lighthouse/beacon_node/http_api/tests/tests.rs
Paul Hauner b60304b19f Use BeaconProcessor for API requests (#4462)
## Issue Addressed

NA

## Proposed Changes

Rather than spawning new tasks on the tokio executor to process each HTTP API request, send the tasks to the `BeaconProcessor`. This achieves:

1. Places a bound on how many concurrent requests are being served (i.e., how many we are actually trying to compute at one time).
1. Places a bound on how many requests can be awaiting a response at one time (i.e., starts dropping requests when we have too many queued).
1. Allows the BN prioritise HTTP requests with respect to messages coming from the P2P network (i.e., proiritise importing gossip blocks rather than serving API requests).

Presently there are two levels of priorities:

- `Priority::P0`
    - The beacon processor will prioritise these above everything other than importing new blocks.
    - Roughly all validator-sensitive endpoints.
- `Priority::P1`
    - The beacon processor will prioritise practically all other P2P messages over these, except for historical backfill things.
    - Everything that's not `Priority::P0`
    
The `--http-enable-beacon-processor false` flag can be supplied to revert back to the old behaviour of spawning new `tokio` tasks for each request:

```
        --http-enable-beacon-processor <BOOLEAN>
            The beacon processor is a scheduler which provides quality-of-service and DoS protection. When set to
            "true", HTTP API requests will queued and scheduled alongside other tasks. When set to "false", HTTP API
            responses will be executed immediately. [default: true]
```
    
## New CLI Flags

I added some other new CLI flags:

```
        --beacon-processor-aggregate-batch-size <INTEGER>
            Specifies the number of gossip aggregate attestations in a signature verification batch. Higher values may
            reduce CPU usage in a healthy network while lower values may increase CPU usage in an unhealthy or hostile
            network. [default: 64]
        --beacon-processor-attestation-batch-size <INTEGER>
            Specifies the number of gossip attestations in a signature verification batch. Higher values may reduce CPU
            usage in a healthy network whilst lower values may increase CPU usage in an unhealthy or hostile network.
            [default: 64]
        --beacon-processor-max-workers <INTEGER>
            Specifies the maximum concurrent tasks for the task scheduler. Increasing this value may increase resource
            consumption. Reducing the value may result in decreased resource usage and diminished performance. The
            default value is the number of logical CPU cores on the host.
        --beacon-processor-reprocess-queue-len <INTEGER>
            Specifies the length of the queue for messages requiring delayed processing. Higher values may prevent
            messages from being dropped while lower values may help protect the node from becoming overwhelmed.
            [default: 12288]
```


I needed to add the max-workers flag since the "simulator" flavor tests started failing with HTTP timeouts on the test assertions. I believe they were failing because the Github runners only have 2 cores and there just weren't enough workers available to process our requests in time. I added the other flags since they seem fun to fiddle with.

## Additional Info

I bumped the timeouts on the "simulator" flavor test from 4s to 8s. The prioritisation of consensus messages seems to be causing slower responses, I guess this is what we signed up for 🤷 

The `validator/register` validator has some special handling because the relays have a bad habit of timing out on these calls. It seems like a waste of a `BeaconProcessor` worker to just wait for the builder API HTTP response, so we spawn a new `tokio` task to wait for a builder response.

I've added an optimisation for the `GET beacon/states/{state_id}/validators/{validator_id}` endpoint in [efbabe3](efbabe3252). That's the endpoint the VC uses to resolve pubkeys to validator indices, and it's the endpoint that was causing us grief. Perhaps I should move that into a new PR, not sure.
2023-08-08 23:30:15 +00:00

