized]
);
// Test a reorg event
let mut chain_reorg_event_future = self
.client
.get_events::<E>(&[EventTopic::ChainReorg])
.await
.unwrap();
let expected_reorg = EventKind::ChainReorg(SseChainReorg {
slot: self.reorg_block.signed_block().slot(),
depth: 1,
old_head_block: self.next_block.signed_block().canonical_root(),
old_head_state: self.next_block.signed_block().state_root(),
new_head_block: self.reorg_block.signed_block().canonical_root(),
new_head_state: self.reorg_block.signed_block().state_root(),
epoch: self
.next_block
.signed_block()
.slot()
.epoch(E::slots_per_epoch()),
execution_optimistic: false,
});
self.harness.advance_slot();
self.client
.post_beacon_blocks(&self.reorg_block)
.await
.unwrap();
let reorg_event = poll_events(
&mut chain_reorg_event_future,
1,
Duration::from_millis(10000),
)
.await;
assert_eq!(reorg_event.as_slice(), &[expected_reorg]);
self
}
pub async fn test_get_expected_withdrawals_invalid_state(self) -> Self {
let state_id = CoreStateId::Root(Hash256::zero());
let result = self.client.get_expected_withdrawals(&state_id).await;
match result {
Err(e) => {
assert_eq!(e.status().unwrap(), 404);
}
_ => panic!("query did not fail correctly"),
}
self
}
pub async fn test_get_expected_withdrawals_capella(self) -> Self {
let slot = self.chain.slot().unwrap();
let state_id = CoreStateId::Slot(slot);
// calculate the expected withdrawals
let (mut state, _, _) = StateId(state_id).state(&self.chain).unwrap();
let proposal_slot = state.slot() + 1;
let proposal_epoch = proposal_slot.epoch(E::slots_per_epoch());
let (state_root, _, _) = StateId(state_id).root(&self.chain).unwrap();
if proposal_epoch != state.current_epoch() {
let _ = partial_state_advance(
&mut state,
Some(state_root),
proposal_slot,
&self.chain.spec,
);
}
let expected_withdrawals = get_expected_withdrawals(&state, &self.chain.spec).unwrap();
// fetch expected withdrawals from the client
let result = self.client.get_expected_withdrawals(&state_id).await;
match result {
Ok(withdrawal_response) => {
assert_eq!(withdrawal_response.execution_optimistic, Some(false));
assert_eq!(withdrawal_response.finalized, Some(false));
assert_eq!(withdrawal_response.data, expected_withdrawals.to_vec());
}
Err(_) => {
panic!("query failed incorrectly");
}
}
self
}
pub async fn test_get_expected_withdrawals_pre_capella(self) -> Self {
let state_id = CoreStateId::Head;
let result = self.client.get_expected_withdrawals(&state_id).await;
match result {
Err(e) => {
assert_eq!(e.status().unwrap(), 400);
}
_ => panic!("query did not fail correctly"),
}
self
}
pub async fn test_get_events_altair(self) -> Self {
let topics = vec![EventTopic::ContributionAndProof];
let mut events_future = self
.client
.get_events::<E>(topics.as_slice())
.await
.unwrap();
let expected_contribution_len = self.contribution_and_proofs.len();
self.client
.post_validator_contribution_and_proofs(self.contribution_and_proofs.as_slice())
.await
.unwrap();
let contribution_events = poll_events(
&mut events_future,
expected_contribution_len,
Duration::from_millis(10000),
)
.await;
assert_eq!(
contribution_events.as_slice(),
self.contribution_and_proofs
.clone()
.into_iter()
.map(|contribution| EventKind::ContributionAndProof(Box::new(contribution)))
.collect::<Vec<_>>()
.as_slice()
);
self
}
pub async fn test_get_events_from_genesis(self) -> Self {
let topics = vec![EventTopic::Block, EventTopic::Head];
let mut events_future = self
.client
.get_events::<E>(topics.as_slice())
.await
.unwrap();
let block_root = self.next_block.signed_block().canonical_root();
let next_slot = self.next_block.signed_block().slot();
let expected_block = EventKind::Block(SseBlock {
block: block_root,
slot: next_slot,
execution_optimistic: false,
});
let expected_head = EventKind::Head(SseHead {
block: block_root,
slot: next_slot,
state: self.next_block.signed_block().state_root(),
current_duty_dependent_root: self.chain.genesis_block_root,
previous_duty_dependent_root: self.chain.genesis_block_root,
epoch_transition: false,
execution_optimistic: false,
});
self.client
.post_beacon_blocks(&self.next_block)
.await
.unwrap();
let block_events = poll_events(&mut events_future, 2, Duration::from_millis(10000)).await;
assert_eq!(block_events.as_slice(), &[expected_block, expected_head]);
self
}
pub async fn test_check_optimistic_responses(&mut self) {
// Check responses are not optimistic.
