lighthouse/beacon_node/beacon_chain/tests/payload_invalidation.rs
Paul Hauner 25f0e261cb Don't return errors when fork choice fails (#3370)
## Issue Addressed

NA

## Proposed Changes

There are scenarios where the only viable head will have an invalid execution payload, in this scenario the `get_head` function on `proto_array` will return an error. We must recover from this scenario by importing blocks from the network.

This PR stops `BeaconChain::recompute_head` from returning an error so that we can't accidentally start down-scoring peers or aborting block import just because the current head has an invalid payload.

## Reviewer Notes

The following changes are included:

1. Allow `fork_choice.get_head` to fail gracefully in `BeaconChain::process_block` when trying to update the `early_attester_cache`; simply don't add the block to the cache rather than aborting the entire process.
1. Don't return an error from `BeaconChain::recompute_head_at_current_slot` and `BeaconChain::recompute_head` to defensively prevent calling functions from aborting any process just because the fork choice function failed to run.
    - This should have practically no effect, since most callers were still continuing if recomputing the head failed.
    - The outlier is that the API will return 200 rather than a 500 when fork choice fails.
1. Add the `ProtoArrayForkChoice::set_all_blocks_to_optimistic` function to recover from the scenario where we've rebooted and the persisted fork choice has an invalid head.
2022-07-28 13:57:09 +00:00

1437 lines
48 KiB
Rust

#![cfg(not(debug_assertions))]
use beacon_chain::{
canonical_head::{CachedHead, CanonicalHead},
test_utils::{BeaconChainHarness, EphemeralHarnessType},
BeaconChainError, BlockError, ExecutionPayloadError, StateSkipConfig, WhenSlotSkipped,
INVALID_JUSTIFIED_PAYLOAD_SHUTDOWN_REASON,
};
use execution_layer::{
json_structures::{JsonForkChoiceStateV1, JsonPayloadAttributesV1},
ExecutionLayer, ForkChoiceState, PayloadAttributes,
};
use fork_choice::{
CountUnrealized, Error as ForkChoiceError, InvalidationOperation, PayloadVerificationStatus,
};
use proto_array::{Error as ProtoArrayError, ExecutionStatus};
use slot_clock::SlotClock;
use std::collections::HashMap;
use std::sync::Arc;
use std::time::Duration;
use task_executor::ShutdownReason;
use tree_hash::TreeHash;
use types::*;
const VALIDATOR_COUNT: usize = 32;
type E = MainnetEthSpec;
#[derive(PartialEq, Clone, Copy)]
enum Payload {
Valid,
Invalid {
latest_valid_hash: Option<ExecutionBlockHash>,
},
Syncing,
InvalidBlockHash,
InvalidTerminalBlock,
}
struct InvalidPayloadRig {
harness: BeaconChainHarness<EphemeralHarnessType<E>>,
enable_attestations: bool,
}
impl InvalidPayloadRig {
fn new() -> Self {
let mut spec = E::default_spec();
spec.altair_fork_epoch = Some(Epoch::new(0));
spec.bellatrix_fork_epoch = Some(Epoch::new(0));
let harness = BeaconChainHarness::builder(MainnetEthSpec)
.spec(spec)
.deterministic_keypairs(VALIDATOR_COUNT)
.mock_execution_layer()
.fresh_ephemeral_store()
.build();
// Move to slot 1.
harness.advance_slot();
Self {
harness,
enable_attestations: false,
}
}
fn enable_attestations(mut self) -> Self {
self.enable_attestations = true;
self
}
fn execution_layer(&self) -> ExecutionLayer<E> {
self.harness.chain.execution_layer.clone().unwrap()
}
fn block_hash(&self, block_root: Hash256) -> ExecutionBlockHash {
self.harness
.chain
.get_blinded_block(&block_root)
.unwrap()
.unwrap()
.message()
.body()
.execution_payload()
.unwrap()
.block_hash()
}
fn execution_status(&self, block_root: Hash256) -> ExecutionStatus {
self.harness
.chain
.canonical_head
.fork_choice_read_lock()
.get_block(&block_root)
.unwrap()
.execution_status
}
async fn recompute_head(&self) {
self.harness.chain.recompute_head_at_current_slot().await;
}
fn cached_head(&self) -> CachedHead<E> {
self.harness.chain.canonical_head.cached_head()
}
fn canonical_head(&self) -> &CanonicalHead<EphemeralHarnessType<E>> {
&self.harness.chain.canonical_head
}
fn previous_forkchoice_update_params(&self) -> (ForkChoiceState, PayloadAttributes) {
let mock_execution_layer = self.harness.mock_execution_layer.as_ref().unwrap();
let json = mock_execution_layer
.server
.take_previous_request()
.expect("no previous request");
let params = json.get("params").expect("no params");
let fork_choice_state_json = params.get(0).expect("no payload param");
let fork_choice_state: JsonForkChoiceStateV1 =
serde_json::from_value(fork_choice_state_json.clone()).unwrap();
let payload_param_json = params.get(1).expect("no payload param");
let attributes: JsonPayloadAttributesV1 =
serde_json::from_value(payload_param_json.clone()).unwrap();
(fork_choice_state.into(), attributes.into())
}
fn previous_payload_attributes(&self) -> PayloadAttributes {
let (_, payload_attributes) = self.previous_forkchoice_update_params();
payload_attributes
}
fn move_to_terminal_block(&self) {
let mock_execution_layer = self.harness.mock_execution_layer.as_ref().unwrap();
mock_execution_layer
.server
.execution_block_generator()
.move_to_terminal_block()
.unwrap();
}
fn latest_execution_block_hash(&self) -> ExecutionBlockHash {
let mock_execution_layer = self.harness.mock_execution_layer.as_ref().unwrap();
mock_execution_layer
.server
.execution_block_generator()
.latest_execution_block()
.unwrap()
.block_hash
}
async fn build_blocks(&mut self, num_blocks: u64, is_valid: Payload) -> Vec<Hash256> {
let mut roots = Vec::with_capacity(num_blocks as usize);
for _ in 0..num_blocks {
roots.push(self.import_block(is_valid.clone()).await);
}
roots
}
async fn move_to_first_justification(&mut self, is_valid: Payload) {
let slots_till_justification = E::slots_per_epoch() * 3;
self.build_blocks(slots_till_justification, is_valid).await;
let justified_checkpoint = self.harness.justified_checkpoint();
assert_eq!(justified_checkpoint.epoch, 2);
}
/// Import a block while setting the newPayload and forkchoiceUpdated responses to `is_valid`.
