lighthouse/ssz/src/encode.rs
2018-09-12 17:57:07 +10:00

168 lines
4.3 KiB
Rust

use super::LENGTH_BYTES;
pub trait Encodable {
fn ssz_append(&self, s: &mut SszStream);
}
/// Provides a buffer for appending ssz-encodable values.
///
/// Use the `append()` fn to add a value to a list, then use
/// the `drain()` method to consume the struct and return the
/// ssz encoded bytes.
pub struct SszStream {
buffer: Vec<u8>
}
impl SszStream {
/// Create a new, empty steam for writing ssz values.
pub fn new() -> Self {
SszStream {
buffer: Vec::new()
}
}
/// Append some ssz encodable value to the stream.
pub fn append<E>(&mut self, value: &E) -> &mut Self
where E: Encodable
{
value.ssz_append(self);
self
}
/// Append some ssz encoded bytes to the steam.
///
/// The length of the supplied bytes will be concatenated
/// to the stream before the supplied bytes.
pub fn append_encoded_val(&mut self, vec: &Vec<u8>) {
self.buffer.extend_from_slice(
&encode_length(vec.len(),
LENGTH_BYTES));
self.buffer.extend_from_slice(&vec);
}
/// Append some vector (list) of encodable values to the stream.
///
/// The length of the list will be concatenated to the stream, then
/// each item in the vector will be encoded and concatenated.
pub fn append_vec<E>(&mut self, vec: &Vec<E>)
where E: Encodable
{
self.buffer.extend_from_slice(&encode_length(vec.len(), LENGTH_BYTES));
for v in vec {
v.ssz_append(self);
}
}
/// Consume the stream and return the underlying bytes.
pub fn drain(self) -> Vec<u8> {
self.buffer
}
}
/// Encode some length into a ssz size prefix.
///
/// The ssz size prefix is 4 bytes, which is treated as a continuious
/// 32bit big-endian integer.
pub fn encode_length(len: usize, length_bytes: usize) -> Vec<u8> {
assert!(length_bytes > 0); // For sanity
assert!((len as usize) < 2usize.pow(length_bytes as u32 * 8));
let mut header: Vec<u8> = vec![0; length_bytes];
for i in 0..length_bytes {
let offset = (length_bytes - i - 1) * 8;
header[i] = ((len >> offset) & 0xff) as u8;
};
header
}
#[cfg(test)]
mod tests {
use super::*;
use super::super::ethereum_types::{ H256, U256 };
#[test]
#[should_panic]
fn test_encode_length_0_bytes_panic() {
encode_length(0, 0);
}
#[test]
fn test_encode_length_4_bytes() {
assert_eq!(
encode_length(0, LENGTH_BYTES),
vec![0; 3]
);
assert_eq!(
encode_length(1, LENGTH_BYTES),
vec![0, 0, 1]
);
assert_eq!(
encode_length(255, LENGTH_BYTES),
vec![0, 0, 255]
);
assert_eq!(
encode_length(256, LENGTH_BYTES),
vec![0, 1, 0]
);
assert_eq!(
encode_length(16777215, LENGTH_BYTES), // 2^(3*8) - 1
vec![255, 255, 255]
);
}
#[test]
#[should_panic]
fn test_encode_length_4_bytes_panic() {
encode_length(16777216, LENGTH_BYTES); // 2^(3*8)
}
/*
#[test]
fn test_encode_struct() {
pub struct TestStruct {
pub one: u32,
pub two: H256,
pub three: u64,
pub four: U256,
}
impl Encodable for TestStruct {
fn ssz_append(&self, s: &mut SszStream) {
s.append(&self.one);
s.append(&self.two);
s.append(&self.three);
s.append(&self.four);
}
}
let t = TestStruct {
one: 1,
two: H256::zero(),
three: 100,
four: U256::zero(),
};
let mut s = SszStream::new();
s.append(&t);
let e = s.drain();
let expected_len = {
3 + 4 +
3 + 32 +
3 + 8 +
3 + 32
};
assert_eq!(e[0..4], [0, 0, 0, 4]);
assert_eq!(e[4..8], [0, 0, 0, 1]);
assert_eq!(e[8..12], [0, 0, 0, 32]);
assert_eq!(e[12..44], [0; 32]);
assert_eq!(e[44..48], [0, 0, 0, 8]);
assert_eq!(e[48..56], [0, 0, 0, 0, 0, 0, 0, 100]);
assert_eq!(e[56..60], [0, 0, 0, 32]);
assert_eq!(e[60..92], [0; 32]);
assert_eq!(e.len(), expected_len);
}
*/
}