5111 lines
162 KiB
Rust

use beacon_chain::test_utils::RelativeSyncCommittee;
use beacon_chain::{
test_utils::{AttestationStrategy, BeaconChainHarness, BlockStrategy, EphemeralHarnessType},
BeaconChain, StateSkipConfig, WhenSlotSkipped,
};
use environment::null_logger;
use eth2::{
mixin::{RequestAccept, ResponseForkName, ResponseOptional},
reqwest::RequestBuilder,
types::{BlockId as CoreBlockId, ForkChoiceNode, StateId as CoreStateId, *},
BeaconNodeHttpClient, Error, Timeouts,
};
use execution_layer::test_utils::TestingBuilder;
use execution_layer::test_utils::DEFAULT_BUILDER_THRESHOLD_WEI;
use execution_layer::test_utils::{
Operation, DEFAULT_BUILDER_PAYLOAD_VALUE_WEI, DEFAULT_MOCK_EL_PAYLOAD_VALUE_WEI,
};
use futures::stream::{Stream, StreamExt};
use futures::FutureExt;
use http_api::{
test_utils::{create_api_server, create_api_server_on_port, ApiServer},
BlockId, StateId,
};
use lighthouse_network::{Enr, EnrExt, PeerId};
use network::NetworkReceivers;
use proto_array::ExecutionStatus;
use sensitive_url::SensitiveUrl;
use slot_clock::SlotClock;
use state_processing::per_block_processing::get_expected_withdrawals;
use state_processing::per_slot_processing;
use std::convert::TryInto;
use std::sync::Arc;
use tokio::time::Duration;
use tree_hash::TreeHash;
use types::application_domain::ApplicationDomain;
use types::{
AggregateSignature, BitList, Domain, EthSpec, ExecutionBlockHash, Hash256, Keypair,
MainnetEthSpec, RelativeEpoch, SelectionProof, SignedRoot, Slot,
};
type E = MainnetEthSpec;
const SECONDS_PER_SLOT: u64 = 12;
const SLOTS_PER_EPOCH: u64 = 32;
const VALIDATOR_COUNT: usize = SLOTS_PER_EPOCH as usize;
const CHAIN_LENGTH: u64 = SLOTS_PER_EPOCH * 5 - 1; // Make `next_block` an epoch transition
const JUSTIFIED_EPOCH: u64 = 4;
const FINALIZED_EPOCH: u64 = 3;
const EXTERNAL_ADDR: &str = "/ip4/0.0.0.0/tcp/9000";
/// Skipping the slots around the epoch boundary allows us to check that we're obtaining states
/// from skipped slots for the finalized and justified checkpoints (instead of the state from the
/// block that those roots point to).
const SKIPPED_SLOTS: &[u64] = &[
JUSTIFIED_EPOCH * SLOTS_PER_EPOCH - 1,
JUSTIFIED_EPOCH * SLOTS_PER_EPOCH,
FINALIZED_EPOCH * SLOTS_PER_EPOCH - 1,
FINALIZED_EPOCH * SLOTS_PER_EPOCH,
];
struct ApiTester {
harness: Arc<BeaconChainHarness<EphemeralHarnessType<E>>>,
chain: Arc<BeaconChain<EphemeralHarnessType<E>>>,
client: BeaconNodeHttpClient,
next_block: SignedBeaconBlock<E>,
reorg_block: SignedBeaconBlock<E>,
attestations: Vec<Attestation<E>>,
contribution_and_proofs: Vec<SignedContributionAndProof<E>>,
attester_slashing: AttesterSlashing<E>,
proposer_slashing: ProposerSlashing,
voluntary_exit: SignedVoluntaryExit,
network_rx: NetworkReceivers<E>,
local_enr: Enr,
external_peer_id: PeerId,
mock_builder: Option<Arc<TestingBuilder<E>>>,
}
struct ApiTesterConfig {
spec: ChainSpec,
builder_threshold: Option<u128>,
}
impl Default for ApiTesterConfig {
fn default() -> Self {
let mut spec = E::default_spec();
spec.shard_committee_period = 2;
Self {
spec,
builder_threshold: None,
}
}
}
impl ApiTester {
pub async fn new() -> Self {
// This allows for testing voluntary exits without building out a massive chain.
Self::new_from_config(ApiTesterConfig::default()).await
}
pub async fn new_with_hard_forks(altair: bool, bellatrix: bool) -> Self {
let mut config = ApiTesterConfig::default();
// Set whether the chain has undergone each hard fork.
if altair {
config.spec.altair_fork_epoch = Some(Epoch::new(0));
}
if bellatrix {
config.spec.bellatrix_fork_epoch = Some(Epoch::new(0));
}
Self::new_from_config(config).await
}
pub async fn new_from_config(config: ApiTesterConfig) -> Self {
// Get a random unused port
let spec = config.spec;
let port = unused_port::unused_tcp4_port().unwrap();
let beacon_url = SensitiveUrl::parse(format!("http://127.0.0.1:{port}").as_str()).unwrap();
let harness = Arc::new(
BeaconChainHarness::builder(MainnetEthSpec)
.spec(spec.clone())
.logger(logging::test_logger())
.deterministic_keypairs(VALIDATOR_COUNT)
.fresh_ephemeral_store()
.mock_execution_layer_with_builder(beacon_url.clone(), config.builder_threshold)
.build(),
);
harness.advance_slot();
for _ in 0..CHAIN_LENGTH {
let slot = harness.chain.slot().unwrap().as_u64();
if !SKIPPED_SLOTS.contains(&slot) {
harness
.extend_chain(
1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
}
harness.advance_slot();
}
let head = harness.chain.head_snapshot();
assert_eq!(
harness.chain.slot().unwrap(),
head.beacon_block.slot() + 1,
"precondition: current slot is one after head"
);
let (next_block, _next_state) = harness
.make_block(head.beacon_state.clone(), harness.chain.slot().unwrap())
.await;
// `make_block` adds random graffiti, so this will produce an alternate block
let (reorg_block, _reorg_state) = harness
.make_block(head.beacon_state.clone(), harness.chain.slot().unwrap() + 1)
.await;
let head_state_root = head.beacon_state_root();
let attestations = harness
.get_unaggregated_attestations(
&AttestationStrategy::AllValidators,
&head.beacon_state,
head_state_root,
head.beacon_block_root,
harness.chain.slot().unwrap(),
)
.into_iter()
.flat_map(|vec| vec.into_iter().map(|(attestation, _subnet_id)| attestation))
.collect::<Vec<_>>();
assert!(
!attestations.is_empty(),
"precondition: attestations for testing"
);
let current_epoch = harness
.chain
.slot()
.expect("should get current slot")
.epoch(E::slots_per_epoch());
let is_altair = spec
.altair_fork_epoch
.map(|epoch| epoch <= current_epoch)
.unwrap_or(false);
let contribution_and_proofs = if is_altair {
harness
.make_sync_contributions(
&head.beacon_state,
head_state_root,
harness.chain.slot().unwrap(),
RelativeSyncCommittee::Current,
)
.into_iter()
.filter_map(|(_, contribution)| contribution)
.collect::<Vec<_>>()
} else {
vec![]
};
let attester_slashing = harness.make_attester_slashing(vec![0, 1]);
let proposer_slashing = harness.make_proposer_slashing(2);
let voluntary_exit = harness.make_voluntary_exit(3, harness.chain.epoch().unwrap());
let chain = harness.chain.clone();
assert_eq!(
chain
.canonical_head
.cached_head()
.finalized_checkpoint()
.epoch,
2,
"precondition: finality"
);
assert_eq!(
chain
.canonical_head
.cached_head()
.justified_checkpoint()
.epoch,
3,
"precondition: justification"
);
let log = null_logger().unwrap();
let ApiServer {
server,
listening_socket: _,
network_rx,
local_enr,
external_peer_id,
} = create_api_server_on_port(chain.clone(), &harness.runtime, log, port).await;
harness.runtime.task_executor.spawn(server, "api_server");
let client = BeaconNodeHttpClient::new(
beacon_url,
Timeouts::set_all(Duration::from_secs(SECONDS_PER_SLOT)),
);
let builder_ref = harness.mock_builder.as_ref().unwrap().clone();
harness.runtime.task_executor.spawn(
async move { builder_ref.run().await },
"mock_builder_server",
);
let mock_builder = harness.mock_builder.clone();
Self {
harness,
chain,
client,
next_block,
reorg_block,
attestations,
contribution_and_proofs,
attester_slashing,
proposer_slashing,
voluntary_exit,
network_rx,
local_enr,
external_peer_id,
mock_builder,
}
}
pub async fn new_from_genesis() -> Self {
let harness = Arc::new(
BeaconChainHarness::builder(MainnetEthSpec)
.default_spec()
.deterministic_keypairs(VALIDATOR_COUNT)
.fresh_ephemeral_store()
.build(),
);
harness.advance_slot();
let head = harness.chain.head_snapshot();
let (next_block, _next_state) = harness
.make_block(head.beacon_state.clone(), harness.chain.slot().unwrap())
.await;
// `make_block` adds random graffiti, so this will produce an alternate block
let (reorg_block, _reorg_state) = harness
.make_block(head.beacon_state.clone(), harness.chain.slot().unwrap())
.await;
let head_state_root = head.beacon_state_root();
let attestations = harness
.get_unaggregated_attestations(
&AttestationStrategy::AllValidators,
&head.beacon_state,
head_state_root,
head.beacon_block_root,
harness.chain.slot().unwrap(),
)
.into_iter()
.flat_map(|vec| vec.into_iter().map(|(attestation, _subnet_id)| attestation))
.collect::<Vec<_>>();
let attester_slashing = harness.make_attester_slashing(vec![0, 1]);
let proposer_slashing = harness.make_proposer_slashing(2);
let voluntary_exit = harness.make_voluntary_exit(3, harness.chain.epoch().unwrap());
let chain = harness.chain.clone();
let log = null_logger().unwrap();
let ApiServer {
server,
listening_socket,
network_rx,
local_enr,
external_peer_id,
} = create_api_server(chain.clone(), &harness.runtime, log).await;
harness.runtime.task_executor.spawn(server, "api_server");
let client = BeaconNodeHttpClient::new(
SensitiveUrl::parse(&format!(
"http://{}:{}",
listening_socket.ip(),
listening_socket.port()
))
.unwrap(),
Timeouts::set_all(Duration::from_secs(SECONDS_PER_SLOT)),
);
Self {
harness,
chain,
client,
next_block,
reorg_block,
attestations,
contribution_and_proofs: vec![],
attester_slashing,
proposer_slashing,
voluntary_exit,
network_rx,
local_enr,
external_peer_id,
mock_builder: None,
}
}
fn validator_keypairs(&self) -> &[Keypair] {
&self.harness.validator_keypairs
}
pub async fn new_mev_tester() -> Self {
let tester = Self::new_with_hard_forks(true, true)
.await
.test_post_validator_register_validator()
.await;
// Make sure bids always meet the minimum threshold.
tester
.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::Value(Uint256::from(
DEFAULT_BUILDER_THRESHOLD_WEI,
)));
tester
}
pub async fn new_mev_tester_no_builder_threshold() -> Self {
let mut config = ApiTesterConfig {
builder_threshold: Some(0),
spec: E::default_spec(),
};
config.spec.altair_fork_epoch = Some(Epoch::new(0));
config.spec.bellatrix_fork_epoch = Some(Epoch::new(0));
let tester = Self::new_from_config(config)
.await
.test_post_validator_register_validator()
.await;
tester
.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::Value(Uint256::from(
DEFAULT_BUILDER_PAYLOAD_VALUE_WEI,
)));
tester
}
fn skip_slots(self, count: u64) -> Self {
for _ in 0..count {
self.chain
.slot_clock
.set_slot(self.chain.slot().unwrap().as_u64() + 1);
}
self
}
fn interesting_state_ids(&self) -> Vec<StateId> {
let mut ids = vec![
StateId(CoreStateId::Head),
StateId(CoreStateId::Genesis),
StateId(CoreStateId::Finalized),
StateId(CoreStateId::Justified),
StateId(CoreStateId::Slot(Slot::new(0))),
StateId(CoreStateId::Slot(Slot::new(32))),
StateId(CoreStateId::Slot(Slot::from(SKIPPED_SLOTS[0]))),
StateId(CoreStateId::Slot(Slot::from(SKIPPED_SLOTS[1]))),
StateId(CoreStateId::Slot(Slot::from(SKIPPED_SLOTS[2]))),
StateId(CoreStateId::Slot(Slot::from(SKIPPED_SLOTS[3]))),
StateId(CoreStateId::Root(Hash256::zero())),
];
ids.push(StateId(CoreStateId::Root(
self.chain.canonical_head.cached_head().head_state_root(),
)));
ids
}
fn interesting_block_ids(&self) -> Vec<BlockId> {
let mut ids = vec![
BlockId(CoreBlockId::Head),
BlockId(CoreBlockId::Genesis),
BlockId(CoreBlockId::Finalized),
BlockId(CoreBlockId::Justified),
BlockId(CoreBlockId::Slot(Slot::new(0))),
BlockId(CoreBlockId::Slot(Slot::new(32))),
BlockId(CoreBlockId::Slot(Slot::from(SKIPPED_SLOTS[0]))),
BlockId(CoreBlockId::Slot(Slot::from(SKIPPED_SLOTS[1]))),
BlockId(CoreBlockId::Slot(Slot::from(SKIPPED_SLOTS[2]))),
BlockId(CoreBlockId::Slot(Slot::from(SKIPPED_SLOTS[3]))),
BlockId(CoreBlockId::Root(Hash256::zero())),
];
ids.push(BlockId(CoreBlockId::Root(
self.chain.canonical_head.cached_head().head_block_root(),
)));
ids
}
pub async fn test_beacon_genesis(self) -> Self {
let result = self.client.get_beacon_genesis().await.unwrap().data;
let state = &self.chain.head_snapshot().beacon_state;
let expected = GenesisData {
genesis_time: state.genesis_time(),
genesis_validators_root: state.genesis_validators_root(),
genesis_fork_version: self.chain.spec.genesis_fork_version,
};
assert_eq!(result, expected);
self
}
// finalization tests
pub async fn test_beacon_states_root_finalized(self) -> Self {
for state_id in self.interesting_state_ids() {
let state_root = state_id.root(&self.chain);
let state = state_id.state(&self.chain);
// if .root or .state fail, skip the test. those would be errors outside the scope
// of this test, here we're testing the finalized field assuming the call to .is_finalized_state
// occurs after the state_root and state calls, and that the state_root and state calls
// were correct.
if state_root.is_err() || state.is_err() {
continue;
}
// now that we know the state is valid, we can unwrap() everything we need
let result = self
.client
.get_beacon_states_root(state_id.0)
.await
.unwrap()
.unwrap()
.finalized
.unwrap();
let (state_root, _, _) = state_root.unwrap();
let (state, _, _) = state.unwrap();
let state_slot = state.slot();
let expected = self
.chain
.is_finalized_state(&state_root, state_slot)
.unwrap();
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_beacon_states_fork_finalized(self) -> Self {
for state_id in self.interesting_state_ids() {
let state_root = state_id.root(&self.chain);
let state = state_id.state(&self.chain);
// if .root or .state fail, skip the test. those would be errors outside the scope
// of this test, here we're testing the finalized field assuming the call to .is_finalized_state
// occurs after the state_root and state calls, and that the state_root and state calls
// were correct.
if state_root.is_err() || state.is_err() {
continue;
}
// now that we know the state is valid, we can unwrap() everything we need
let result = self
.client
.get_beacon_states_fork(state_id.0)
.await
.unwrap()
.unwrap()
.finalized
.unwrap();
let (state_root, _, _) = state_root.unwrap();
let (state, _, _) = state.unwrap();
let state_slot = state.slot();
let expected = self
.chain
.is_finalized_state(&state_root, state_slot)
.unwrap();
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_beacon_states_finality_checkpoints_finalized(self) -> Self {
for state_id in self.interesting_state_ids() {
let state_root = state_id.root(&self.chain);
let state = state_id.state(&self.chain);
// if .root or .state fail, skip the test. those would be errors outside the scope
// of this test, here we're testing the finalized field assuming the call to .is_finalized_state
// occurs after the state_root and state calls, and that the state_root and state calls
// were correct.
if state_root.is_err() || state.is_err() {
continue;
}
// now that we know the state is valid, we can unwrap() everything we need
let result = self
.client
.get_beacon_states_finality_checkpoints(state_id.0)
.await
.unwrap()
.unwrap()
.finalized
.unwrap();
let (state_root, _, _) = state_root.unwrap();
let (state, _, _) = state.unwrap();
let state_slot = state.slot();
let expected = self
.chain
.is_finalized_state(&state_root, state_slot)
.unwrap();
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_beacon_headers_block_id_finalized(self) -> Self {
for block_id in self.interesting_block_ids() {
let block_root = block_id.root(&self.chain);
let block = block_id.full_block(&self.chain).await;
// if .root or .state fail, skip the test. those would be errors outside the scope
// of this test, here we're testing the finalized field assuming the call to .is_finalized_state