async fn import_block(&mut self, is_valid: Payload) -> Hash256 {
self.import_block_parametric(is_valid, is_valid, |error| {
matches!(
error,
BlockError::ExecutionPayloadError(
ExecutionPayloadError::RejectedByExecutionEngine { .. }
)
)
})
.await
}
fn block_root_at_slot(&self, slot: Slot) -> Option<Hash256> {
self.harness
.chain
.block_root_at_slot(slot, WhenSlotSkipped::None)
.unwrap()
}
fn validate_manually(&self, block_root: Hash256) {
self.harness
.chain
.canonical_head
.fork_choice_write_lock()
.on_valid_execution_payload(block_root)
.unwrap();
}
async fn import_block_parametric<F: Fn(&BlockError<E>) -> bool>(
&mut self,
new_payload_response: Payload,
forkchoice_response: Payload,
evaluate_error: F,
) -> Hash256 {
let mock_execution_layer = self.harness.mock_execution_layer.as_ref().unwrap();
let head = self.harness.chain.head_snapshot();
let state = head.beacon_state.clone_with_only_committee_caches();
let slot = state.slot() + 1;
let (block, post_state) = self.harness.make_block(state, slot).await;
let block_root = block.canonical_root();
let set_new_payload = |payload: Payload| match payload {
Payload::Valid => mock_execution_layer
.server
.all_payloads_valid_on_new_payload(),
Payload::Syncing => mock_execution_layer
.server
.all_payloads_syncing_on_new_payload(true),
Payload::Invalid { latest_valid_hash } => {
let latest_valid_hash = latest_valid_hash
.unwrap_or_else(|| self.block_hash(block.message().parent_root()));
mock_execution_layer
.server
.all_payloads_invalid_on_new_payload(latest_valid_hash)
}
Payload::InvalidBlockHash => mock_execution_layer
.server
.all_payloads_invalid_block_hash_on_new_payload(),
Payload::InvalidTerminalBlock => mock_execution_layer
.server
.all_payloads_invalid_terminal_block_on_new_payload(),
};
let set_forkchoice_updated = |payload: Payload| match payload {
Payload::Valid => mock_execution_layer
.server
.all_payloads_valid_on_forkchoice_updated(),
Payload::Syncing => mock_execution_layer
.server
.all_payloads_syncing_on_forkchoice_updated(),
Payload::Invalid { latest_valid_hash } => {
let latest_valid_hash = latest_valid_hash
.unwrap_or_else(|| self.block_hash(block.message().parent_root()));
mock_execution_layer
.server
.all_payloads_invalid_on_forkchoice_updated(latest_valid_hash)
}
Payload::InvalidBlockHash => mock_execution_layer
.server
.all_payloads_invalid_block_hash_on_forkchoice_updated(),
Payload::InvalidTerminalBlock => mock_execution_layer
.server
.all_payloads_invalid_terminal_block_on_forkchoice_updated(),
};
match (new_payload_response, forkchoice_response) {
(Payload::Valid | Payload::Syncing, Payload::Valid | Payload::Syncing) => {
if new_payload_response == Payload::Syncing {
set_new_payload(new_payload_response);
set_forkchoice_updated(forkchoice_response);
} else {
mock_execution_layer.server.full_payload_verification();
}
let root = self
.harness
.process_block(slot, block.clone())
.await
.unwrap();
if self.enable_attestations {
let all_validators: Vec<usize> = (0..VALIDATOR_COUNT).collect();
self.harness.attest_block(
&post_state,
block.state_root(),
block_root.into(),
&block,
&all_validators,
);
}
let execution_status = self.execution_status(root.into());
match forkchoice_response {
Payload::Syncing => assert!(execution_status.is_optimistic()),
Payload::Valid => assert!(execution_status.is_valid_and_post_bellatrix()),
Payload::Invalid { .. }
| Payload::InvalidBlockHash
| Payload::InvalidTerminalBlock => unreachable!(),
}
assert_eq!(
self.harness
.chain
.store
.get_full_block(&block_root)
.unwrap()
.unwrap(),
block,
"block from db must match block imported"
);
}
(
Payload::Invalid { .. } | Payload::InvalidBlockHash | Payload::InvalidTerminalBlock,
_,
)
| (
_,
Payload::Invalid { .. } | Payload::InvalidBlockHash | Payload::InvalidTerminalBlock,
) => {
set_new_payload(new_payload_response);
set_forkchoice_updated(forkchoice_response);
match self.harness.process_block(slot, block).await {
Err(error) if evaluate_error(&error) => (),
Err(other) => {
panic!("evaluate_error returned false with {:?}", other)
}
Ok(_) => {
// An invalid payload should only be imported initially if its status when
// initially supplied to the EE is Valid or Syncing.
