lighthouse/eth2/utils/cached_tree_hash/src/btree_overlay.rs
2019-04-27 16:24:29 +10:00

293 lines
8.3 KiB
Rust

use super::*;
#[derive(Debug, PartialEq, Clone)]
pub struct BTreeSchema {
pub depth: usize,
lengths: Vec<usize>,
}
impl BTreeSchema {
pub fn from_lengths(depth: usize, lengths: Vec<usize>) -> Self {
Self { depth, lengths }
}
pub fn into_overlay(self, offset: usize) -> BTreeOverlay {
BTreeOverlay {
offset,
depth: self.depth,
lengths: self.lengths,
}
}
}
impl Into<BTreeSchema> for BTreeOverlay {
fn into(self) -> BTreeSchema {
BTreeSchema {
depth: self.depth,
lengths: self.lengths,
}
}
}
#[derive(Debug, PartialEq, Clone)]
pub enum LeafNode {
DoesNotExist,
Exists(Range<usize>),
Padding,
}
#[derive(Debug, PartialEq, Clone)]
pub struct BTreeOverlay {
offset: usize,
pub depth: usize,
lengths: Vec<usize>,
}
impl BTreeOverlay {
pub fn new<T>(item: &T, initial_offset: usize, depth: usize) -> Self
where
T: CachedTreeHash<T>,
{
item.tree_hash_cache_schema(depth)
.into_overlay(initial_offset)
}
pub fn num_leaf_nodes(&self) -> usize {
self.lengths.len().next_power_of_two()
}
pub fn num_padding_leaves(&self) -> usize {
self.num_leaf_nodes() - self.lengths.len()
}
/// Returns the number of nodes in the tree.
///
/// Note: this is distinct from `num_chunks`, which returns the total number of chunks in
/// this tree.
pub fn num_nodes(&self) -> usize {
2 * self.num_leaf_nodes() - 1
}
pub fn num_internal_nodes(&self) -> usize {
self.num_leaf_nodes() - 1
}
fn first_node(&self) -> usize {
self.offset
}
pub fn root(&self) -> usize {
self.first_node()
}
pub fn next_node(&self) -> usize {
self.first_node() + self.num_internal_nodes() + self.num_leaf_nodes() - self.lengths.len()
+ self.lengths.iter().sum::<usize>()
}
pub fn height(&self) -> usize {
self.num_leaf_nodes().trailing_zeros() as usize
}
pub fn internal_chunk_range(&self) -> Range<usize> {
self.offset..self.offset + self.num_internal_nodes()
}
pub fn chunk_range(&self) -> Range<usize> {
self.first_node()..self.next_node()
}
/// Returns the number of chunks inside this tree (including subtrees).
///
/// Note: this is distinct from `num_nodes` which returns the number of nodes in the binary
/// tree.
pub fn num_chunks(&self) -> usize {
self.next_node() - self.first_node()
}
pub fn first_leaf_node(&self) -> usize {
self.offset + self.num_internal_nodes()
}
/// Returns the chunk-range for a given leaf node.
///
/// Returns `None` if:
/// - The specified node is internal.
/// - The specified node is padding.
/// - The specified node is OOB of the tree.
pub fn get_leaf_node(&self, i: usize) -> Result<LeafNode, Error> {
if i >= self.num_nodes() {
Ok(LeafNode::DoesNotExist)
} else if i >= self.num_nodes() - self.num_padding_leaves() {
Ok(LeafNode::Padding)
} else if (i == self.num_internal_nodes()) && (self.lengths.len() == 0) {
// If this is the first leaf node and the overlay contains zero items, return `None` as
// this node must be padding.
Ok(LeafNode::Padding)
} else {
let i = i - self.num_internal_nodes();
let first_node = self.offset
+ self.num_internal_nodes()
+ self.lengths.iter().take(i).sum::<usize>();
let last_node = first_node + self.lengths[i];
Ok(LeafNode::Exists(first_node..last_node))
}
}
pub fn child_chunks(&self, parent: usize) -> (usize, usize) {
let children = children(parent);
if children.1 < self.num_internal_nodes() {
(children.0 + self.offset, children.1 + self.offset)
} else {
let chunks = self.n_leaf_node_chunks(children.1);
(chunks[chunks.len() - 2], chunks[chunks.len() - 1])
}
}
/// (parent, (left_child, right_child))
pub fn internal_parents_and_children(&self) -> Vec<(usize, (usize, usize))> {
let mut chunks = Vec::with_capacity(self.num_nodes());
chunks.append(&mut self.internal_node_chunks());
chunks.append(&mut self.leaf_node_chunks());
(0..self.num_internal_nodes())
.into_iter()
.map(|parent| {
let children = children(parent);
(chunks[parent], (chunks[children.0], chunks[children.1]))
})
.collect()
}
// Returns a `Vec` of chunk indices for each internal node of the tree.