let result = self
.client
.get_beacon_headers_block_id(CoreBlockId::Head)
.await
.unwrap()
.unwrap();
assert_eq!(result.execution_optimistic, Some(false));
// Change head to be optimistic.
self.chain
.canonical_head
.fork_choice_write_lock()
.proto_array_mut()
.core_proto_array_mut()
.nodes
.last_mut()
.map(|head_node| {
head_node.execution_status = ExecutionStatus::Optimistic(ExecutionBlockHash::zero())
});
// Check responses are now optimistic.
let result = self
.client
.get_beacon_headers_block_id(CoreBlockId::Head)
.await
.unwrap()
.unwrap();
assert_eq!(result.execution_optimistic, Some(true));
}
}
async fn poll_events<S: Stream<Item = Result<EventKind<T>, eth2::Error>> + Unpin, T: EthSpec>(
stream: &mut S,
num_events: usize,
timeout: Duration,
) -> Vec<EventKind<T>> {
let mut events = Vec::new();
let collect_stream_fut = async {
loop {
if let Some(result) = stream.next().await {
events.push(result.unwrap());
if events.len() == num_events {
return;
}
}
}
};
tokio::select! {
_ = collect_stream_fut => {events}
_ = tokio::time::sleep(timeout) => { return events; }
}
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_events() {
ApiTester::new().await.test_get_events().await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_events_altair() {
let mut config = ApiTesterConfig::default();
config.spec.altair_fork_epoch = Some(Epoch::new(0));
ApiTester::new_from_config(config)
.await
.test_get_events_altair()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_events_from_genesis() {
ApiTester::new_from_genesis()
.await
.test_get_events_from_genesis()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_get() {
ApiTester::new()
.await
.test_beacon_genesis()
.await
.test_beacon_states_root_finalized()
.await
.test_beacon_states_fork_finalized()
.await
.test_beacon_states_finality_checkpoints_finalized()
.await
.test_beacon_headers_block_id_finalized()
.await
.test_beacon_blocks_finalized::<MainnetEthSpec>()
.await
.test_beacon_blinded_blocks_finalized::<MainnetEthSpec>()
.await
.test_debug_beacon_states_finalized()
.await
.test_beacon_states_root()
.await
.test_beacon_states_fork()
.await
.test_beacon_states_finality_checkpoints()
.await
.test_beacon_states_validators()
.await
.test_beacon_states_validator_balances()
.await
.test_beacon_states_committees()
.await
.test_beacon_states_validator_id()
.await
.test_beacon_states_randao()
.await
.test_beacon_headers_all_slots()
.await
.test_beacon_headers_all_parents()
.await
.test_beacon_headers_block_id()
.await
.test_beacon_blocks()
.await
.test_beacon_blinded_blocks()
.await
.test_beacon_blocks_attestations()
.await
.test_beacon_blocks_root()
.await
.test_get_beacon_pool_attestations()
.await
.test_get_beacon_pool_attester_slashings()
.await
.test_get_beacon_pool_proposer_slashings()
.await
.test_get_beacon_pool_voluntary_exits()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_beacon_blocks_valid() {
ApiTester::new().await.test_post_beacon_blocks_valid().await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_beacon_blocks_ssz_valid() {
ApiTester::new()
.await
.test_post_beacon_blocks_ssz_valid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn test_post_beacon_blocks_ssz_invalid() {
ApiTester::new()
.await
.test_post_beacon_blocks_ssz_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_beacon_blocks_invalid() {
ApiTester::new()
.await
.test_post_beacon_blocks_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_beacon_blocks_duplicate() {
ApiTester::new()
.await
.test_post_beacon_blocks_duplicate()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_attestations_valid() {
ApiTester::new()
.await
.test_post_beacon_pool_attestations_valid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_attestations_invalid() {
ApiTester::new()
.await
.test_post_beacon_pool_attestations_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_attester_slashings_valid() {
ApiTester::new()
.await
.test_post_beacon_pool_attester_slashings_valid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_attester_slashings_invalid() {
ApiTester::new()
.await
.test_post_beacon_pool_attester_slashings_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_proposer_slashings_valid() {
ApiTester::new()
.await
.test_post_beacon_pool_proposer_slashings_valid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_proposer_slashings_invalid() {
ApiTester::new()
.await
.test_post_beacon_pool_proposer_slashings_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_voluntary_exits_valid() {
ApiTester::new()
.await
.test_post_beacon_pool_voluntary_exits_valid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_voluntary_exits_invalid() {
ApiTester::new()
.await
.test_post_beacon_pool_voluntary_exits_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn config_get() {
ApiTester::new()
.await
.test_get_config_fork_schedule()
.await
.test_get_config_spec()
.await
.test_get_config_deposit_contract()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn debug_get() {
ApiTester::new()
.await
.test_get_debug_beacon_states()
.await
.test_get_debug_beacon_heads()
.await
.test_get_debug_fork_choice()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn node_get() {
ApiTester::new()
.await
.test_get_node_version()
.await
.test_get_node_syncing()
.await
.test_get_node_identity()
.await
.test_get_node_health()
.await
.test_get_node_peers_by_id()
.await
.test_get_node_peers()
.await
.test_get_node_peer_count()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_duties_early() {
ApiTester::new()
.await
.test_get_validator_duties_early()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_duties_attester() {