assert!(matches!(
new_payload_response,
Payload::Valid | Payload::Syncing
));
}
};
let block_in_forkchoice = self
.harness
.chain
.canonical_head
.fork_choice_read_lock()
.get_block(&block_root);
if let Payload::Invalid { .. } = new_payload_response {
// A block found to be immediately invalid should not end up in fork choice.
assert_eq!(block_in_forkchoice, None);
assert!(
self.harness
.chain
.get_blinded_block(&block_root)
.unwrap()
.is_none(),
"invalid block cannot be accessed via get_block"
);
} else {
// A block imported and then found invalid should have an invalid status.
assert!(block_in_forkchoice.unwrap().execution_status.is_invalid());
}
}
}
block_root
}
async fn invalidate_manually(&self, block_root: Hash256) {
self.harness
.chain
.process_invalid_execution_payload(&InvalidationOperation::InvalidateOne { block_root })
.await
.unwrap();
}
fn assert_get_head_error_contains(&self, s: &str) {
match self
.harness
.chain
.canonical_head
.fork_choice_write_lock()
.get_head(self.harness.chain.slot().unwrap(), &self.harness.chain.spec)
{
Err(ForkChoiceError::ProtoArrayError(e)) if e.contains(s) => (),
other => panic!("expected {} error, got {:?}", s, other),
};
}
}
/// Simple test of the different import types.
#[tokio::test]
async fn valid_invalid_syncing() {
let mut rig = InvalidPayloadRig::new();
rig.move_to_terminal_block();
rig.import_block(Payload::Valid).await;
rig.import_block(Payload::Invalid {
latest_valid_hash: None,
})
.await;
rig.import_block(Payload::Syncing).await;
}
/// Ensure that an invalid payload can invalidate its parent too (given the right
/// `latest_valid_hash`.
#[tokio::test]
async fn invalid_payload_invalidates_parent() {
let mut rig = InvalidPayloadRig::new().enable_attestations();
rig.move_to_terminal_block();
rig.import_block(Payload::Valid).await; // Import a valid transition block.
rig.move_to_first_justification(Payload::Syncing).await;
let roots = vec![
rig.import_block(Payload::Syncing).await,
rig.import_block(Payload::Syncing).await,
rig.import_block(Payload::Syncing).await,
];
let latest_valid_hash = rig.block_hash(roots[0]);
rig.import_block(Payload::Invalid {
latest_valid_hash: Some(latest_valid_hash),
})
.await;
assert!(rig.execution_status(roots[0]).is_optimistic());
assert!(rig.execution_status(roots[1]).is_invalid());
assert!(rig.execution_status(roots[2]).is_invalid());
assert_eq!(rig.harness.head_block_root(), roots[0]);
}
/// Test invalidation of a payload via the fork choice updated message.
///
/// The `invalid_payload` argument determines the type of invalid payload: `Invalid`,
/// `InvalidBlockHash`, etc, taking the `latest_valid_hash` as an argument.
async fn immediate_forkchoice_update_invalid_test(
invalid_payload: impl FnOnce(Option<ExecutionBlockHash>) -> Payload,
) {
let mut rig = InvalidPayloadRig::new().enable_attestations();
rig.move_to_terminal_block();
rig.import_block(Payload::Valid).await; // Import a valid transition block.
rig.move_to_first_justification(Payload::Syncing).await;
let valid_head_root = rig.import_block(Payload::Valid).await;
let latest_valid_hash = Some(rig.block_hash(valid_head_root));
// Import a block which returns syncing when supplied via newPayload, and then
// invalid when the forkchoice update is sent.
rig.import_block_parametric(Payload::Syncing, invalid_payload(latest_valid_hash), |_| {
false
})
.await;
// The head should be the latest valid block.
assert_eq!(rig.harness.head_block_root(), valid_head_root);
}
#[tokio::test]
async fn immediate_forkchoice_update_payload_invalid() {
immediate_forkchoice_update_invalid_test(|latest_valid_hash| Payload::Invalid {
latest_valid_hash,
})
.await
}
#[tokio::test]
async fn immediate_forkchoice_update_payload_invalid_block_hash() {
immediate_forkchoice_update_invalid_test(|_| Payload::InvalidBlockHash).await
}
#[tokio::test]
async fn immediate_forkchoice_update_payload_invalid_terminal_block() {
immediate_forkchoice_update_invalid_test(|_| Payload::InvalidTerminalBlock).await
}
/// Ensure the client tries to exit when the justified checkpoint is invalidated.