// occurs after the state_root and state calls, and that the state_root and state calls
// were correct.
if block_root.is_err() || block.is_err() {
continue;
}
// now that we know the block is valid, we can unwrap() everything we need
let result = self
.client
.get_beacon_headers_block_id(block_id.0)
.await
.unwrap()
.unwrap()
.finalized
.unwrap();
let (block_root, _, _) = block_root.unwrap();
let (block, _, _) = block.unwrap();
let block_slot = block.slot();
let expected = self
.chain
.is_finalized_block(&block_root, block_slot)
.unwrap();
assert_eq!(result, expected, "{:?}", block_id);
}
self
}
pub async fn test_beacon_blocks_finalized<T: EthSpec>(self) -> Self {
for block_id in self.interesting_block_ids() {
let block_root = block_id.root(&self.chain);
let block = block_id.full_block(&self.chain).await;
// if .root or .full_block fail, skip the test. those would be errors outside the scope
// of this test, here we're testing the finalized field assuming the call to .is_finalized_block
// occurs after those calls, and that they were correct.
if block_root.is_err() || block.is_err() {
continue;
}
// now that we know the block is valid, we can unwrap() everything we need
let result = self
.client
.get_beacon_blocks::<MainnetEthSpec>(block_id.0)
.await
.unwrap()
.unwrap()
.finalized
.unwrap();
let (block_root, _, _) = block_root.unwrap();
let (block, _, _) = block.unwrap();
let block_slot = block.slot();
let expected = self
.chain
.is_finalized_block(&block_root, block_slot)
.unwrap();
assert_eq!(result, expected, "{:?}", block_id);
}
self
}
pub async fn test_beacon_blinded_blocks_finalized<T: EthSpec>(self) -> Self {
for block_id in self.interesting_block_ids() {
let block_root = block_id.root(&self.chain);
let block = block_id.full_block(&self.chain).await;
// if .root or .full_block fail, skip the test. those would be errors outside the scope
// of this test, here we're testing the finalized field assuming the call to .is_finalized_block
// occurs after those calls, and that they were correct.
if block_root.is_err() || block.is_err() {
continue;
}
// now that we know the block is valid, we can unwrap() everything we need
let result = self
.client
.get_beacon_blinded_blocks::<MainnetEthSpec>(block_id.0)
.await
.unwrap()
.unwrap()
.finalized
.unwrap();
let (block_root, _, _) = block_root.unwrap();
let (block, _, _) = block.unwrap();
let block_slot = block.slot();
let expected = self
.chain
.is_finalized_block(&block_root, block_slot)
.unwrap();
assert_eq!(result, expected, "{:?}", block_id);
}
self
}
pub async fn test_debug_beacon_states_finalized(self) -> Self {
for state_id in self.interesting_state_ids() {
let state_root = state_id.root(&self.chain);
let state = state_id.state(&self.chain);
// if .root or .state fail, skip the test. those would be errors outside the scope
// of this test, here we're testing the finalized field assuming the call to .is_finalized_state
// occurs after the state_root and state calls, and that the state_root and state calls
// were correct.
if state_root.is_err() || state.is_err() {
continue;
}
// now that we know the state is valid, we can unwrap() everything we need
let result = self
.client
.get_debug_beacon_states::<MainnetEthSpec>(state_id.0)
.await
.unwrap()
.unwrap()
.finalized
.unwrap();
let (state_root, _, _) = state_root.unwrap();
let (state, _, _) = state.unwrap();
let state_slot = state.slot();
let expected = self
.chain
.is_finalized_state(&state_root, state_slot)
.unwrap();
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_beacon_states_root(self) -> Self {
for state_id in self.interesting_state_ids() {
let result = self
.client
.get_beacon_states_root(state_id.0)
.await
.unwrap()
.map(|res| res.data.root);
let expected = state_id
.root(&self.chain)
.ok()
.map(|(root, _execution_optimistic, _finalized)| root);
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_beacon_states_fork(self) -> Self {
for state_id in self.interesting_state_ids() {
let result = self
.client
.get_beacon_states_fork(state_id.0)
.await
.unwrap()
.map(|res| res.data);
let expected = state_id.fork(&self.chain).ok();
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_beacon_states_finality_checkpoints(self) -> Self {
for state_id in self.interesting_state_ids() {
let result = self
.client
.get_beacon_states_finality_checkpoints(state_id.0)
.await
.unwrap()
.map(|res| res.data);
let expected = state_id.state(&self.chain).ok().map(
|(state, _execution_optimistic, _finalized)| FinalityCheckpointsData {
previous_justified: state.previous_justified_checkpoint(),
current_justified: state.current_justified_checkpoint(),
finalized: state.finalized_checkpoint(),
},
);
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_beacon_states_validator_balances(self) -> Self {
for state_id in self.interesting_state_ids() {
for validator_indices in self.interesting_validator_indices() {
let state_opt = state_id.state(&self.chain).ok();
let validators: Vec<Validator> = match state_opt.as_ref() {
Some((state, _execution_optimistic, _finalized)) => {
state.validators().clone().into()
}
None => vec![],
};
let validator_index_ids = validator_indices
.iter()
.cloned()
.map(|i| ValidatorId::Index(i))
.collect::<Vec<ValidatorId>>();
let validator_pubkey_ids = validator_indices
.iter()
.cloned()
.map(|i| {
ValidatorId::PublicKey(
validators
.get(i as usize)
.map_or(PublicKeyBytes::empty(), |val| val.pubkey.clone()),
)
})
.collect::<Vec<ValidatorId>>();
let result_index_ids = self
.client
.get_beacon_states_validator_balances(
state_id.0,
Some(validator_index_ids.as_slice()),
)
.await
.unwrap()
.map(|res| res.data);
let result_pubkey_ids = self
.client
.get_beacon_states_validator_balances(
state_id.0,
Some(validator_pubkey_ids.as_slice()),
)
.await
.unwrap()
.map(|res| res.data);
let expected = state_opt.map(|(state, _execution_optimistic, _finalized)| {
let mut validators = Vec::with_capacity(validator_indices.len());
for i in validator_indices {
if i < state.balances().len() as u64 {
validators.push(ValidatorBalanceData {
index: i as u64,
balance: state.balances()[i as usize],
});
}
}
validators
});
assert_eq!(result_index_ids, expected, "{:?}", state_id);
assert_eq!(result_pubkey_ids, expected, "{:?}", state_id);
}
}
self
}
pub async fn test_beacon_states_validators(self) -> Self {
for state_id in self.interesting_state_ids() {
for statuses in self.interesting_validator_statuses() {
for validator_indices in self.interesting_validator_indices() {
let state_opt = state_id
.state(&self.chain)
.ok()
.map(|(state, _execution_optimistic, _finalized)| state);
let validators: Vec<Validator> = match state_opt.as_ref() {
Some(state) => state.validators().clone().into(),
None => vec![],
};
let validator_index_ids = validator_indices
.iter()
.cloned()
.map(|i| ValidatorId::Index(i))
.collect::<Vec<ValidatorId>>();
let validator_pubkey_ids = validator_indices
.iter()
.cloned()
.map(|i| {
ValidatorId::PublicKey(
validators
.get(i as usize)
.map_or(PublicKeyBytes::empty(), |val| val.pubkey.clone()),
)
})
.collect::<Vec<ValidatorId>>();
let result_index_ids = self
.client
.get_beacon_states_validators(
state_id.0,
Some(validator_index_ids.as_slice()),
None,
)
.await
.unwrap()
.map(|res| res.data);
let result_pubkey_ids = self
.client
.get_beacon_states_validators(
state_id.0,
Some(validator_pubkey_ids.as_slice()),
None,
)
.await
.unwrap()
.map(|res| res.data);
let expected = state_opt.map(|state| {
let epoch = state.current_epoch();
let far_future_epoch = self.chain.spec.far_future_epoch;
let mut validators = Vec::with_capacity(validator_indices.len());
for i in validator_indices {
if i >= state.validators().len() as u64 {
continue;
}
let validator = state.validators()[i as usize].clone();
let status = ValidatorStatus::from_validator(
&validator,
epoch,
far_future_epoch,
);
if statuses.contains(&status)
|| statuses.is_empty()
|| statuses.contains(&status.superstatus())
{
validators.push(ValidatorData {
index: i as u64,
balance: state.balances()[i as usize],
status,
validator,
});
}
}
validators
});
assert_eq!(result_index_ids, expected, "{:?}", state_id);
assert_eq!(result_pubkey_ids, expected, "{:?}", state_id);
}
}
}
self
}
pub async fn test_beacon_states_validator_id(self) -> Self {
for state_id in self.interesting_state_ids() {
let state_opt = state_id
.state(&self.chain)
.ok()
.map(|(state, _execution_optimistic, _finalized)| state);
let validators = match state_opt.as_ref() {
Some(state) => state.validators().clone().into(),
None => vec![],
};
for (i, validator) in validators.into_iter().enumerate() {
let validator_ids = &[
ValidatorId::PublicKey(validator.pubkey.clone()),
ValidatorId::Index(i as u64),
];
for validator_id in validator_ids {
let result = self
.client
.get_beacon_states_validator_id(state_id.0, validator_id)
.await
.unwrap()
.map(|res| res.data);
if result.is_none() && state_opt.is_none() {
continue;
}
let state = state_opt.as_ref().expect("result should be none");
let expected = {
let epoch = state.current_epoch();
let far_future_epoch = self.chain.spec.far_future_epoch;
ValidatorData {
index: i as u64,
balance: state.balances()[i],
status: ValidatorStatus::from_validator(
&validator,
epoch,
far_future_epoch,
),
validator: validator.clone(),
}
};
assert_eq!(result, Some(expected), "{:?}, {:?}", state_id, validator_id);
}
}
}
self
}
pub async fn test_beacon_states_committees(self) -> Self {
for state_id in self.interesting_state_ids() {
let mut state_opt = state_id
.state(&self.chain)
.ok()
.map(|(state, _execution_optimistic, _finalized)| state);
let epoch_opt = state_opt.as_ref().map(|state| state.current_epoch());
let results = self
.client
.get_beacon_states_committees(state_id.0, None, None, epoch_opt)
.await
.unwrap()
.map(|res| res.data);
if results.is_none() && state_opt.is_none() {
continue;
}
let state = state_opt.as_mut().expect("result should be none");
state.build_all_committee_caches(&self.chain.spec).unwrap();
let committees = state
.get_beacon_committees_at_epoch(RelativeEpoch::Current)
.unwrap();
for (i, result) in results.unwrap().into_iter().enumerate() {
let expected = &committees[i];
assert_eq!(result.index, expected.index, "{}", state_id);
assert_eq!(result.slot, expected.slot, "{}", state_id);
assert_eq!(
result
.validators
.into_iter()
.map(|i| i as usize)
.collect::<Vec<_>>(),
expected.committee.to_vec(),
"{}",
state_id
);
}
}
self
}
pub async fn test_beacon_states_randao(self) -> Self {
for state_id in self.interesting_state_ids() {
let mut state_opt = state_id
.state(&self.chain)
.ok()
.map(|(state, _execution_optimistic, _finalized)| state);
let epoch_opt = state_opt.as_ref().map(|state| state.current_epoch());
let result = self
.client
.get_beacon_states_randao(state_id.0, epoch_opt)
.await
.unwrap()
.map(|res| res.data);
if result.is_none() && state_opt.is_none() {
continue;
}
let state = state_opt.as_mut().expect("result should be none");
let randao_mix = state
.get_randao_mix(state.slot().epoch(E::slots_per_epoch()))
.unwrap();
assert_eq!(result.unwrap().randao, *randao_mix);
}
self
}
pub async fn test_beacon_headers_all_slots(self) -> Self {
for slot in 0..CHAIN_LENGTH {
let slot = Slot::from(slot);
let result = self
.client
.get_beacon_headers(Some(slot), None)
.await
.unwrap()
.map(|res| res.data);
let root = self
.chain
.block_root_at_slot(slot, WhenSlotSkipped::None)
.unwrap();
if root.is_none() && result.is_none() {
continue;
}
let root = root.unwrap();
let block = self
.chain
.block_at_slot(slot, WhenSlotSkipped::Prev)
.unwrap()
.unwrap();
let header = BlockHeaderData {
root,
canonical: true,
header: BlockHeaderAndSignature {
message: block.message().block_header(),
signature: block.signature().clone().into(),
},
};
let expected = vec![header];
assert_eq!(result.unwrap(), expected, "slot {:?}", slot);
}
self
}
pub async fn test_beacon_headers_all_parents(self) -> Self {
let mut roots = self
.chain
.forwards_iter_block_roots(Slot::new(0))
.unwrap()
.map(Result::unwrap)
.map(|(root, _slot)| root)
.collect::<Vec<_>>();
// The iterator natively returns duplicate roots for skipped slots.
roots.dedup();
for i in 1..roots.len() {
let parent_root = roots[i - 1];
let child_root = roots[i];
let result = self
.client
.get_beacon_headers(None, Some(parent_root))
.await
.unwrap()
.unwrap()
.data;
assert_eq!(result.len(), 1, "i {}", i);
assert_eq!(result[0].root, child_root, "i {}", i);
}
self
}
pub async fn test_beacon_headers_block_id(self) -> Self {
for block_id in self.interesting_block_ids() {
let result = self
.client
.get_beacon_headers_block_id(block_id.0)
.await
.unwrap()
.map(|res| res.data);
let block_root_opt = block_id
.root(&self.chain)
.ok()
.map(|(root, _execution_optimistic, _finalized)| root);
if let CoreBlockId::Slot(slot) = block_id.0 {
if block_root_opt.is_none() {
assert!(SKIPPED_SLOTS.contains(&slot.as_u64()));
} else {
assert!(!SKIPPED_SLOTS.contains(&slot.as_u64()));
}
}
let block_opt = block_id
.full_block(&self.chain)
.await
.ok()
.map(|(block, _execution_optimistic, _finalized)| block);
if block_opt.is_none() && result.is_none() {
continue;
}
let result = result.unwrap();
let block = block_opt.unwrap();
let block_root = block_root_opt.unwrap();
let canonical = self
.chain
.block_root_at_slot(block.slot(), WhenSlotSkipped::None)
.unwrap()
.map_or(false, |canonical| block_root == canonical);
assert_eq!(result.canonical, canonical, "{:?}", block_id);
assert_eq!(result.root, block_root, "{:?}", block_id);
assert_eq!(
result.header.message,
block.message().block_header(),
"{:?}",
block_id
);
assert_eq!(
result.header.signature,
block.signature().clone().into(),
"{:?}",
block_id
);
}
self
}
pub async fn test_beacon_blocks_root(self) -> Self {
for block_id in self.interesting_block_ids() {
let result = self
.client
.get_beacon_blocks_root(block_id.0)
.await
.unwrap()
.map(|res| res.data.root);
let expected = block_id
.root(&self.chain)
.ok()
.map(|(root, _execution_optimistic, _finalized)| root);
if let CoreBlockId::Slot(slot) = block_id.0 {
if expected.is_none() {
assert!(SKIPPED_SLOTS.contains(&slot.as_u64()));
} else {
assert!(!SKIPPED_SLOTS.contains(&slot.as_u64()));
}
}
assert_eq!(result, expected, "{:?}", block_id);
}
self
}
pub async fn test_post_beacon_blocks_valid(mut self) -> Self {
let next_block = &self.next_block;
self.client.post_beacon_blocks(next_block).await.unwrap();
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"valid blocks should be sent to network"
);
self
}
pub async fn test_post_beacon_blocks_ssz_valid(mut self) -> Self {
let next_block = &self.next_block;
self.client
.post_beacon_blocks_ssz(next_block)
.await
.unwrap();
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"valid blocks should be sent to network"
);
self
}
pub async fn test_post_beacon_blocks_invalid(mut self) -> Self {
let block = self
.harness
.make_block_with_modifier(
self.harness.get_current_state(),
self.harness.get_current_slot(),
|b| {
*b.state_root_mut() = Hash256::zero();
},
)
.await
.0;
assert!(self.client.post_beacon_blocks(&block).await.is_err());