ApiTester::new()
.await
.test_get_validator_duties_attester()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_duties_attester_with_skip_slots() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_get_validator_duties_attester()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_duties_proposer() {
ApiTester::new_from_config(ApiTesterConfig::default().retain_historic_states())
.await
.test_get_validator_duties_proposer()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_duties_proposer_with_skip_slots() {
ApiTester::new_from_config(ApiTesterConfig::default().retain_historic_states())
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_get_validator_duties_proposer()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn block_production() {
ApiTester::new().await.test_block_production().await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn block_production_with_skip_slots() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_block_production()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn block_production_no_verify_randao() {
ApiTester::new()
.await
.test_block_production_no_verify_randao()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn block_production_verify_randao_invalid() {
ApiTester::new()
.await
.test_block_production_verify_randao_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn block_production_ssz_full_payload() {
ApiTester::new().await.test_block_production_ssz().await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn block_production_ssz_with_skip_slots() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_block_production_ssz()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn block_production_ssz_v3() {
ApiTester::new().await.test_block_production_v3_ssz().await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn block_production_v3_ssz_with_skip_slots() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_block_production_v3_ssz()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_full_payload_premerge() {
ApiTester::new()
.await
.test_blinded_block_production::<FullPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_ssz_full_payload_premerge() {
ApiTester::new()
.await
.test_blinded_block_production_ssz::<FullPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_with_skip_slots_full_payload_premerge() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_blinded_block_production::<FullPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_ssz_with_skip_slots_full_payload_premerge() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_blinded_block_production_ssz::<FullPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_no_verify_randao_full_payload_premerge() {
ApiTester::new()
.await
.test_blinded_block_production_no_verify_randao::<FullPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_verify_randao_invalid_full_payload_premerge() {
ApiTester::new()
.await
.test_blinded_block_production_verify_randao_invalid::<FullPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_blinded_payload_premerge() {
ApiTester::new()
.await
.test_blinded_block_production::<BlindedPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_with_skip_slots_blinded_payload_premerge() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_blinded_block_production::<BlindedPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_no_verify_randao_blinded_payload_premerge() {
ApiTester::new()
.await
.test_blinded_block_production_no_verify_randao::<BlindedPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_verify_randao_invalid_blinded_payload_premerge() {
ApiTester::new()
.await
.test_blinded_block_production_verify_randao_invalid::<BlindedPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_attestation_data() {
ApiTester::new()
.await
.test_get_validator_attestation_data()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_attestation_data_with_skip_slots() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_get_validator_attestation_data()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_aggregate_attestation() {
ApiTester::new()
.await
.test_get_validator_aggregate_attestation()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_aggregate_attestation_with_skip_slots() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_get_validator_aggregate_attestation()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_aggregate_and_proofs_valid() {
ApiTester::new()
.await
.test_get_validator_aggregate_and_proofs_valid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_aggregate_and_proofs_valid_with_skip_slots() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_get_validator_aggregate_and_proofs_valid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_aggregate_and_proofs_invalid() {
ApiTester::new()
.await
.test_get_validator_aggregate_and_proofs_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_aggregate_and_proofs_invalid_with_skip_slots() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_get_validator_aggregate_and_proofs_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_beacon_committee_subscriptions() {
ApiTester::new()
.await
.test_get_validator_beacon_committee_subscriptions()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_validator_register_validator() {
ApiTester::new()
.await
.test_post_validator_register_validator()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_validator_register_validator_slashed() {
ApiTester::new()
.await
.test_post_validator_register_validator_slashed()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_validator_register_valid() {
ApiTester::new_mev_tester()