#[tokio::test]
async fn justified_checkpoint_becomes_invalid() {
let mut rig = InvalidPayloadRig::new().enable_attestations();
rig.move_to_terminal_block();
rig.import_block(Payload::Valid).await; // Import a valid transition block.
rig.move_to_first_justification(Payload::Syncing).await;
let justified_checkpoint = rig.harness.justified_checkpoint();
let parent_root_of_justified = rig
.harness
.chain
.get_blinded_block(&justified_checkpoint.root)
.unwrap()
.unwrap()
.parent_root();
let parent_hash_of_justified = rig.block_hash(parent_root_of_justified);
// No service should have triggered a shutdown, yet.
assert!(rig.harness.shutdown_reasons().is_empty());
// Import a block that will invalidate the justified checkpoint.
let is_valid = Payload::Invalid {
latest_valid_hash: Some(parent_hash_of_justified),
};
rig.import_block_parametric(is_valid, is_valid, |error| {
matches!(
error,
// The block import should fail since the beacon chain knows the justified payload
// is invalid.
BlockError::BeaconChainError(BeaconChainError::JustifiedPayloadInvalid { .. })
)
})
.await;
// The beacon chain should have triggered a shutdown.
assert_eq!(
rig.harness.shutdown_reasons(),
vec![ShutdownReason::Failure(
INVALID_JUSTIFIED_PAYLOAD_SHUTDOWN_REASON
)]
);
}
/// Ensure that a `latest_valid_hash` for a pre-finality block only reverts a single block.
#[tokio::test]
async fn pre_finalized_latest_valid_hash() {
let num_blocks = E::slots_per_epoch() * 4;
let finalized_epoch = 2;
let mut rig = InvalidPayloadRig::new().enable_attestations();
rig.move_to_terminal_block();
let mut blocks = vec![];
blocks.push(rig.import_block(Payload::Valid).await); // Import a valid transition block.
blocks.extend(rig.build_blocks(num_blocks - 1, Payload::Syncing).await);
assert_eq!(rig.harness.finalized_checkpoint().epoch, finalized_epoch);
let pre_finalized_block_root = rig.block_root_at_slot(Slot::new(1)).unwrap();
let pre_finalized_block_hash = rig.block_hash(pre_finalized_block_root);
// No service should have triggered a shutdown, yet.
assert!(rig.harness.shutdown_reasons().is_empty());
// Import a pre-finalized block.
rig.import_block(Payload::Invalid {
latest_valid_hash: Some(pre_finalized_block_hash),
})
.await;
// The latest imported block should be the head.
assert_eq!(rig.harness.head_block_root(), *blocks.last().unwrap());
// The beacon chain should *not* have triggered a shutdown.
assert_eq!(rig.harness.shutdown_reasons(), vec![]);
// All blocks should still be unverified.
for i in E::slots_per_epoch() * finalized_epoch..num_blocks {
let slot = Slot::new(i);
let root = rig.block_root_at_slot(slot).unwrap();
if slot == 1 {
assert!(rig.execution_status(root).is_valid_and_post_bellatrix());
} else {
assert!(rig.execution_status(root).is_optimistic());
}
}
}
/// Ensure that a `latest_valid_hash` will:
///
/// - Invalidate descendants of `latest_valid_root`.
/// - Will not validate `latest_valid_root` and its ancestors.
#[tokio::test]
async fn latest_valid_hash_will_not_validate() {
const LATEST_VALID_SLOT: u64 = 3;
let mut rig = InvalidPayloadRig::new().enable_attestations();
rig.move_to_terminal_block();
let mut blocks = vec![];
blocks.push(rig.import_block(Payload::Valid).await); // Import a valid transition block.
blocks.extend(rig.build_blocks(4, Payload::Syncing).await);
let latest_valid_root = rig
.block_root_at_slot(Slot::new(LATEST_VALID_SLOT))
.unwrap();
let latest_valid_hash = rig.block_hash(latest_valid_root);
rig.import_block(Payload::Invalid {
latest_valid_hash: Some(latest_valid_hash),
})
.await;
assert_eq!(rig.harness.head_slot(), LATEST_VALID_SLOT);
for slot in 0..=5 {
let slot = Slot::new(slot);
let root = if slot > 0 {
// If not the genesis slot, check the blocks we just produced.
blocks[slot.as_usize() - 1]
} else {
// Genesis slot
rig.block_root_at_slot(slot).unwrap()
};
let execution_status = rig.execution_status(root);
if slot > LATEST_VALID_SLOT {
assert!(execution_status.is_invalid())
} else if slot == 0 {
assert!(execution_status.is_irrelevant())
} else if slot == 1 {
assert!(execution_status.is_valid_and_post_bellatrix())
} else {
assert!(execution_status.is_optimistic())
}
}
}
/// Check behaviour when the `latest_valid_hash` is a junk value.