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"gossip valid blocks should be sent to network"
);
self
}
pub async fn test_post_beacon_blocks_ssz_invalid(mut self) -> Self {
let block = self
.harness
.make_block_with_modifier(
self.harness.get_current_state(),
self.harness.get_current_slot(),
|b| {
*b.state_root_mut() = Hash256::zero();
},
)
.await
.0;
assert!(self.client.post_beacon_blocks_ssz(&block).await.is_err());
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"gossip valid blocks should be sent to network"
);
self
}
pub async fn test_beacon_blocks(self) -> Self {
for block_id in self.interesting_block_ids() {
let expected = block_id
.full_block(&self.chain)
.await
.ok()
.map(|(block, _execution_optimistic, _finalized)| block);
if let CoreBlockId::Slot(slot) = block_id.0 {
if expected.is_none() {
assert!(SKIPPED_SLOTS.contains(&slot.as_u64()));
} else {
assert!(!SKIPPED_SLOTS.contains(&slot.as_u64()));
}
}
// Check the JSON endpoint.
let json_result = self.client.get_beacon_blocks(block_id.0).await.unwrap();
if let (Some(json), Some(expected)) = (&json_result, &expected) {
assert_eq!(&json.data, expected.as_ref(), "{:?}", block_id);
assert_eq!(
json.version,
Some(expected.fork_name(&self.chain.spec).unwrap())
);
} else {
assert_eq!(json_result, None);
assert_eq!(expected, None);
}
// Check the SSZ endpoint.
let ssz_result = self
.client
.get_beacon_blocks_ssz(block_id.0, &self.chain.spec)
.await
.unwrap();
assert_eq!(
ssz_result.as_ref(),
expected.as_ref().map(|b| b.as_ref()),
"{:?}",
block_id
);
// Check that the legacy v1 API still works but doesn't return a version field.
let v1_result = self.client.get_beacon_blocks_v1(block_id.0).await.unwrap();
if let (Some(v1_result), Some(expected)) = (&v1_result, &expected) {
assert_eq!(v1_result.version, None);
assert_eq!(&v1_result.data, expected.as_ref());
} else {
assert_eq!(v1_result, None);
assert_eq!(expected, None);
}
// Check that version headers are provided.
let url = self.client.get_beacon_blocks_path(block_id.0).unwrap();
let builders: Vec<fn(RequestBuilder) -> RequestBuilder> = vec![
|b| b,
|b| b.accept(Accept::Ssz),
|b| b.accept(Accept::Json),
|b| b.accept(Accept::Any),
];
for req_builder in builders {
let raw_res = self
.client
.get_response(url.clone(), req_builder)
.await
.optional()
.unwrap();
if let (Some(raw_res), Some(expected)) = (&raw_res, &expected) {
assert_eq!(
raw_res.fork_name_from_header().unwrap(),
Some(expected.fork_name(&self.chain.spec).unwrap())
);
} else {
assert!(raw_res.is_none());
assert_eq!(expected, None);
}
}
}
self
}
pub async fn test_beacon_blinded_blocks(self) -> Self {
for block_id in self.interesting_block_ids() {
let expected = block_id
.blinded_block(&self.chain)
.ok()
.map(|(block, _execution_optimistic, _finalized)| block);
if let CoreBlockId::Slot(slot) = block_id.0 {
if expected.is_none() {
assert!(SKIPPED_SLOTS.contains(&slot.as_u64()));
} else {
assert!(!SKIPPED_SLOTS.contains(&slot.as_u64()));
}
}
// Check the JSON endpoint.
let json_result = self
.client
.get_beacon_blinded_blocks(block_id.0)
.await
.unwrap();
if let (Some(json), Some(expected)) = (&json_result, &expected) {
assert_eq!(&json.data, expected, "{:?}", block_id);
assert_eq!(
json.version,
Some(expected.fork_name(&self.chain.spec).unwrap())
);
} else {
assert_eq!(json_result, None);
assert_eq!(expected, None);
}
// Check the SSZ endpoint.
let ssz_result = self
.client
.get_beacon_blinded_blocks_ssz(block_id.0, &self.chain.spec)
.await
.unwrap();
assert_eq!(ssz_result.as_ref(), expected.as_ref(), "{:?}", block_id);
// Check that version headers are provided.
let url = self
.client
.get_beacon_blinded_blocks_path(block_id.0)
.unwrap();
let builders: Vec<fn(RequestBuilder) -> RequestBuilder> = vec![
|b| b,
|b| b.accept(Accept::Ssz),
|b| b.accept(Accept::Json),
|b| b.accept(Accept::Any),
];
for req_builder in builders {
let raw_res = self
.client
.get_response(url.clone(), req_builder)
.await
.optional()
.unwrap();
if let (Some(raw_res), Some(expected)) = (&raw_res, &expected) {
assert_eq!(
raw_res.fork_name_from_header().unwrap(),
Some(expected.fork_name(&self.chain.spec).unwrap())
);
} else {
assert!(raw_res.is_none());
assert_eq!(expected, None);
}
}
}
self
}
pub async fn test_beacon_blocks_attestations(self) -> Self {
for block_id in self.interesting_block_ids() {
let result = self
.client
.get_beacon_blocks_attestations(block_id.0)
.await
.unwrap()
.map(|res| res.data);
let expected = block_id.full_block(&self.chain).await.ok().map(
|(block, _execution_optimistic, _finalized)| {
block.message().body().attestations().clone().into()
},
);
if let CoreBlockId::Slot(slot) = block_id.0 {
if expected.is_none() {
assert!(SKIPPED_SLOTS.contains(&slot.as_u64()));
} else {
assert!(!SKIPPED_SLOTS.contains(&slot.as_u64()));
}
}
assert_eq!(result, expected, "{:?}", block_id);
}
self
}
pub async fn test_post_beacon_pool_attestations_valid(mut self) -> Self {
self.client
.post_beacon_pool_attestations(self.attestations.as_slice())
.await
.unwrap();
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"valid attestation should be sent to network"
);
self
}
pub async fn test_post_beacon_pool_attestations_invalid(mut self) -> Self {
let mut attestations = Vec::new();
for attestation in &self.attestations {
let mut invalid_attestation = attestation.clone();
invalid_attestation.data.slot += 1;
// add both to ensure we only fail on invalid attestations
attestations.push(attestation.clone());
attestations.push(invalid_attestation);
}
let err = self
.client
.post_beacon_pool_attestations(attestations.as_slice())
.await
.unwrap_err();
match err {
Error::ServerIndexedMessage(IndexedErrorMessage {
code,
message: _,
failures,
}) => {
assert_eq!(code, 400);
assert_eq!(failures.len(), self.attestations.len());
}
_ => panic!("query did not fail correctly"),
}
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"if some attestations are valid, we should send them to the network"
);
self
}
pub async fn test_get_beacon_pool_attestations(self) -> Self {
let result = self
.client
.get_beacon_pool_attestations(None, None)
.await
.unwrap()
.data;
let mut expected = self.chain.op_pool.get_all_attestations();
expected.extend(self.chain.naive_aggregation_pool.read().iter().cloned());
assert_eq!(result, expected);
self
}
pub async fn test_post_beacon_pool_attester_slashings_valid(mut self) -> Self {
self.client
.post_beacon_pool_attester_slashings(&self.attester_slashing)
.await
.unwrap();
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"valid attester slashing should be sent to network"
);
self
}
pub async fn test_post_beacon_pool_attester_slashings_invalid(mut self) -> Self {
let mut slashing = self.attester_slashing.clone();
slashing.attestation_1.data.slot += 1;
self.client
.post_beacon_pool_attester_slashings(&slashing)
.await
.unwrap_err();
assert!(
self.network_rx.network_recv.recv().now_or_never().is_none(),
"invalid attester slashing should not be sent to network"
);
self
}
pub async fn test_get_beacon_pool_attester_slashings(self) -> Self {
let result = self
.client
.get_beacon_pool_attester_slashings()
.await
.unwrap()
.data;
let expected = self.chain.op_pool.get_all_attester_slashings();
assert_eq!(result, expected);
self
}
pub async fn test_post_beacon_pool_proposer_slashings_valid(mut self) -> Self {
self.client
.post_beacon_pool_proposer_slashings(&self.proposer_slashing)
.await
.unwrap();
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"valid proposer slashing should be sent to network"
);
self
}
pub async fn test_post_beacon_pool_proposer_slashings_invalid(mut self) -> Self {
let mut slashing = self.proposer_slashing.clone();
slashing.signed_header_1.message.slot += 1;
self.client
.post_beacon_pool_proposer_slashings(&slashing)
.await
.unwrap_err();
assert!(
self.network_rx.network_recv.recv().now_or_never().is_none(),
"invalid proposer slashing should not be sent to network"
);
self
}
pub async fn test_get_beacon_pool_proposer_slashings(self) -> Self {
let result = self
.client
.get_beacon_pool_proposer_slashings()
.await
.unwrap()
.data;
let expected = self.chain.op_pool.get_all_proposer_slashings();
assert_eq!(result, expected);
self
}
pub async fn test_post_beacon_pool_voluntary_exits_valid(mut self) -> Self {
self.client
.post_beacon_pool_voluntary_exits(&self.voluntary_exit)
.await
.unwrap();
assert!(
self.network_rx.network_recv.recv().await.is_some(),
"valid exit should be sent to network"
);
self
}
pub async fn test_post_beacon_pool_voluntary_exits_invalid(mut self) -> Self {
let mut exit = self.voluntary_exit.clone();
exit.message.epoch += 1;
self.client
.post_beacon_pool_voluntary_exits(&exit)
.await
.unwrap_err();
assert!(
self.network_rx.network_recv.recv().now_or_never().is_none(),
"invalid exit should not be sent to network"
);
self
}
pub async fn test_get_beacon_pool_voluntary_exits(self) -> Self {
let result = self
.client
.get_beacon_pool_voluntary_exits()
.await
.unwrap()
.data;
let expected = self.chain.op_pool.get_all_voluntary_exits();
assert_eq!(result, expected);
self
}
pub async fn test_get_config_fork_schedule(self) -> Self {
let result = self.client.get_config_fork_schedule().await.unwrap().data;
let expected: Vec<Fork> = ForkName::list_all()
.into_iter()
.filter_map(|fork| self.chain.spec.fork_for_name(fork))
.collect();
assert_eq!(result, expected);
self
}
pub async fn test_get_config_spec(self) -> Self {
let result = self
.client
.get_config_spec::<ConfigAndPresetCapella>()
.await
.map(|res| ConfigAndPreset::Capella(res.data))
.unwrap();
let expected = ConfigAndPreset::from_chain_spec::<E>(&self.chain.spec, None);
assert_eq!(result, expected);
self
}
pub async fn test_get_config_deposit_contract(self) -> Self {
let result = self
.client
.get_config_deposit_contract()
.await
.unwrap()
.data;
let expected = DepositContractData {
address: self.chain.spec.deposit_contract_address,
chain_id: self.chain.spec.deposit_chain_id,
};
assert_eq!(result, expected);
self
}
pub async fn test_get_node_version(self) -> Self {
let result = self.client.get_node_version().await.unwrap().data;
let expected = VersionData {
version: lighthouse_version::version_with_platform(),
};
assert_eq!(result, expected);
self
}
pub async fn test_get_node_syncing(self) -> Self {
let result = self.client.get_node_syncing().await.unwrap().data;
let head_slot = self.chain.canonical_head.cached_head().head_slot();
let sync_distance = self.chain.slot().unwrap() - head_slot;
let expected = SyncingData {
is_syncing: false,
is_optimistic: Some(false),
// these tests run without the Bellatrix fork enabled
el_offline: Some(true),
head_slot,
sync_distance,
};
assert_eq!(result, expected);
self
}
pub async fn test_get_node_identity(self) -> Self {
let result = self.client.get_node_identity().await.unwrap().data;
let expected = IdentityData {
peer_id: self.local_enr.peer_id().to_string(),
enr: self.local_enr.clone(),
p2p_addresses: self.local_enr.multiaddr_p2p_tcp(),
discovery_addresses: self.local_enr.multiaddr_p2p_udp(),
metadata: eth2::types::MetaData {
seq_number: 0,
attnets: "0x0000000000000000".to_string(),
syncnets: "0x00".to_string(),
},
};
assert_eq!(result, expected);
self
}
pub async fn test_get_node_health(self) -> Self {
let status = self.client.get_node_health().await;
match status {
Ok(_) => {
panic!("should return 503 error status code");
}
Err(e) => {
assert_eq!(e.status().unwrap(), 503);
}
}
self
}
pub async fn test_get_node_peers_by_id(self) -> Self {
let result = self
.client
.get_node_peers_by_id(self.external_peer_id.clone())
.await
.unwrap()
.data;
let expected = PeerData {
peer_id: self.external_peer_id.to_string(),
enr: None,
last_seen_p2p_address: EXTERNAL_ADDR.to_string(),
state: PeerState::Connected,
direction: PeerDirection::Inbound,
};
assert_eq!(result, expected);
self
}
pub async fn test_get_node_peers(self) -> Self {
let peer_states: Vec<Option<&[PeerState]>> = vec![
Some(&[PeerState::Connected]),
Some(&[PeerState::Connecting]),
Some(&[PeerState::Disconnected]),
Some(&[PeerState::Disconnecting]),
None,
Some(&[PeerState::Connected, PeerState::Connecting]),
];
let peer_dirs: Vec<Option<&[PeerDirection]>> = vec![
Some(&[PeerDirection::Outbound]),
Some(&[PeerDirection::Inbound]),
Some(&[PeerDirection::Inbound, PeerDirection::Outbound]),
None,
];
for states in peer_states {
for dirs in peer_dirs.clone() {
let result = self.client.get_node_peers(states, dirs).await.unwrap();
let expected_peer = PeerData {
peer_id: self.external_peer_id.to_string(),
enr: None,
last_seen_p2p_address: EXTERNAL_ADDR.to_string(),
state: PeerState::Connected,
direction: PeerDirection::Inbound,
};
let state_match =
states.map_or(true, |states| states.contains(&PeerState::Connected));
let dir_match = dirs.map_or(true, |dirs| dirs.contains(&PeerDirection::Inbound));
let mut expected_peers = Vec::new();
if state_match && dir_match {
expected_peers.push(expected_peer);
}
assert_eq!(
result,
PeersData {
meta: PeersMetaData {
count: expected_peers.len() as u64
},
data: expected_peers,
}
);
}
}
self
}
pub async fn test_get_node_peer_count(self) -> Self {
let result = self.client.get_node_peer_count().await.unwrap().data;
assert_eq!(
result,
PeerCount {
connected: 1,
connecting: 0,
disconnected: 0,
disconnecting: 0,
}
);
self
}
pub async fn test_get_debug_beacon_states(self) -> Self {
for state_id in self.interesting_state_ids() {
let result_json = self
.client
.get_debug_beacon_states(state_id.0)
.await
.unwrap();
let mut expected = state_id
.state(&self.chain)
.ok()
.map(|(state, _execution_optimistic, _finalized)| state);
expected.as_mut().map(|state| state.drop_all_caches());
if let (Some(json), Some(expected)) = (&result_json, &expected) {
assert_eq!(json.data, *expected, "{:?}", state_id);
assert_eq!(
json.version,
Some(expected.fork_name(&self.chain.spec).unwrap())
);
} else {
assert_eq!(result_json, None);
assert_eq!(expected, None);
}
// Check SSZ API.
let result_ssz = self
.client
.get_debug_beacon_states_ssz(state_id.0, &self.chain.spec)
.await
.unwrap();
assert_eq!(result_ssz, expected, "{:?}", state_id);
// Check that version headers are provided.
let url = self
.client
.get_debug_beacon_states_path(state_id.0)
.unwrap();
let builders: Vec<fn(RequestBuilder) -> RequestBuilder> =
vec![|b| b, |b| b.accept(Accept::Ssz)];
for req_builder in builders {
let raw_res = self
.client
.get_response(url.clone(), req_builder)
.await
.optional()
.unwrap();
if let (Some(raw_res), Some(expected)) = (&raw_res, &expected) {
assert_eq!(
raw_res.fork_name_from_header().unwrap(),
Some(expected.fork_name(&self.chain.spec).unwrap())
);
} else {
assert!(raw_res.is_none());
assert_eq!(expected, None);
}
}
}
self
}
pub async fn test_get_debug_beacon_heads(self) -> Self {
let result = self
.client
.get_debug_beacon_heads()
.await
.unwrap()
.data
.into_iter()
.map(|head| (head.root, head.slot))
.collect::<Vec<_>>();
let expected = self.chain.heads();
assert_eq!(result, expected);
self
}
pub async fn test_get_debug_fork_choice(self) -> Self {
let result = self.client.get_debug_fork_choice().await.unwrap();