pub fn internal_node_chunks(&self) -> Vec<usize> {
(self.offset..self.offset + self.num_internal_nodes()).collect()
}
// Returns a `Vec` of the first chunk index for each leaf node of the tree.
pub fn leaf_node_chunks(&self) -> Vec<usize> {
self.n_leaf_node_chunks(self.num_leaf_nodes())
}
// Returns a `Vec` of the first chunk index for the first `n` leaf nodes of the tree.
fn n_leaf_node_chunks(&self, n: usize) -> Vec<usize> {
let mut chunks = Vec::with_capacity(n);
let mut chunk = self.offset + self.num_internal_nodes();
for i in 0..n {
chunks.push(chunk);
match self.lengths.get(i) {
Some(len) => {
chunk += len;
}
None => chunk += 1,
}
}
chunks
}
}
fn children(parent: usize) -> (usize, usize) {
((2 * parent + 1), (2 * parent + 2))
}
#[cfg(test)]
mod test {
use super::*;
fn get_tree_a(n: usize) -> BTreeOverlay {
BTreeSchema::from_lengths(0, vec![1; n]).into_overlay(0)
}
#[test]
fn leaf_node_chunks() {
let tree = get_tree_a(4);
assert_eq!(tree.leaf_node_chunks(), vec![3, 4, 5, 6])
}
#[test]
fn internal_node_chunks() {
let tree = get_tree_a(4);
assert_eq!(tree.internal_node_chunks(), vec![0, 1, 2])
}
#[test]
fn internal_parents_and_children() {
let tree = get_tree_a(4);
assert_eq!(
tree.internal_parents_and_children(),
vec![(0, (1, 2)), (1, (3, 4)), (2, (5, 6))]
)
}
#[test]
fn chunk_range() {
let tree = get_tree_a(4);
assert_eq!(tree.chunk_range(), 0..7);
let tree = get_tree_a(1);
assert_eq!(tree.chunk_range(), 0..1);
let tree = get_tree_a(2);
assert_eq!(tree.chunk_range(), 0..3);
let tree = BTreeSchema::from_lengths(0, vec![1, 1]).into_overlay(11);
assert_eq!(tree.chunk_range(), 11..14);
let tree = BTreeSchema::from_lengths(0, vec![7, 7, 7]).into_overlay(0);
assert_eq!(tree.chunk_range(), 0..25);
}
#[test]
fn get_leaf_node() {
let tree = get_tree_a(4);
assert_eq!(tree.get_leaf_node(3), Ok(LeafNode::Exists(3..4)));
assert_eq!(tree.get_leaf_node(4), Ok(LeafNode::Exists(4..5)));
assert_eq!(tree.get_leaf_node(5), Ok(LeafNode::Exists(5..6)));
assert_eq!(tree.get_leaf_node(6), Ok(LeafNode::Exists(6..7)));
assert_eq!(tree.get_leaf_node(7), Ok(LeafNode::DoesNotExist));
let tree = get_tree_a(3);
assert_eq!(tree.get_leaf_node(3), Ok(LeafNode::Exists(3..4)));
assert_eq!(tree.get_leaf_node(4), Ok(LeafNode::Exists(4..5)));
assert_eq!(tree.get_leaf_node(5), Ok(LeafNode::Exists(5..6)));
assert_eq!(tree.get_leaf_node(6), Ok(LeafNode::Padding));
assert_eq!(tree.get_leaf_node(7), Ok(LeafNode::DoesNotExist));
let tree = get_tree_a(0);
assert_eq!(tree.get_leaf_node(0), Ok(LeafNode::Padding));
assert_eq!(tree.get_leaf_node(1), Ok(LeafNode::DoesNotExist));
let tree = BTreeSchema::from_lengths(0, vec![3]).into_overlay(0);
assert_eq!(tree.get_leaf_node(0), Ok(LeafNode::Exists(0..3)));
assert_eq!(tree.get_leaf_node(1), Ok(LeafNode::DoesNotExist));
}
#[test]
fn root_of_one_node() {
let tree = get_tree_a(1);
assert_eq!(tree.root(), 0);
assert_eq!(tree.num_internal_nodes(), 0);
assert_eq!(tree.num_leaf_nodes(), 1);
}
#[test]
fn child_chunks() {
let tree = get_tree_a(4);
assert_eq!(tree.child_chunks(0), (1, 2))
}
}