#[tokio::test]
async fn latest_valid_hash_is_junk() {
let num_blocks = E::slots_per_epoch() * 5;
let finalized_epoch = 3;
let mut rig = InvalidPayloadRig::new().enable_attestations();
rig.move_to_terminal_block();
let mut blocks = vec![];
blocks.push(rig.import_block(Payload::Valid).await); // Import a valid transition block.
blocks.extend(rig.build_blocks(num_blocks, Payload::Syncing).await);
assert_eq!(rig.harness.finalized_checkpoint().epoch, finalized_epoch);
// No service should have triggered a shutdown, yet.
assert!(rig.harness.shutdown_reasons().is_empty());
let junk_hash = ExecutionBlockHash::repeat_byte(42);
rig.import_block(Payload::Invalid {
latest_valid_hash: Some(junk_hash),
})
.await;
// The latest imported block should be the head.
assert_eq!(rig.harness.head_block_root(), *blocks.last().unwrap());
// The beacon chain should *not* have triggered a shutdown.
assert_eq!(rig.harness.shutdown_reasons(), vec![]);
// All blocks should still be unverified.
for i in E::slots_per_epoch() * finalized_epoch..num_blocks {
let slot = Slot::new(i);
let root = rig.block_root_at_slot(slot).unwrap();
if slot == 1 {
assert!(rig.execution_status(root).is_valid_and_post_bellatrix());
} else {
assert!(rig.execution_status(root).is_optimistic());
}
}
}
/// Check that descendants of invalid blocks are also invalidated.
#[tokio::test]
async fn invalidates_all_descendants() {
let num_blocks = E::slots_per_epoch() * 4 + E::slots_per_epoch() / 2;
let finalized_epoch = 2;
let finalized_slot = E::slots_per_epoch() * 2;
let mut rig = InvalidPayloadRig::new().enable_attestations();
rig.move_to_terminal_block();
rig.import_block(Payload::Valid).await; // Import a valid transition block.
let blocks = rig.build_blocks(num_blocks, Payload::Syncing).await;
assert_eq!(rig.harness.finalized_checkpoint().epoch, finalized_epoch);
assert_eq!(rig.harness.head_block_root(), *blocks.last().unwrap());
// Apply a block which conflicts with the canonical chain.
let fork_slot = Slot::new(4 * E::slots_per_epoch() + 3);
let fork_parent_slot = fork_slot - 1;
let fork_parent_state = rig
.harness
.chain
.state_at_slot(fork_parent_slot, StateSkipConfig::WithStateRoots)
.unwrap();
assert_eq!(fork_parent_state.slot(), fork_parent_slot);
let (fork_block, _fork_post_state) = rig.harness.make_block(fork_parent_state, fork_slot).await;
let fork_block_root = rig
.harness
.chain
.process_block(Arc::new(fork_block), CountUnrealized::True)
.await
.unwrap();
rig.recompute_head().await;
// The latest valid hash will be set to the grandparent of the fork block. This means that the
// parent of the fork block will become invalid.
let latest_valid_slot = fork_parent_slot - 1;
let latest_valid_root = rig
.harness
.chain
.block_root_at_slot(latest_valid_slot, WhenSlotSkipped::None)
.unwrap()
.unwrap();
assert!(blocks.contains(&latest_valid_root));
let latest_valid_hash = rig.block_hash(latest_valid_root);
// The new block should not become the head, the old head should remain.
assert_eq!(rig.harness.head_block_root(), *blocks.last().unwrap());
rig.import_block(Payload::Invalid {
latest_valid_hash: Some(latest_valid_hash),
})
.await;
// The block before the fork should become the head.
assert_eq!(rig.harness.head_block_root(), latest_valid_root);
// The fork block should be invalidated, even though it's not an ancestor of the block that
// triggered the INVALID response from the EL.
assert!(rig.execution_status(fork_block_root).is_invalid());
for root in blocks {
let slot = rig
.harness
.chain
.get_blinded_block(&root)
.unwrap()
.unwrap()
.slot();
// Fork choice doesn't have info about pre-finalization, nothing to check here.
if slot < finalized_slot {
continue;
}
let execution_status = rig.execution_status(root);
if slot == 0 {
// Genesis block is pre-bellatrix.
assert!(execution_status.is_irrelevant());
} else if slot == 1 {
// First slot was imported as valid.
assert!(execution_status.is_valid_and_post_bellatrix());
} else if slot <= latest_valid_slot {
// Blocks prior to and included the latest valid hash are not marked as valid.
assert!(execution_status.is_optimistic());
} else {
// Blocks after the latest valid hash are invalid.
assert!(execution_status.is_invalid());
}
}
}
/// Check that the head will switch after the canonical branch is invalidated.