let beacon_fork_choice = self.chain.canonical_head.fork_choice_read_lock();
let expected_proto_array = beacon_fork_choice.proto_array().core_proto_array();
assert_eq!(
result.justified_checkpoint,
expected_proto_array.justified_checkpoint
);
assert_eq!(
result.finalized_checkpoint,
expected_proto_array.finalized_checkpoint
);
let expected_fork_choice_nodes: Vec<ForkChoiceNode> = expected_proto_array
.nodes
.iter()
.map(|node| {
let execution_status = if node.execution_status.is_execution_enabled() {
Some(node.execution_status.to_string())
} else {
None
};
ForkChoiceNode {
slot: node.slot,
block_root: node.root,
parent_root: node
.parent
.and_then(|index| expected_proto_array.nodes.get(index))
.map(|parent| parent.root),
justified_epoch: node.justified_checkpoint.epoch,
finalized_epoch: node.finalized_checkpoint.epoch,
weight: node.weight,
validity: execution_status,
execution_block_hash: node
.execution_status
.block_hash()
.map(|block_hash| block_hash.into_root()),
}
})
.collect();
assert_eq!(result.fork_choice_nodes, expected_fork_choice_nodes);
// need to drop beacon_fork_choice here, else borrow checker will complain
// that self cannot be moved out since beacon_fork_choice borrowed self.chain
// and might still live after self is moved out
drop(beacon_fork_choice);
self
}
fn validator_count(&self) -> usize {
self.chain.head_snapshot().beacon_state.validators().len()
}
fn interesting_validator_indices(&self) -> Vec<Vec<u64>> {
let validator_count = self.validator_count() as u64;
let mut interesting = vec![
vec![],
vec![0],
vec![0, 1],
vec![0, 1, 3],
vec![validator_count],
vec![validator_count, 1],
vec![validator_count, 1, 3],
vec![u64::max_value()],
vec![u64::max_value(), 1],
vec![u64::max_value(), 1, 3],
];
interesting.push((0..validator_count).collect());
interesting
}
fn interesting_validator_statuses(&self) -> Vec<Vec<ValidatorStatus>> {
let interesting = vec![
vec![],
vec![ValidatorStatus::Active],
vec![
ValidatorStatus::PendingInitialized,
ValidatorStatus::PendingQueued,
ValidatorStatus::ActiveOngoing,
ValidatorStatus::ActiveExiting,
ValidatorStatus::ActiveSlashed,
ValidatorStatus::ExitedUnslashed,
ValidatorStatus::ExitedSlashed,
ValidatorStatus::WithdrawalPossible,
ValidatorStatus::WithdrawalDone,
ValidatorStatus::Active,
ValidatorStatus::Pending,
ValidatorStatus::Exited,
ValidatorStatus::Withdrawal,
],
];
interesting
}
pub async fn test_get_validator_duties_attester(self) -> Self {
let current_epoch = self.chain.epoch().unwrap().as_u64();
let half = current_epoch / 2;
let first = current_epoch - half;
let last = current_epoch + half;
for epoch in first..=last {
for indices in self.interesting_validator_indices() {
let epoch = Epoch::from(epoch);
// The endpoint does not allow getting duties past the next epoch.
if epoch > current_epoch + 1 {
assert_eq!(
self.client
.post_validator_duties_attester(epoch, indices.as_slice())
.await
.unwrap_err()
.status()
.map(Into::into),
Some(400)
);
continue;
}
let results = self
.client
.post_validator_duties_attester(epoch, indices.as_slice())
.await
.unwrap();
let dependent_root = self
.chain
.block_root_at_slot(
(epoch - 1).start_slot(E::slots_per_epoch()) - 1,
WhenSlotSkipped::Prev,
)
.unwrap()
.unwrap_or(self.chain.head_beacon_block_root());
assert_eq!(results.dependent_root, dependent_root);
let result_duties = results.data;
let mut state = self
.chain
.state_at_slot(
epoch.start_slot(E::slots_per_epoch()),
StateSkipConfig::WithStateRoots,
)
.unwrap();
state
.build_committee_cache(RelativeEpoch::Current, &self.chain.spec)
.unwrap();
let expected_len = indices
.iter()
.filter(|i| **i < state.validators().len() as u64)
.count();
assert_eq!(result_duties.len(), expected_len);
for (indices_set, &i) in indices.iter().enumerate() {
if let Some(duty) = state
.get_attestation_duties(i as usize, RelativeEpoch::Current)
.unwrap()
{
let expected = AttesterData {
pubkey: state.validators()[i as usize].pubkey.clone().into(),
validator_index: i,
committees_at_slot: duty.committees_at_slot,
committee_index: duty.index,
committee_length: duty.committee_len as u64,
validator_committee_index: duty.committee_position as u64,
slot: duty.slot,
};
let result = result_duties
.iter()
.find(|duty| duty.validator_index == i)
.unwrap();
assert_eq!(
*result, expected,
"epoch: {}, indices_set: {}",
epoch, indices_set
);
} else {
assert!(
!result_duties.iter().any(|duty| duty.validator_index == i),
"validator index should not exist in response"
);
}
}
}
}
self
}
pub async fn test_get_validator_duties_proposer(self) -> Self {
let current_epoch = self.chain.epoch().unwrap();
for epoch in 0..=self.chain.epoch().unwrap().as_u64() + 1 {
let epoch = Epoch::from(epoch);
let dependent_root = self
.chain
.block_root_at_slot(
epoch.start_slot(E::slots_per_epoch()) - 1,
WhenSlotSkipped::Prev,
)
.unwrap()
.unwrap_or(self.chain.head_beacon_block_root());
// Presently, the beacon chain harness never runs the code that primes the proposer
// cache. If this changes in the future then we'll need some smarter logic here, but
// this is succinct and effective for the time being.
assert!(
self.chain
.beacon_proposer_cache
.lock()
.get_epoch::<E>(dependent_root, epoch)
.is_none(),
"the proposer cache should miss initially"
);
let result = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap();
// Check that current-epoch requests prime the proposer cache, whilst non-current
// requests don't.
if epoch == current_epoch {
assert!(
self.chain
.beacon_proposer_cache
.lock()
.get_epoch::<E>(dependent_root, epoch)
.is_some(),
"a current-epoch request should prime the proposer cache"
);
} else {
assert!(
self.chain
.beacon_proposer_cache
.lock()
.get_epoch::<E>(dependent_root, epoch)
.is_none(),
"a non-current-epoch request should not prime the proposer cache"
);
}
let mut state = self
.chain
.state_at_slot(
epoch.start_slot(E::slots_per_epoch()),
StateSkipConfig::WithStateRoots,
)
.unwrap();
state
.build_committee_cache(RelativeEpoch::Current, &self.chain.spec)
.unwrap();
let expected_duties = epoch
.slot_iter(E::slots_per_epoch())
.map(|slot| {
let index = state
.get_beacon_proposer_index(slot, &self.chain.spec)
.unwrap();
let pubkey = state.validators()[index].pubkey.clone().into();
ProposerData {
pubkey,
validator_index: index as u64,
slot,
}
})
.collect::<Vec<_>>();
let expected = DutiesResponse {
data: expected_duties,
execution_optimistic: Some(false),
dependent_root,
};
assert_eq!(result, expected);
// If it's the current epoch, check the function with a primed proposer cache.
if epoch == current_epoch {
// This is technically a double-check, but it's defensive.
assert!(
self.chain
.beacon_proposer_cache
.lock()
.get_epoch::<E>(dependent_root, epoch)
.is_some(),
"the request should prime the proposer cache"
);
let result = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap();
assert_eq!(result, expected);
}
}
// Requests to the epochs after the next epoch should fail.
self.client
.get_validator_duties_proposer(current_epoch + 2)
.await
.unwrap_err();
self
}
pub async fn test_get_validator_duties_early(self) -> Self {
let current_epoch = self.chain.epoch().unwrap();
let next_epoch = current_epoch + 1;
let current_epoch_start = self
.chain
.slot_clock
.start_of(current_epoch.start_slot(E::slots_per_epoch()))
.unwrap();
self.chain.slot_clock.set_current_time(
current_epoch_start
- self.chain.spec.maximum_gossip_clock_disparity()
- Duration::from_millis(1),
);
let dependent_root = self
.chain
.block_root_at_slot(
current_epoch.start_slot(E::slots_per_epoch()) - 1,
WhenSlotSkipped::Prev,
)
.unwrap()
.unwrap_or(self.chain.head_beacon_block_root());
self.client
.get_validator_duties_proposer(current_epoch)
.await
.expect("should get proposer duties for the next epoch outside of tolerance");
assert!(
self.chain
.beacon_proposer_cache
.lock()
.get_epoch::<E>(dependent_root, current_epoch)
.is_none(),
"should not prime the proposer cache outside of tolerance"
);
assert_eq!(
self.client
.post_validator_duties_attester(next_epoch, &[0])
.await
.unwrap_err()
.status()
.map(Into::into),
Some(400),
"should not get attester duties outside of tolerance"
);
self.chain.slot_clock.set_current_time(
current_epoch_start - self.chain.spec.maximum_gossip_clock_disparity(),
);
self.client
.get_validator_duties_proposer(current_epoch)
.await
.expect("should get proposer duties within tolerance");
assert!(
self.chain
.beacon_proposer_cache
.lock()
.get_epoch::<E>(dependent_root, current_epoch)
.is_some(),
"should prime the proposer cache inside the tolerance"
);
self.client
.post_validator_duties_attester(next_epoch, &[0])
.await
.expect("should get attester duties within tolerance");
self
}
pub async fn test_block_production(self) -> Self {
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
for _ in 0..E::slots_per_epoch() * 3 {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let proposer_pubkey_bytes = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap()
.data
.into_iter()
.find(|duty| duty.slot == slot)
.map(|duty| duty.pubkey)
.unwrap();
let proposer_pubkey = (&proposer_pubkey_bytes).try_into().unwrap();
let sk = self
.validator_keypairs()
.iter()
.find(|kp| kp.pk == proposer_pubkey)
.map(|kp| kp.sk.clone())
.unwrap();
let randao_reveal = {
let domain = self.chain.spec.get_domain(
epoch,
Domain::Randao,
&fork,
genesis_validators_root,
);
let message = epoch.signing_root(domain);
sk.sign(message).into()
};
let block = self
.client
.get_validator_blocks::<E, FullPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data;
let signed_block = block.sign(&sk, &fork, genesis_validators_root, &self.chain.spec);
self.client.post_beacon_blocks(&signed_block).await.unwrap();
assert_eq!(self.chain.head_beacon_block().as_ref(), &signed_block);
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
self
}
pub async fn test_block_production_no_verify_randao(self) -> Self {
for _ in 0..E::slots_per_epoch() {
let slot = self.chain.slot().unwrap();
let block = self
.client
.get_validator_blocks_modular::<E, FullPayload<E>>(
slot,
&Signature::infinity().unwrap().into(),
None,
SkipRandaoVerification::Yes,
)
.await
.unwrap()
.data;
assert_eq!(block.slot(), slot);
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
self
}
pub async fn test_block_production_verify_randao_invalid(self) -> Self {
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
for _ in 0..E::slots_per_epoch() {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let proposer_pubkey_bytes = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap()
.data
.into_iter()
.find(|duty| duty.slot == slot)
.map(|duty| duty.pubkey)
.unwrap();
let proposer_pubkey = (&proposer_pubkey_bytes).try_into().unwrap();
let sk = self
.validator_keypairs()
.iter()
.find(|kp| kp.pk == proposer_pubkey)
.map(|kp| kp.sk.clone())
.unwrap();
let bad_randao_reveal = {
let domain = self.chain.spec.get_domain(
epoch,
Domain::Randao,
&fork,
genesis_validators_root,
);
let message = (epoch + 1).signing_root(domain);
sk.sign(message).into()
};
// Check failure with no `skip_randao_verification` passed.
self.client
.get_validator_blocks::<E, FullPayload<E>>(slot, &bad_randao_reveal, None)
.await
.unwrap_err();
// Check failure with `skip_randao_verification` (requires infinity sig).
self.client
.get_validator_blocks_modular::<E, FullPayload<E>>(
slot,
&bad_randao_reveal,
None,
SkipRandaoVerification::Yes,
)
.await
.unwrap_err();
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
self
}
pub async fn test_blinded_block_production<Payload: AbstractExecPayload<E>>(&self) {
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
for _ in 0..E::slots_per_epoch() * 3 {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let proposer_pubkey_bytes = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap()
.data
.into_iter()
.find(|duty| duty.slot == slot)
.map(|duty| duty.pubkey)
.unwrap();
let proposer_pubkey = (&proposer_pubkey_bytes).try_into().unwrap();
let sk = self
.validator_keypairs()
.iter()
.find(|kp| kp.pk == proposer_pubkey)
.map(|kp| kp.sk.clone())
.unwrap();
let randao_reveal = {
let domain = self.chain.spec.get_domain(
epoch,
Domain::Randao,
&fork,
genesis_validators_root,
);
let message = epoch.signing_root(domain);
sk.sign(message).into()
};
let block = self
.client
.get_validator_blinded_blocks::<E, Payload>(slot, &randao_reveal, None)
.await
.unwrap()
.data;
let signed_block = block.sign(&sk, &fork, genesis_validators_root, &self.chain.spec);
self.client
.post_beacon_blinded_blocks(&signed_block)
.await
.unwrap();
// This converts the generic `Payload` to a concrete type for comparison.
let head_block = SignedBeaconBlock::from(signed_block.clone());
assert_eq!(head_block, signed_block);
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
}
pub async fn test_blinded_block_production_ssz<Payload: AbstractExecPayload<E>>(&self) {
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
for _ in 0..E::slots_per_epoch() * 3 {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let proposer_pubkey_bytes = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap()
.data
.into_iter()
.find(|duty| duty.slot == slot)
.map(|duty| duty.pubkey)
.unwrap();
let proposer_pubkey = (&proposer_pubkey_bytes).try_into().unwrap();
let sk = self
.validator_keypairs()
.iter()
.find(|kp| kp.pk == proposer_pubkey)
.map(|kp| kp.sk.clone())
.unwrap();
let randao_reveal = {
let domain = self.chain.spec.get_domain(
epoch,
Domain::Randao,
&fork,
genesis_validators_root,
);
let message = epoch.signing_root(domain);
sk.sign(message).into()
};
let block = self
.client
.get_validator_blinded_blocks::<E, Payload>(slot, &randao_reveal, None)
.await
.unwrap()
.data;
let signed_block = block.sign(&sk, &fork, genesis_validators_root, &self.chain.spec);
self.client
.post_beacon_blinded_blocks_ssz(&signed_block)
.await
.unwrap();
// This converts the generic `Payload` to a concrete type for comparison.
let head_block = SignedBeaconBlock::from(signed_block.clone());
assert_eq!(head_block, signed_block);
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
}
pub async fn test_blinded_block_production_no_verify_randao<Payload: AbstractExecPayload<E>>(
self,
) -> Self {
for _ in 0..E::slots_per_epoch() {
let slot = self.chain.slot().unwrap();
let block = self
.client
.get_validator_blinded_blocks_modular::<E, Payload>(
slot,
&Signature::infinity().unwrap().into(),
None,
SkipRandaoVerification::Yes,
)
.await
.unwrap()
.data;
assert_eq!(block.slot(), slot);
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
self
}
pub async fn test_blinded_block_production_verify_randao_invalid<
Payload: AbstractExecPayload<E>,
>(
self,
) -> Self {
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
for _ in 0..E::slots_per_epoch() {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let proposer_pubkey_bytes = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap()
.data
.into_iter()
.find(|duty| duty.slot == slot)
.map(|duty| duty.pubkey)
.unwrap();
let proposer_pubkey = (&proposer_pubkey_bytes).try_into().unwrap();
let sk = self