.await
.test_payload_respects_registration()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_validator_register_gas_limit_mutation() {
ApiTester::new_mev_tester()
.await
.test_payload_accepts_mutated_gas_limit()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_validator_register_fee_recipient_mutation() {
ApiTester::new_mev_tester()
.await
.test_payload_accepts_changed_fee_recipient()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_blinded_block_invalid_parent_hash() {
ApiTester::new_mev_tester()
.await
.test_payload_rejects_invalid_parent_hash()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_blinded_block_invalid_prev_randao() {
ApiTester::new_mev_tester()
.await
.test_payload_rejects_invalid_prev_randao()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_blinded_block_invalid_block_number() {
ApiTester::new_mev_tester()
.await
.test_payload_rejects_invalid_block_number()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_blinded_block_invalid_timestamp() {
ApiTester::new_mev_tester()
.await
.test_payload_rejects_invalid_timestamp()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_blinded_block_invalid_signature() {
ApiTester::new_mev_tester()
.await
.test_payload_rejects_invalid_signature()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn builder_chain_health_skips() {
ApiTester::new_mev_tester()
.await
.test_builder_chain_health_skips()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn builder_chain_health_skips_per_epoch() {
ApiTester::new_mev_tester()
.await
.test_builder_chain_health_skips_per_epoch()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn builder_chain_health_epochs_since_finalization() {
ApiTester::new_mev_tester()
.await
.test_builder_chain_health_epochs_since_finalization()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn builder_chain_health_optimistic_head() {
ApiTester::new_mev_tester()
.await
.test_builder_chain_health_optimistic_head()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn builder_inadequate_builder_threshold() {
ApiTester::new_mev_tester()
.await
.test_payload_rejects_inadequate_builder_threshold()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn builder_payload_chosen_by_profit() {
ApiTester::new_mev_tester_no_builder_threshold()
.await
.test_builder_payload_chosen_when_more_profitable()
.await
.test_local_payload_chosen_when_equally_profitable()
.await
.test_local_payload_chosen_when_more_profitable()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn builder_works_post_capella() {
let mut config = ApiTesterConfig {
builder_threshold: Some(0),
retain_historic_states: false,
spec: E::default_spec(),
};
config.spec.altair_fork_epoch = Some(Epoch::new(0));
config.spec.bellatrix_fork_epoch = Some(Epoch::new(0));
config.spec.capella_fork_epoch = Some(Epoch::new(0));
ApiTester::new_from_config(config)
.await
.test_post_validator_register_validator()
.await
.test_builder_works_post_capella()
.await
.test_lighthouse_rejects_invalid_withdrawals_root()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn builder_works_post_deneb() {
let mut config = ApiTesterConfig {
builder_threshold: Some(0),
retain_historic_states: false,
spec: E::default_spec(),
};
config.spec.altair_fork_epoch = Some(Epoch::new(0));
config.spec.bellatrix_fork_epoch = Some(Epoch::new(0));
config.spec.capella_fork_epoch = Some(Epoch::new(0));
config.spec.deneb_fork_epoch = Some(Epoch::new(0));
ApiTester::new_from_config(config)
.await
.test_post_validator_register_validator()
.await
.test_builder_works_post_deneb()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_validator_liveness_epoch() {
ApiTester::new()
.await
.test_post_validator_liveness_epoch()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn lighthouse_endpoints() {
ApiTester::new()
.await
.test_get_lighthouse_health()
.await
.test_get_lighthouse_syncing()
.await
.test_get_lighthouse_proto_array()
.await
.test_get_lighthouse_validator_inclusion()
.await
.test_get_lighthouse_validator_inclusion_global()
.await
.test_get_lighthouse_eth1_syncing()
.await
.test_get_lighthouse_eth1_block_cache()
.await
.test_get_lighthouse_eth1_deposit_cache()
.await
.test_get_lighthouse_beacon_states_ssz()
.await
.test_get_lighthouse_staking()
.await
.test_get_lighthouse_database_info()
.await
.test_post_lighthouse_database_reconstruct()
.await
.test_post_lighthouse_liveness()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn optimistic_responses() {
ApiTester::new_with_hard_forks(true, true)
.await
.test_check_optimistic_responses()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn expected_withdrawals_invalid_pre_capella() {
let mut config = ApiTesterConfig::default();
config.spec.altair_fork_epoch = Some(Epoch::new(0));
ApiTester::new_from_config(config)
.await
.test_get_expected_withdrawals_pre_capella()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn expected_withdrawals_invalid_state() {
let mut config = ApiTesterConfig::default();
config.spec.altair_fork_epoch = Some(Epoch::new(0));
config.spec.bellatrix_fork_epoch = Some(Epoch::new(0));
config.spec.capella_fork_epoch = Some(Epoch::new(0));
ApiTester::new_from_config(config)
.await
.test_get_expected_withdrawals_invalid_state()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn expected_withdrawals_valid_capella() {
let mut config = ApiTesterConfig::default();
config.spec.altair_fork_epoch = Some(Epoch::new(0));
config.spec.bellatrix_fork_epoch = Some(Epoch::new(0));
config.spec.capella_fork_epoch = Some(Epoch::new(0));
ApiTester::new_from_config(config)
.await
.test_get_expected_withdrawals_capella()
.await;
}