#[tokio::test]
async fn switches_heads() {
let num_blocks = E::slots_per_epoch() * 4 + E::slots_per_epoch() / 2;
let finalized_epoch = 2;
let finalized_slot = E::slots_per_epoch() * 2;
let mut rig = InvalidPayloadRig::new().enable_attestations();
rig.move_to_terminal_block();
rig.import_block(Payload::Valid).await; // Import a valid transition block.
let blocks = rig.build_blocks(num_blocks, Payload::Syncing).await;
assert_eq!(rig.harness.finalized_checkpoint().epoch, finalized_epoch);
assert_eq!(rig.harness.head_block_root(), *blocks.last().unwrap());
// Apply a block which conflicts with the canonical chain.
let fork_slot = Slot::new(4 * E::slots_per_epoch() + 3);
let fork_parent_slot = fork_slot - 1;
let fork_parent_state = rig
.harness
.chain
.state_at_slot(fork_parent_slot, StateSkipConfig::WithStateRoots)
.unwrap();
assert_eq!(fork_parent_state.slot(), fork_parent_slot);
let (fork_block, _fork_post_state) = rig.harness.make_block(fork_parent_state, fork_slot).await;
let fork_parent_root = fork_block.parent_root();
let fork_block_root = rig
.harness
.chain
.process_block(Arc::new(fork_block), CountUnrealized::True)
.await
.unwrap();
rig.recompute_head().await;
let latest_valid_slot = fork_parent_slot;
let latest_valid_hash = rig.block_hash(fork_parent_root);
// The new block should not become the head, the old head should remain.
assert_eq!(rig.harness.head_block_root(), *blocks.last().unwrap());
rig.import_block(Payload::Invalid {
latest_valid_hash: Some(latest_valid_hash),
})
.await;
// The fork block should become the head.
assert_eq!(rig.harness.head_block_root(), fork_block_root);
// The fork block has not yet been validated.
assert!(rig.execution_status(fork_block_root).is_optimistic());
for root in blocks {
let slot = rig
.harness
.chain
.get_blinded_block(&root)
.unwrap()
.unwrap()
.slot();
// Fork choice doesn't have info about pre-finalization, nothing to check here.
if slot < finalized_slot {
continue;
}
let execution_status = rig.execution_status(root);
if slot == 0 {
// Genesis block is pre-bellatrix.
assert!(execution_status.is_irrelevant());
} else if slot == 1 {
// First slot was imported as valid.
assert!(execution_status.is_valid_and_post_bellatrix());
} else if slot <= latest_valid_slot {
// Blocks prior to and included the latest valid hash are not marked as valid.
assert!(execution_status.is_optimistic());
} else {
// Blocks after the latest valid hash are invalid.
assert!(execution_status.is_invalid());
}
}
}
#[tokio::test]
async fn invalid_during_processing() {
let mut rig = InvalidPayloadRig::new();
rig.move_to_terminal_block();
let roots = &[
rig.import_block(Payload::Valid).await,
rig.import_block(Payload::Invalid {
latest_valid_hash: None,
})
.await,
rig.import_block(Payload::Valid).await,
];
// 0 should be present in the chain.
assert!(rig
.harness
.chain
.get_blinded_block(&roots[0])
.unwrap()
.is_some());
// 1 should *not* be present in the chain.
assert_eq!(
rig.harness.chain.get_blinded_block(&roots[1]).unwrap(),
None
);
// 2 should be the head.
let head_block_root = rig.harness.head_block_root();
assert_eq!(head_block_root, roots[2]);
}
#[tokio::test]
async fn invalid_after_optimistic_sync() {
let mut rig = InvalidPayloadRig::new().enable_attestations();
rig.move_to_terminal_block();
rig.import_block(Payload::Valid).await; // Import a valid transition block.
let mut roots = vec![
rig.import_block(Payload::Syncing).await,
rig.import_block(Payload::Syncing).await,
rig.import_block(Payload::Syncing).await,
];
for root in &roots {
assert!(rig.harness.chain.get_blinded_block(root).unwrap().is_some());
}
// 2 should be the head.
let head = rig.harness.head_block_root();
assert_eq!(head, roots[2]);
roots.push(
rig.import_block(Payload::Invalid {
latest_valid_hash: Some(rig.block_hash(roots[1])),
})
.await,
);
// Running fork choice is necessary since a block has been invalidated.
rig.recompute_head().await;
// 1 should be the head, since 2 was invalidated.
let head = rig.harness.head_block_root();
assert_eq!(head, roots[1]);
}
#[tokio::test]
async fn manually_validate_child() {
let mut rig = InvalidPayloadRig::new().enable_attestations();
rig.move_to_terminal_block();
rig.import_block(Payload::Valid).await; // Import a valid transition block.
let parent = rig.import_block(Payload::Syncing).await;
let child = rig.import_block(Payload::Syncing).await;
assert!(rig.execution_status(parent).is_optimistic());
assert!(rig.execution_status(child).is_optimistic());
rig.validate_manually(child);
assert!(rig.execution_status(parent).is_valid_and_post_bellatrix());
assert!(rig.execution_status(child).is_valid_and_post_bellatrix());
}
#[tokio::test]
async fn manually_validate_parent() {
let mut rig = InvalidPayloadRig::new().enable_attestations();
rig.move_to_terminal_block();
rig.import_block(Payload::Valid).await; // Import a valid transition block.