.validator_keypairs()
.iter()
.find(|kp| kp.pk == proposer_pubkey)
.map(|kp| kp.sk.clone())
.unwrap();
let bad_randao_reveal = {
let domain = self.chain.spec.get_domain(
epoch,
Domain::Randao,
&fork,
genesis_validators_root,
);
let message = (epoch + 1).signing_root(domain);
sk.sign(message).into()
};
// Check failure with full randao verification enabled.
self.client
.get_validator_blinded_blocks::<E, Payload>(slot, &bad_randao_reveal, None)
.await
.unwrap_err();
// Check failure with `skip_randao_verification` (requires infinity sig).
self.client
.get_validator_blinded_blocks_modular::<E, Payload>(
slot,
&bad_randao_reveal,
None,
SkipRandaoVerification::Yes,
)
.await
.unwrap_err();
self.chain.slot_clock.set_slot(slot.as_u64() + 1);
}
self
}
pub async fn test_get_validator_attestation_data(self) -> Self {
let mut state = self.chain.head_beacon_state_cloned();
let slot = state.slot();
state
.build_committee_cache(RelativeEpoch::Current, &self.chain.spec)
.unwrap();
for index in 0..state.get_committee_count_at_slot(slot).unwrap() {
let result = self
.client
.get_validator_attestation_data(slot, index)
.await
.unwrap()
.data;
let expected = self
.chain
.produce_unaggregated_attestation(slot, index)
.unwrap()
.data;
assert_eq!(result, expected);
}
self
}
pub async fn test_get_validator_aggregate_attestation(self) -> Self {
let attestation = self
.chain
.head_beacon_block()
.message()
.body()
.attestations()[0]
.clone();
let result = self
.client
.get_validator_aggregate_attestation(
attestation.data.slot,
attestation.data.tree_hash_root(),
)
.await
.unwrap()
.unwrap()
.data;
let expected = attestation;
assert_eq!(result, expected);
self
}
pub async fn get_aggregate(&mut self) -> SignedAggregateAndProof<E> {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let mut head = self.chain.head_snapshot().as_ref().clone();
while head.beacon_state.current_epoch() < epoch {
per_slot_processing(&mut head.beacon_state, None, &self.chain.spec).unwrap();
}
head.beacon_state
.build_committee_cache(RelativeEpoch::Current, &self.chain.spec)
.unwrap();
let committee_len = head.beacon_state.get_committee_count_at_slot(slot).unwrap();
let fork = head.beacon_state.fork();
let genesis_validators_root = self.chain.genesis_validators_root;
let duties = self
.client
.post_validator_duties_attester(
epoch,
(0..self.validator_keypairs().len() as u64)
.collect::<Vec<u64>>()
.as_slice(),
)
.await
.unwrap()
.data;
let (i, kp, duty, proof) = self
.validator_keypairs()
.iter()
.enumerate()
.find_map(|(i, kp)| {
let duty = duties[i].clone();
let proof = SelectionProof::new::<E>(
duty.slot,
&kp.sk,
&fork,
genesis_validators_root,
&self.chain.spec,
);
if proof
.is_aggregator(committee_len as usize, &self.chain.spec)
.unwrap()
{
Some((i, kp, duty, proof))
} else {
None
}
})
.expect("there is at least one aggregator for this epoch")
.clone();
if duty.slot > slot {
self.chain.slot_clock.set_slot(duty.slot.into());
}
let attestation_data = self
.client
.get_validator_attestation_data(duty.slot, duty.committee_index)
.await
.unwrap()
.data;
let mut attestation = Attestation {
aggregation_bits: BitList::with_capacity(duty.committee_length as usize).unwrap(),
data: attestation_data,
signature: AggregateSignature::infinity(),
};
attestation
.sign(
&kp.sk,
duty.validator_committee_index as usize,
&fork,
genesis_validators_root,
&self.chain.spec,
)
.unwrap();
SignedAggregateAndProof::from_aggregate(
i as u64,
attestation,
Some(proof),
&kp.sk,
&fork,
genesis_validators_root,
&self.chain.spec,
)
}
pub async fn test_get_validator_aggregate_and_proofs_valid(mut self) -> Self {
let aggregate = self.get_aggregate().await;
self.client
.post_validator_aggregate_and_proof::<E>(&[aggregate])
.await
.unwrap();
assert!(self.network_rx.network_recv.recv().await.is_some());
self
}
pub async fn test_get_validator_aggregate_and_proofs_invalid(mut self) -> Self {
let mut aggregate = self.get_aggregate().await;
aggregate.message.aggregate.data.slot += 1;
self.client
.post_validator_aggregate_and_proof::<E>(&[aggregate])
.await
.unwrap_err();
assert!(self.network_rx.network_recv.recv().now_or_never().is_none());
self
}
pub async fn test_get_validator_beacon_committee_subscriptions(mut self) -> Self {
let subscription = BeaconCommitteeSubscription {
validator_index: 0,
committee_index: 0,
committees_at_slot: 1,
slot: Slot::new(1),
is_aggregator: true,
};
self.client
.post_validator_beacon_committee_subscriptions(&[subscription])
.await
.unwrap();
self.network_rx
.validator_subscription_recv
.recv()
.now_or_never()
.unwrap();
self
}
pub async fn test_post_validator_register_validator(self) -> Self {
let mut registrations = vec![];
let mut fee_recipients = vec![];
let genesis_epoch = self.chain.spec.genesis_slot.epoch(E::slots_per_epoch());
let fork = Fork {
current_version: self.chain.spec.genesis_fork_version,
previous_version: self.chain.spec.genesis_fork_version,
epoch: genesis_epoch,
};
let expected_gas_limit = 11_111_111;
for (val_index, keypair) in self.validator_keypairs().iter().enumerate() {
let pubkey = keypair.pk.compress();
let fee_recipient = Address::from_low_u64_be(val_index as u64);
let data = ValidatorRegistrationData {
fee_recipient,
gas_limit: expected_gas_limit,
timestamp: 0,
pubkey,
};
let domain = self.chain.spec.get_domain(
genesis_epoch,
Domain::ApplicationMask(ApplicationDomain::Builder),
&fork,
Hash256::zero(),
);
let message = data.signing_root(domain);
let signature = keypair.sk.sign(message);
let signed = SignedValidatorRegistrationData {
message: data,
signature,
};
fee_recipients.push(fee_recipient);
registrations.push(signed);
}
self.client
.post_validator_register_validator(&registrations)
.await
.unwrap();
for (val_index, (_, fee_recipient)) in self
.chain
.head_snapshot()
.beacon_state
.validators()
.into_iter()
.zip(fee_recipients.into_iter())
.enumerate()
{
let actual = self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_suggested_fee_recipient(val_index as u64)
.await;
assert_eq!(actual, fee_recipient);
}
self
}
pub async fn test_post_validator_register_validator_slashed(self) -> Self {
// slash a validator
self.client
.post_beacon_pool_attester_slashings(&self.attester_slashing)
.await
.unwrap();
self.harness
.extend_chain(
1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
let mut registrations = vec![];
let mut fee_recipients = vec![];
let genesis_epoch = self.chain.spec.genesis_slot.epoch(E::slots_per_epoch());
let fork = Fork {
current_version: self.chain.spec.genesis_fork_version,
previous_version: self.chain.spec.genesis_fork_version,
epoch: genesis_epoch,
};
let expected_gas_limit = 11_111_111;
for (val_index, keypair) in self.validator_keypairs().iter().enumerate() {
let pubkey = keypair.pk.compress();
let fee_recipient = Address::from_low_u64_be(val_index as u64);
let data = ValidatorRegistrationData {
fee_recipient,
gas_limit: expected_gas_limit,
timestamp: 0,
pubkey,
};
let domain = self.chain.spec.get_domain(
genesis_epoch,
Domain::ApplicationMask(ApplicationDomain::Builder),
&fork,
Hash256::zero(),
);
let message = data.signing_root(domain);
let signature = keypair.sk.sign(message);
let signed = SignedValidatorRegistrationData {
message: data,
signature,
};
fee_recipients.push(fee_recipient);
registrations.push(signed);
}
self.client
.post_validator_register_validator(&registrations)
.await
.unwrap();
for (val_index, (_, fee_recipient)) in self
.chain
.head_snapshot()
.beacon_state
.validators()
.into_iter()
.zip(fee_recipients.into_iter())
.enumerate()
{
let actual = self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_suggested_fee_recipient(val_index as u64)
.await;
if val_index == 0 || val_index == 1 {
assert_eq!(actual, Address::from_low_u64_be(val_index as u64));
} else {
assert_eq!(actual, fee_recipient);
}
}
self
}
pub async fn test_post_validator_liveness_epoch(self) -> Self {
let epoch = self.chain.epoch().unwrap();
let head_state = self.chain.head_beacon_state_cloned();
let indices = (0..head_state.validators().len())
.map(|i| i as u64)
.collect::<Vec<_>>();
// Construct the expected response
let expected: Vec<StandardLivenessResponseData> = head_state
.validators()
.iter()
.enumerate()
.map(|(index, _)| StandardLivenessResponseData {
index: index as u64,
is_live: false,
})
.collect();
let result = self
.client
.post_validator_liveness_epoch(epoch, indices.clone())
.await
.unwrap()
.data;
assert_eq!(result, expected);
// Attest to the current slot
self.client
.post_beacon_pool_attestations(self.attestations.as_slice())
.await
.unwrap();
let result = self
.client
.post_validator_liveness_epoch(epoch, indices.clone())
.await
.unwrap()
.data;
let committees = head_state
.get_beacon_committees_at_slot(self.chain.slot().unwrap())
.unwrap();
let attesting_validators: Vec<usize> = committees
.into_iter()
.flat_map(|committee| committee.committee.iter().cloned())
.collect();
// All attesters should now be considered live
let expected = expected
.into_iter()
.map(|mut a| {
if attesting_validators.contains(&(a.index as usize)) {
a.is_live = true;
}
a
})
.collect::<Vec<_>>();
assert_eq!(result, expected);
self
}
// Helper function for tests that require a valid RANDAO signature.
async fn get_test_randao(&self, slot: Slot, epoch: Epoch) -> (u64, SignatureBytes) {
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
let (proposer_pubkey_bytes, proposer_index) = self
.client
.get_validator_duties_proposer(epoch)
.await
.unwrap()
.data
.into_iter()
.find(|duty| duty.slot == slot)
.map(|duty| (duty.pubkey, duty.validator_index))
.unwrap();
let proposer_pubkey = (&proposer_pubkey_bytes).try_into().unwrap();
let sk = self
.validator_keypairs()
.iter()
.find(|kp| kp.pk == proposer_pubkey)
.map(|kp| kp.sk.clone())
.unwrap();
let randao_reveal = {
let domain =
self.chain
.spec
.get_domain(epoch, Domain::Randao, &fork, genesis_validators_root);
let message = epoch.signing_root(domain);
sk.sign(message).into()
};
(proposer_index, randao_reveal)
}
pub async fn test_payload_respects_registration(self) -> Self {
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (proposer_index, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
let expected_fee_recipient = Address::from_low_u64_be(proposer_index as u64);
assert_eq!(payload.fee_recipient(), expected_fee_recipient);
assert_eq!(payload.gas_limit(), 11_111_111);
// If this cache is empty, it indicates fallback was not used, so the payload came from the
// mock builder.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_none());
self
}
pub async fn test_payload_accepts_mutated_gas_limit(self) -> Self {
// Mutate gas limit.
self.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::GasLimit(30_000_000));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (proposer_index, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
let expected_fee_recipient = Address::from_low_u64_be(proposer_index as u64);
assert_eq!(payload.fee_recipient(), expected_fee_recipient);
assert_eq!(payload.gas_limit(), 30_000_000);
// This cache should not be populated because fallback should not have been used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_none());
self
}
pub async fn test_payload_accepts_changed_fee_recipient(self) -> Self {
let test_fee_recipient = "0x4242424242424242424242424242424242424242"
.parse::<Address>()
.unwrap();
// Mutate fee recipient.
self.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::FeeRecipient(test_fee_recipient));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
assert_eq!(payload.fee_recipient(), test_fee_recipient);
// This cache should not be populated because fallback should not have been used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_none());
self
}
pub async fn test_payload_rejects_invalid_parent_hash(self) -> Self {
let invalid_parent_hash =
"0x4242424242424242424242424242424242424242424242424242424242424242"
.parse::<Hash256>()
.unwrap();
// Mutate parent hash.
self.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::ParentHash(invalid_parent_hash));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let expected_parent_hash = self
.chain
.head_snapshot()
.beacon_state
.latest_execution_payload_header()
.unwrap()
.block_hash();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
assert_eq!(payload.parent_hash(), expected_parent_hash);
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_payload_rejects_invalid_prev_randao(self) -> Self {
let invalid_prev_randao =
"0x4242424242424242424242424242424242424242424242424242424242424242"
.parse::<Hash256>()
.unwrap();
// Mutate prev randao.
self.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::PrevRandao(invalid_prev_randao));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let expected_prev_randao = self
.chain
.canonical_head
.cached_head()
.head_random()
.unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
assert_eq!(payload.prev_randao(), expected_prev_randao);
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_payload_rejects_invalid_block_number(self) -> Self {
let invalid_block_number = 2;
// Mutate block number.
self.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::BlockNumber(invalid_block_number));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let expected_block_number = self
.chain
.head_snapshot()
.beacon_state
.latest_execution_payload_header()
.unwrap()
.block_number()
+ 1;
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
assert_eq!(payload.block_number(), expected_block_number);
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_payload_rejects_invalid_timestamp(self) -> Self {
let invalid_timestamp = 2;
// Mutate timestamp.
self.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::Timestamp(invalid_timestamp));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let min_expected_timestamp = self
.chain
.head_snapshot()
.beacon_state
.latest_execution_payload_header()
.unwrap()
.timestamp();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
assert!(payload.timestamp() > min_expected_timestamp);
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_payload_rejects_invalid_signature(self) -> Self {
self.mock_builder
.as_ref()
.unwrap()
.builder
.invalid_signatures();
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_builder_chain_health_skips(self) -> Self {
let slot = self.chain.slot().unwrap();
// Since we are proposing this slot, start the count from the previous slot.
let prev_slot = slot - Slot::new(1);
let head_slot = self.chain.canonical_head.cached_head().head_slot();
let epoch = self.chain.epoch().unwrap();
// Inclusive here to make sure we advance one slot past the threshold.
for _ in (prev_slot - head_slot).as_usize()..=self.chain.config.builder_fallback_skips {
self.harness.advance_slot();
}
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_builder_chain_health_skips_per_epoch(self) -> Self {
// Fill an epoch with `builder_fallback_skips_per_epoch` skip slots.
for i in 0..E::slots_per_epoch() {
if i == 0 || i as usize > self.chain.config.builder_fallback_skips_per_epoch {
self.harness
.extend_chain(