let parent = rig.import_block(Payload::Syncing).await;
let child = rig.import_block(Payload::Syncing).await;
assert!(rig.execution_status(parent).is_optimistic());
assert!(rig.execution_status(child).is_optimistic());
rig.validate_manually(parent);
assert!(rig.execution_status(parent).is_valid_and_post_bellatrix());
assert!(rig.execution_status(child).is_optimistic());
}
#[tokio::test]
async fn payload_preparation() {
let mut rig = InvalidPayloadRig::new();
rig.move_to_terminal_block();
rig.import_block(Payload::Valid).await;
let el = rig.execution_layer();
let head = rig.harness.chain.head_snapshot();
let current_slot = rig.harness.chain.slot().unwrap();
assert_eq!(head.beacon_state.slot(), 1);
assert_eq!(current_slot, 1);
let next_slot = current_slot + 1;
let proposer = head
.beacon_state
.get_beacon_proposer_index(next_slot, &rig.harness.chain.spec)
.unwrap();
let fee_recipient = Address::repeat_byte(99);
// Provide preparation data to the EL for `proposer`.
el.update_proposer_preparation(
Epoch::new(1),
&[ProposerPreparationData {
validator_index: proposer as u64,
fee_recipient,
}],
)
.await;
rig.harness
.chain
.prepare_beacon_proposer(rig.harness.chain.slot().unwrap())
.await
.unwrap();
let payload_attributes = PayloadAttributes {
timestamp: rig
.harness
.chain
.slot_clock
.start_of(next_slot)
.unwrap()
.as_secs(),
prev_randao: *head
.beacon_state
.get_randao_mix(head.beacon_state.current_epoch())
.unwrap(),
suggested_fee_recipient: fee_recipient,
};
assert_eq!(rig.previous_payload_attributes(), payload_attributes);
}
#[tokio::test]
async fn invalid_parent() {
let mut rig = InvalidPayloadRig::new();
rig.move_to_terminal_block();
rig.import_block(Payload::Valid).await; // Import a valid transition block.
// Import a syncing block atop the transition block (we'll call this the "parent block" since we
// build another block on it later).
let parent_root = rig.import_block(Payload::Syncing).await;
let parent_block = rig.harness.get_block(parent_root.into()).unwrap();
let parent_state = rig
.harness
.get_hot_state(parent_block.state_root().into())
.unwrap();
// Produce another block atop the parent, but don't import yet.
let slot = parent_block.slot() + 1;
rig.harness.set_current_slot(slot);
let (block, state) = rig.harness.make_block(parent_state, slot).await;
let block = Arc::new(block);
let block_root = block.canonical_root();
assert_eq!(block.parent_root(), parent_root);
// Invalidate the parent block.
rig.invalidate_manually(parent_root).await;
assert!(rig.execution_status(parent_root).is_invalid());
// Ensure the block built atop an invalid payload is invalid for gossip.
assert!(matches!(
rig.harness.chain.clone().verify_block_for_gossip(block.clone()).await,
Err(BlockError::ParentExecutionPayloadInvalid { parent_root: invalid_root })
if invalid_root == parent_root
));
// Ensure the block built atop an invalid payload is invalid for import.
assert!(matches!(
rig.harness.chain.process_block(block.clone(), CountUnrealized::True).await,
Err(BlockError::ParentExecutionPayloadInvalid { parent_root: invalid_root })
if invalid_root == parent_root
));
// Ensure the block built atop an invalid payload cannot be imported to fork choice.
assert!(matches!(
rig.harness.chain.canonical_head.fork_choice_write_lock().on_block(
slot,
block.message(),
block_root,
Duration::from_secs(0),
&state,
PayloadVerificationStatus::Optimistic,
&rig.harness.chain.spec,
CountUnrealized::True,
),
Err(ForkChoiceError::ProtoArrayError(message))
if message.contains(&format!(
"{:?}",
ProtoArrayError::ParentExecutionStatusIsInvalid {
block_root,
parent_root
}
))
));
}
/// Tests to ensure that we will still send a proposer preparation
#[tokio::test]
async fn payload_preparation_before_transition_block() {
let rig = InvalidPayloadRig::new();
let el = rig.execution_layer();
// Run the watchdog routine so that the status of the execution engine is set. This ensures
// that we don't end up with `eth_syncing` requests later in this function that will impede
// testing.
el.watchdog_task().await;
let head = rig.harness.chain.head_snapshot();
assert_eq!(
head.beacon_block
.message()
.body()
.execution_payload()
.unwrap()
.block_hash(),
ExecutionBlockHash::zero(),
"the head block is post-bellatrix but pre-transition"
);
let current_slot = rig.harness.chain.slot().unwrap();
let next_slot = current_slot + 1;
let proposer = head
.beacon_state
.get_beacon_proposer_index(next_slot, &rig.harness.chain.spec)
.unwrap();
let fee_recipient = Address::repeat_byte(99);
// Provide preparation data to the EL for `proposer`.