1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
}
self.harness.advance_slot();
}
let next_slot = self.chain.slot().unwrap();
let (_, randao_reveal) = self
.get_test_randao(next_slot, next_slot.epoch(E::slots_per_epoch()))
.await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(next_slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
// This cache should not be populated because fallback should not have been used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_none());
// Without proposing, advance into the next slot, this should make us cross the threshold
// number of skips, causing us to use the fallback.
self.harness.advance_slot();
let next_slot = self.chain.slot().unwrap();
let (_, randao_reveal) = self
.get_test_randao(next_slot, next_slot.epoch(E::slots_per_epoch()))
.await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(next_slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_builder_chain_health_epochs_since_finalization(self) -> Self {
let skips = E::slots_per_epoch()
* self.chain.config.builder_fallback_epochs_since_finalization as u64;
for _ in 0..skips {
self.harness.advance_slot();
}
// Fill the next epoch with blocks, should be enough to justify, not finalize.
for _ in 0..E::slots_per_epoch() {
self.harness
.extend_chain(
1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
self.harness.advance_slot();
}
let next_slot = self.chain.slot().unwrap();
let (_, randao_reveal) = self
.get_test_randao(next_slot, next_slot.epoch(E::slots_per_epoch()))
.await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(next_slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
// Fill another epoch with blocks, should be enough to finalize. (Sneaky plus 1 because this
// scenario starts at an epoch boundary).
for _ in 0..E::slots_per_epoch() + 1 {
self.harness
.extend_chain(
1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
self.harness.advance_slot();
}
let next_slot = self.chain.slot().unwrap();
let (_, randao_reveal) = self
.get_test_randao(next_slot, next_slot.epoch(E::slots_per_epoch()))
.await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(next_slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
// This cache should not be populated because fallback should not have been used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_none());
self
}
pub async fn test_builder_chain_health_optimistic_head(self) -> Self {
// Make sure the next payload verification will return optimistic before advancing the chain.
self.harness.mock_execution_layer.as_ref().map(|el| {
el.server.all_payloads_syncing(true);
el
});
self.harness
.extend_chain(
1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
self.harness.advance_slot();
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (proposer_index, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
let expected_fee_recipient = Address::from_low_u64_be(proposer_index as u64);
assert_eq!(payload.fee_recipient(), expected_fee_recipient);
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_payload_rejects_inadequate_builder_threshold(self) -> Self {
// Mutate value.
self.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::Value(Uint256::from(
DEFAULT_BUILDER_THRESHOLD_WEI - 1,
)));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
// If this cache is populated, it indicates fallback to the local EE was correctly used.
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_builder_payload_chosen_when_more_profitable(self) -> Self {
// Mutate value.
self.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::Value(Uint256::from(
DEFAULT_MOCK_EL_PAYLOAD_VALUE_WEI + 1,
)));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
// The builder's payload should've been chosen, so this cache should not be populated
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_none());
self
}
pub async fn test_local_payload_chosen_when_equally_profitable(self) -> Self {
// Mutate value.
self.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::Value(Uint256::from(
DEFAULT_MOCK_EL_PAYLOAD_VALUE_WEI,
)));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
// The local payload should've been chosen, so this cache should be populated
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_local_payload_chosen_when_more_profitable(self) -> Self {
// Mutate value.
self.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::Value(Uint256::from(
DEFAULT_MOCK_EL_PAYLOAD_VALUE_WEI - 1,
)));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
// The local payload should've been chosen, so this cache should be populated
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
pub async fn test_builder_works_post_capella(self) -> Self {
// Ensure builder payload is chosen
self.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::Value(Uint256::from(
DEFAULT_MOCK_EL_PAYLOAD_VALUE_WEI + 1,
)));
let slot = self.chain.slot().unwrap();
let propose_state = self
.harness
.chain
.state_at_slot(slot, StateSkipConfig::WithoutStateRoots)
.unwrap();
let withdrawals = get_expected_withdrawals(&propose_state, &self.chain.spec).unwrap();
let withdrawals_root = withdrawals.tree_hash_root();
// Set withdrawals root for builder
self.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::WithdrawalsRoot(withdrawals_root));
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
// The builder's payload should've been chosen, so this cache should not be populated
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_none());
self
}
pub async fn test_lighthouse_rejects_invalid_withdrawals_root(self) -> Self {
// Ensure builder payload *would be* chosen
self.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::Value(Uint256::from(
DEFAULT_MOCK_EL_PAYLOAD_VALUE_WEI + 1,
)));
// Set withdrawals root to something invalid
self.mock_builder
.as_ref()
.unwrap()
.builder
.add_operation(Operation::WithdrawalsRoot(Hash256::repeat_byte(0x42)));
let slot = self.chain.slot().unwrap();
let epoch = self.chain.epoch().unwrap();
let (_, randao_reveal) = self.get_test_randao(slot, epoch).await;
let payload: BlindedPayload<E> = self
.client
.get_validator_blinded_blocks::<E, BlindedPayload<E>>(slot, &randao_reveal, None)
.await
.unwrap()
.data
.body()
.execution_payload()
.unwrap()
.into();
// The local payload should've been chosen because the builder's was invalid
assert!(self
.chain
.execution_layer
.as_ref()
.unwrap()
.get_payload_by_root(&payload.tree_hash_root())
.is_some());
self
}
#[cfg(target_os = "linux")]
pub async fn test_get_lighthouse_health(self) -> Self {
self.client.get_lighthouse_health().await.unwrap();
self
}
#[cfg(not(target_os = "linux"))]
pub async fn test_get_lighthouse_health(self) -> Self {
self.client.get_lighthouse_health().await.unwrap_err();
self
}
pub async fn test_get_lighthouse_syncing(self) -> Self {
self.client.get_lighthouse_syncing().await.unwrap();
self
}
pub async fn test_get_lighthouse_proto_array(self) -> Self {
self.client.get_lighthouse_proto_array().await.unwrap();
self
}
pub async fn test_get_lighthouse_validator_inclusion_global(self) -> Self {
let epoch = self.chain.epoch().unwrap() - 1;
self.client
.get_lighthouse_validator_inclusion_global(epoch)
.await
.unwrap();
self
}
pub async fn test_get_lighthouse_validator_inclusion(self) -> Self {
let epoch = self.chain.epoch().unwrap() - 1;
self.client
.get_lighthouse_validator_inclusion(epoch, ValidatorId::Index(0))
.await
.unwrap();
self
}
pub async fn test_get_lighthouse_eth1_syncing(self) -> Self {
self.client.get_lighthouse_eth1_syncing().await.unwrap();
self
}
pub async fn test_get_lighthouse_eth1_block_cache(self) -> Self {
let blocks = self.client.get_lighthouse_eth1_block_cache().await.unwrap();
assert!(blocks.data.is_empty());
self
}
pub async fn test_get_lighthouse_eth1_deposit_cache(self) -> Self {
let deposits = self
.client
.get_lighthouse_eth1_deposit_cache()
.await
.unwrap();
assert!(deposits.data.is_empty());
self
}
pub async fn test_get_lighthouse_beacon_states_ssz(self) -> Self {
for state_id in self.interesting_state_ids() {
let result = self
.client
.get_lighthouse_beacon_states_ssz(&state_id.0, &self.chain.spec)
.await
.unwrap();
let mut expected = state_id
.state(&self.chain)
.ok()
.map(|(state, _execution_optimistic, _finalized)| state);
expected.as_mut().map(|state| state.drop_all_caches());
assert_eq!(result, expected, "{:?}", state_id);
}
self
}
pub async fn test_get_lighthouse_staking(self) -> Self {
let result = self.client.get_lighthouse_staking().await.unwrap();
assert_eq!(result, self.chain.eth1_chain.is_some());
self
}
pub async fn test_get_lighthouse_database_info(self) -> Self {
let info = self.client.get_lighthouse_database_info().await.unwrap();
assert_eq!(info.anchor, self.chain.store.get_anchor_info());
assert_eq!(info.split, self.chain.store.get_split_info());
assert_eq!(
info.schema_version,
store::metadata::CURRENT_SCHEMA_VERSION.as_u64()
);
self
}
pub async fn test_post_lighthouse_database_reconstruct(self) -> Self {
let response = self
.client
.post_lighthouse_database_reconstruct()
.await
.unwrap();
assert_eq!(response, "success");
self
}
pub async fn test_post_lighthouse_liveness(self) -> Self {
let epoch = self.chain.epoch().unwrap();
let head_state = self.chain.head_beacon_state_cloned();
let indices = (0..head_state.validators().len())
.map(|i| i as u64)
.collect::<Vec<_>>();
// Construct the expected response
let expected: Vec<LivenessResponseData> = head_state
.validators()
.iter()
.enumerate()
.map(|(index, _)| LivenessResponseData {
index: index as u64,
is_live: false,
epoch,
})
.collect();
let result = self
.client
.post_lighthouse_liveness(indices.as_slice(), epoch)
.await
.unwrap()
.data;
assert_eq!(result, expected);
// Attest to the current slot
self.client
.post_beacon_pool_attestations(self.attestations.as_slice())
.await
.unwrap();
let result = self
.client
.post_lighthouse_liveness(indices.as_slice(), epoch)
.await
.unwrap()
.data;
let committees = head_state
.get_beacon_committees_at_slot(self.chain.slot().unwrap())
.unwrap();
let attesting_validators: Vec<usize> = committees
.into_iter()
.flat_map(|committee| committee.committee.iter().cloned())
.collect();
// All attesters should now be considered live
let expected = expected
.into_iter()
.map(|mut a| {
if attesting_validators.contains(&(a.index as usize)) {
a.is_live = true;
}
a
})
.collect::<Vec<_>>();
assert_eq!(result, expected);
self
}
pub async fn test_get_events(self) -> Self {
// Subscribe to all events
let topics = vec![
EventTopic::Attestation,
EventTopic::VoluntaryExit,
EventTopic::Block,
EventTopic::Head,
EventTopic::FinalizedCheckpoint,
];
let mut events_future = self
.client
.get_events::<E>(topics.as_slice())
.await
.unwrap();
let expected_attestation_len = self.attestations.len();
self.client
.post_beacon_pool_attestations(self.attestations.as_slice())
.await
.unwrap();
let attestation_events = poll_events(
&mut events_future,
expected_attestation_len,
Duration::from_millis(10000),
)
.await;
assert_eq!(
attestation_events.as_slice(),
self.attestations
.clone()
.into_iter()
.map(|attestation| EventKind::Attestation(Box::new(attestation)))
.collect::<Vec<_>>()
.as_slice()
);
// Produce a voluntary exit event
self.client
.post_beacon_pool_voluntary_exits(&self.voluntary_exit)
.await
.unwrap();
let exit_events = poll_events(&mut events_future, 1, Duration::from_millis(10000)).await;
assert_eq!(
exit_events.as_slice(),
&[EventKind::VoluntaryExit(self.voluntary_exit.clone())]
);
// Submit the next block, which is on an epoch boundary, so this will produce a finalized
// checkpoint event, head event, and block event
let block_root = self.next_block.canonical_root();
// current_duty_dependent_root = block root because this is the first slot of the epoch
let current_duty_dependent_root = self.chain.head_beacon_block_root();
let current_slot = self.chain.slot().unwrap();
let next_slot = self.next_block.slot();
let finalization_distance = E::slots_per_epoch() * 2;
let expected_block = EventKind::Block(SseBlock {
block: block_root,
slot: next_slot,
execution_optimistic: false,
});
let expected_head = EventKind::Head(SseHead {
block: block_root,
slot: next_slot,
state: self.next_block.state_root(),
current_duty_dependent_root,
previous_duty_dependent_root: self
.chain
.block_root_at_slot(current_slot - E::slots_per_epoch(), WhenSlotSkipped::Prev)
.unwrap()
.unwrap(),
epoch_transition: true,
execution_optimistic: false,
});
let finalized_block_root = self
.chain
.block_root_at_slot(next_slot - finalization_distance, WhenSlotSkipped::Prev)
.unwrap()
.unwrap();
let finalized_block = self
.chain
.get_blinded_block(&finalized_block_root)
.unwrap()
.unwrap();
let finalized_state_root = finalized_block.state_root();
let expected_finalized = EventKind::FinalizedCheckpoint(SseFinalizedCheckpoint {
block: finalized_block_root,
state: finalized_state_root,
epoch: Epoch::new(3),
execution_optimistic: false,
});
self.client
.post_beacon_blocks(&self.next_block)
.await
.unwrap();
let block_events = poll_events(&mut events_future, 3, Duration::from_millis(10000)).await;
assert_eq!(
block_events.as_slice(),
&[expected_block, expected_head, expected_finalized]
);
// Test a reorg event
let mut chain_reorg_event_future = self
.client
.get_events::<E>(&[EventTopic::ChainReorg])
.await
.unwrap();
let expected_reorg = EventKind::ChainReorg(SseChainReorg {
slot: self.reorg_block.slot(),
depth: 1,
old_head_block: self.next_block.canonical_root(),
old_head_state: self.next_block.state_root(),
new_head_block: self.reorg_block.canonical_root(),
new_head_state: self.reorg_block.state_root(),
epoch: self.next_block.slot().epoch(E::slots_per_epoch()),
execution_optimistic: false,
});
self.harness.advance_slot();
self.client
.post_beacon_blocks(&self.reorg_block)
.await
.unwrap();
let reorg_event = poll_events(
&mut chain_reorg_event_future,
1,
Duration::from_millis(10000),
)
.await;
assert_eq!(reorg_event.as_slice(), &[expected_reorg]);
self
}
pub async fn test_get_events_altair(self) -> Self {
let topics = vec![EventTopic::ContributionAndProof];
let mut events_future = self
.client
.get_events::<E>(topics.as_slice())
.await
.unwrap();
let expected_contribution_len = self.contribution_and_proofs.len();
self.client
.post_validator_contribution_and_proofs(self.contribution_and_proofs.as_slice())
.await
.unwrap();
let contribution_events = poll_events(
&mut events_future,
expected_contribution_len,
Duration::from_millis(10000),
)
.await;
assert_eq!(
contribution_events.as_slice(),
self.contribution_and_proofs
.clone()
.into_iter()
.map(|contribution| EventKind::ContributionAndProof(Box::new(contribution)))
.collect::<Vec<_>>()
.as_slice()
);
self
}
pub async fn test_get_events_from_genesis(self) -> Self {
let topics = vec![EventTopic::Block, EventTopic::Head];
let mut events_future = self
.client
.get_events::<E>(topics.as_slice())
.await
.unwrap();
let block_root = self.next_block.canonical_root();
let next_slot = self.next_block.slot();
let expected_block = EventKind::Block(SseBlock {
block: block_root,
slot: next_slot,
execution_optimistic: false,
});
let expected_head = EventKind::Head(SseHead {
block: block_root,
slot: next_slot,
state: self.next_block.state_root(),
current_duty_dependent_root: self.chain.genesis_block_root,
previous_duty_dependent_root: self.chain.genesis_block_root,
epoch_transition: false,
execution_optimistic: false,
});
self.client
.post_beacon_blocks(&self.next_block)
.await
.unwrap();
let block_events = poll_events(&mut events_future, 2, Duration::from_millis(10000)).await;
assert_eq!(block_events.as_slice(), &[expected_block, expected_head]);
self
}
pub async fn test_check_optimistic_responses(&mut self) {
// Check responses are not optimistic.
let result = self
.client
.get_beacon_headers_block_id(CoreBlockId::Head)
.await
.unwrap()
.unwrap();
assert_eq!(result.execution_optimistic, Some(false));
// Change head to be optimistic.
self.chain
.canonical_head
.fork_choice_write_lock()
.proto_array_mut()
.core_proto_array_mut()
.nodes
.last_mut()
.map(|head_node| {
head_node.execution_status = ExecutionStatus::Optimistic(ExecutionBlockHash::zero())
});
// Check responses are now optimistic.
let result = self
.client
.get_beacon_headers_block_id(CoreBlockId::Head)
.await
.unwrap()
.unwrap();
assert_eq!(result.execution_optimistic, Some(true));
}
}
async fn poll_events<S: Stream<Item = Result<EventKind<T>, eth2::Error>> + Unpin, T: EthSpec>(
stream: &mut S,
num_events: usize,
timeout: Duration,
) -> Vec<EventKind<T>> {
let mut events = Vec::new();
let collect_stream_fut = async {
loop {
if let Some(result) = stream.next().await {
events.push(result.unwrap());
if events.len() == num_events {
return;
}
}
}
};
tokio::select! {
_ = collect_stream_fut => {events}
_ = tokio::time::sleep(timeout) => { return events; }
}
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_events() {
ApiTester::new().await.test_get_events().await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_events_altair() {
let mut config = ApiTesterConfig::default();
config.spec.altair_fork_epoch = Some(Epoch::new(0));
ApiTester::new_from_config(config)
.await
.test_get_events_altair()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_events_from_genesis() {
ApiTester::new_from_genesis()
.await
.test_get_events_from_genesis()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_get() {
ApiTester::new()
.await
.test_beacon_genesis()
.await
.test_beacon_states_root_finalized()
.await
.test_beacon_states_fork_finalized()
.await
.test_beacon_states_finality_checkpoints_finalized()
.await
.test_beacon_headers_block_id_finalized()
.await
.test_beacon_blocks_finalized::<MainnetEthSpec>()
.await
.test_beacon_blinded_blocks_finalized::<MainnetEthSpec>()
.await
.test_debug_beacon_states_finalized()
.await
.test_beacon_states_root()
.await
.test_beacon_states_fork()
.await
.test_beacon_states_finality_checkpoints()
.await
.test_beacon_states_validators()
.await
.test_beacon_states_validator_balances()
.await
.test_beacon_states_committees()
.await
.test_beacon_states_validator_id()
.await
.test_beacon_states_randao()
.await
.test_beacon_headers_all_slots()
.await
.test_beacon_headers_all_parents()
.await
.test_beacon_headers_block_id()
.await
.test_beacon_blocks()
.await
.test_beacon_blinded_blocks()
.await
.test_beacon_blocks_attestations()
.await
.test_beacon_blocks_root()
.await
.test_get_beacon_pool_attestations()
.await
.test_get_beacon_pool_attester_slashings()
.await
.test_get_beacon_pool_proposer_slashings()
.await
.test_get_beacon_pool_voluntary_exits()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_beacon_blocks_valid() {
ApiTester::new().await.test_post_beacon_blocks_valid().await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_beacon_blocks_ssz_valid() {
ApiTester::new()
.await
.test_post_beacon_blocks_ssz_valid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn test_post_beacon_blocks_ssz_invalid() {
ApiTester::new()
.await
.test_post_beacon_blocks_ssz_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_beacon_blocks_invalid() {
ApiTester::new()
.await
.test_post_beacon_blocks_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_attestations_valid() {
ApiTester::new()
.await
.test_post_beacon_pool_attestations_valid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_attestations_invalid() {
ApiTester::new()
.await
.test_post_beacon_pool_attestations_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_attester_slashings_valid() {
ApiTester::new()
.await
.test_post_beacon_pool_attester_slashings_valid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_attester_slashings_invalid() {
ApiTester::new()
.await
.test_post_beacon_pool_attester_slashings_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_proposer_slashings_valid() {
ApiTester::new()
.await
.test_post_beacon_pool_proposer_slashings_valid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_proposer_slashings_invalid() {
ApiTester::new()
.await
.test_post_beacon_pool_proposer_slashings_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_voluntary_exits_valid() {
ApiTester::new()
.await
.test_post_beacon_pool_voluntary_exits_valid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn beacon_pools_post_voluntary_exits_invalid() {
ApiTester::new()
.await
.test_post_beacon_pool_voluntary_exits_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn config_get() {
ApiTester::new()
.await
.test_get_config_fork_schedule()
.await
.test_get_config_spec()
.await
.test_get_config_deposit_contract()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn debug_get() {
ApiTester::new()
.await
.test_get_debug_beacon_states()
.await
.test_get_debug_beacon_heads()
.await
.test_get_debug_fork_choice()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn node_get() {
ApiTester::new()
.await
.test_get_node_version()
.await
.test_get_node_syncing()
.await
.test_get_node_identity()
.await
.test_get_node_health()
.await
.test_get_node_peers_by_id()
.await
.test_get_node_peers()
.await
.test_get_node_peer_count()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_duties_early() {
ApiTester::new()
.await
.test_get_validator_duties_early()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_duties_attester() {
ApiTester::new()
.await
.test_get_validator_duties_attester()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_duties_attester_with_skip_slots() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_get_validator_duties_attester()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_duties_proposer() {
ApiTester::new()
.await
.test_get_validator_duties_proposer()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_duties_proposer_with_skip_slots() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_get_validator_duties_proposer()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn block_production() {
ApiTester::new().await.test_block_production().await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn block_production_with_skip_slots() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_block_production()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn block_production_no_verify_randao() {
ApiTester::new()
.await
.test_block_production_no_verify_randao()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn block_production_verify_randao_invalid() {
ApiTester::new()
.await
.test_block_production_verify_randao_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_full_payload_premerge() {
ApiTester::new()
.await
.test_blinded_block_production::<FullPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_ssz_full_payload_premerge() {
ApiTester::new()
.await
.test_blinded_block_production_ssz::<FullPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_with_skip_slots_full_payload_premerge() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_blinded_block_production::<FullPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_ssz_with_skip_slots_full_payload_premerge() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_blinded_block_production_ssz::<FullPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_no_verify_randao_full_payload_premerge() {
ApiTester::new()
.await
.test_blinded_block_production_no_verify_randao::<FullPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_verify_randao_invalid_full_payload_premerge() {
ApiTester::new()
.await
.test_blinded_block_production_verify_randao_invalid::<FullPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_blinded_payload_premerge() {
ApiTester::new()
.await
.test_blinded_block_production::<BlindedPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_with_skip_slots_blinded_payload_premerge() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_blinded_block_production::<BlindedPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_no_verify_randao_blinded_payload_premerge() {
ApiTester::new()
.await
.test_blinded_block_production_no_verify_randao::<BlindedPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn blinded_block_production_verify_randao_invalid_blinded_payload_premerge() {
ApiTester::new()
.await
.test_blinded_block_production_verify_randao_invalid::<BlindedPayload<_>>()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_attestation_data() {
ApiTester::new()
.await
.test_get_validator_attestation_data()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_attestation_data_with_skip_slots() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_get_validator_attestation_data()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_aggregate_attestation() {
ApiTester::new()
.await
.test_get_validator_aggregate_attestation()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_aggregate_attestation_with_skip_slots() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_get_validator_aggregate_attestation()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_aggregate_and_proofs_valid() {
ApiTester::new()
.await
.test_get_validator_aggregate_and_proofs_valid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_aggregate_and_proofs_valid_with_skip_slots() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_get_validator_aggregate_and_proofs_valid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_aggregate_and_proofs_invalid() {
ApiTester::new()
.await
.test_get_validator_aggregate_and_proofs_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_aggregate_and_proofs_invalid_with_skip_slots() {
ApiTester::new()
.await
.skip_slots(E::slots_per_epoch() * 2)
.test_get_validator_aggregate_and_proofs_invalid()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_validator_beacon_committee_subscriptions() {
ApiTester::new()
.await
.test_get_validator_beacon_committee_subscriptions()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_validator_register_validator() {
ApiTester::new()
.await
.test_post_validator_register_validator()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_validator_register_validator_slashed() {
ApiTester::new()
.await
.test_post_validator_register_validator_slashed()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_validator_register_valid() {
ApiTester::new_mev_tester()
.await
.test_payload_respects_registration()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_validator_register_gas_limit_mutation() {
ApiTester::new_mev_tester()
.await
.test_payload_accepts_mutated_gas_limit()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_validator_register_fee_recipient_mutation() {
ApiTester::new_mev_tester()
.await
.test_payload_accepts_changed_fee_recipient()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_blinded_block_invalid_parent_hash() {
ApiTester::new_mev_tester()
.await
.test_payload_rejects_invalid_parent_hash()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_blinded_block_invalid_prev_randao() {
ApiTester::new_mev_tester()
.await
.test_payload_rejects_invalid_prev_randao()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_blinded_block_invalid_block_number() {
ApiTester::new_mev_tester()
.await
.test_payload_rejects_invalid_block_number()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_blinded_block_invalid_timestamp() {
ApiTester::new_mev_tester()
.await
.test_payload_rejects_invalid_timestamp()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn get_blinded_block_invalid_signature() {
ApiTester::new_mev_tester()
.await
.test_payload_rejects_invalid_signature()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn builder_chain_health_skips() {
ApiTester::new_mev_tester()
.await
.test_builder_chain_health_skips()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn builder_chain_health_skips_per_epoch() {
ApiTester::new_mev_tester()
.await
.test_builder_chain_health_skips_per_epoch()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn builder_chain_health_epochs_since_finalization() {
ApiTester::new_mev_tester()
.await
.test_builder_chain_health_epochs_since_finalization()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn builder_chain_health_optimistic_head() {
ApiTester::new_mev_tester()
.await
.test_builder_chain_health_optimistic_head()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn builder_inadequate_builder_threshold() {
ApiTester::new_mev_tester()
.await
.test_payload_rejects_inadequate_builder_threshold()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn builder_payload_chosen_by_profit() {
ApiTester::new_mev_tester_no_builder_threshold()
.await
.test_builder_payload_chosen_when_more_profitable()
.await
.test_local_payload_chosen_when_equally_profitable()
.await
.test_local_payload_chosen_when_more_profitable()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn builder_works_post_capella() {
let mut config = ApiTesterConfig {
builder_threshold: Some(0),
spec: E::default_spec(),
};
config.spec.altair_fork_epoch = Some(Epoch::new(0));
config.spec.bellatrix_fork_epoch = Some(Epoch::new(0));
config.spec.capella_fork_epoch = Some(Epoch::new(0));
ApiTester::new_from_config(config)
.await
.test_post_validator_register_validator()
.await
.test_builder_works_post_capella()
.await
.test_lighthouse_rejects_invalid_withdrawals_root()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn post_validator_liveness_epoch() {
ApiTester::new()
.await
.test_post_validator_liveness_epoch()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn lighthouse_endpoints() {
ApiTester::new()
.await
.test_get_lighthouse_health()
.await
.test_get_lighthouse_syncing()
.await
.test_get_lighthouse_proto_array()
.await
.test_get_lighthouse_validator_inclusion()
.await
.test_get_lighthouse_validator_inclusion_global()
.await
.test_get_lighthouse_eth1_syncing()
.await
.test_get_lighthouse_eth1_block_cache()
.await
.test_get_lighthouse_eth1_deposit_cache()
.await
.test_get_lighthouse_beacon_states_ssz()
.await
.test_get_lighthouse_staking()
.await
.test_get_lighthouse_database_info()
.await
.test_post_lighthouse_database_reconstruct()
.await
.test_post_lighthouse_liveness()
.await;
}
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn optimistic_responses() {
ApiTester::new_with_hard_forks(true, true)
.await
.test_check_optimistic_responses()
.await;
}