el.update_proposer_preparation(
Epoch::new(0),
&[ProposerPreparationData {
validator_index: proposer as u64,
fee_recipient,
}],
)
.await;
rig.move_to_terminal_block();
rig.harness
.chain
.prepare_beacon_proposer(current_slot)
.await
.unwrap();
let forkchoice_update_params = rig
.harness
.chain
.canonical_head
.fork_choice_read_lock()
.get_forkchoice_update_parameters();
rig.harness
.chain
.update_execution_engine_forkchoice(current_slot, forkchoice_update_params)
.await
.unwrap();
let (fork_choice_state, payload_attributes) = rig.previous_forkchoice_update_params();
let latest_block_hash = rig.latest_execution_block_hash();
assert_eq!(payload_attributes.suggested_fee_recipient, fee_recipient);
assert_eq!(fork_choice_state.head_block_hash, latest_block_hash);
}
#[tokio::test]
async fn attesting_to_optimistic_head() {
let mut rig = InvalidPayloadRig::new();
rig.move_to_terminal_block();
rig.import_block(Payload::Valid).await; // Import a valid transition block.
let root = rig.import_block(Payload::Syncing).await;
let head = rig.harness.chain.head_snapshot();
let slot = head.beacon_block.slot();
assert_eq!(
head.beacon_block_root, root,
"the head should be the latest imported block"
);
assert!(
rig.execution_status(root).is_optimistic(),
"the head should be optimistic"
);
/*
* Define an attestation for use during testing. It doesn't have a valid signature, but that's
* not necessary here.
*/
let attestation = {
let mut attestation = rig
.harness
.chain
.produce_unaggregated_attestation(Slot::new(0), 0)
.unwrap();
attestation.aggregation_bits.set(0, true).unwrap();
attestation.data.slot = slot;
attestation.data.beacon_block_root = root;
rig.harness
.chain
.naive_aggregation_pool
.write()
.insert(&attestation)
.unwrap();
attestation
};
/*
* Define some closures to produce attestations.
*/
let produce_unaggregated = || rig.harness.chain.produce_unaggregated_attestation(slot, 0);
let get_aggregated = || {
rig.harness
.chain
.get_aggregated_attestation(&attestation.data)
};
let get_aggregated_by_slot_and_root = || {
rig.harness
.chain
.get_aggregated_attestation_by_slot_and_root(
attestation.data.slot,
&attestation.data.tree_hash_root(),
)
};
/*
* Ensure attestation production fails with an optimistic head.
*/
macro_rules! assert_head_block_not_fully_verified {
($func: expr) => {
assert!(matches!(
$func,
Err(BeaconChainError::HeadBlockNotFullyVerified {
beacon_block_root,
execution_status
})
if beacon_block_root == root && matches!(execution_status, ExecutionStatus::Optimistic(_))
));
}
}
assert_head_block_not_fully_verified!(produce_unaggregated());
assert_head_block_not_fully_verified!(get_aggregated());
assert_head_block_not_fully_verified!(get_aggregated_by_slot_and_root());
/*
* Ensure attestation production succeeds once the head is verified.
*
* This is effectively a control for the previous tests.
*/
rig.validate_manually(root);
assert!(
rig.execution_status(root).is_valid_and_post_bellatrix(),
"the head should no longer be optimistic"
);
produce_unaggregated().unwrap();
get_aggregated().unwrap();
get_aggregated_by_slot_and_root().unwrap();
}
/// Helper for running tests where we generate a chain with an invalid head and then some
/// `fork_blocks` to recover it.
struct InvalidHeadSetup {
rig: InvalidPayloadRig,
fork_blocks: Vec<Arc<SignedBeaconBlock<E>>>,
invalid_head: CachedHead<E>,
}
impl InvalidHeadSetup {
async fn new() -> InvalidHeadSetup {
let mut rig = InvalidPayloadRig::new().enable_attestations();
rig.move_to_terminal_block();
rig.import_block(Payload::Valid).await; // Import a valid transition block.
// Import blocks until the first time the chain finalizes.
while rig.cached_head().finalized_checkpoint().epoch == 0 {
rig.import_block(Payload::Syncing).await;
}
let invalid_head = rig.cached_head();
// Invalidate the head block.
rig.invalidate_manually(invalid_head.head_block_root())
.await;
assert!(rig
.canonical_head()
.head_execution_status()
.unwrap()
.is_invalid());
// Finding a new head should fail since the only possible head is not valid.
rig.assert_get_head_error_contains("InvalidBestNode");
// Build three "fork" blocks that conflict with the current canonical head. Don't apply them to
// the chain yet.
let mut fork_blocks = vec![];
let mut parent_state = rig
.harness
.chain
.state_at_slot(
invalid_head.head_slot() - 3,
StateSkipConfig::WithStateRoots,
)
.unwrap();
for _ in 0..3 {
let slot = parent_state.slot() + 1;
let (fork_block, post_state) = rig.harness.make_block(parent_state, slot).await;
parent_state = post_state;
fork_blocks.push(Arc::new(fork_block))
}
Self {
rig,
fork_blocks,
invalid_head,
}
}
}
#[tokio::test]
async fn recover_from_invalid_head_by_importing_blocks() {
let InvalidHeadSetup {
rig,
fork_blocks,
invalid_head,
} = InvalidHeadSetup::new().await;
// Import the first two blocks, they should not become the head.
for i in 0..2 {
if i == 0 {
// The first block should be `VALID` during import.
rig.harness
.mock_execution_layer
.as_ref()
.unwrap()
.server
.all_payloads_valid_on_new_payload();
} else {
// All blocks after the first block should return `SYNCING`.
rig.harness
.mock_execution_layer
.as_ref()
.unwrap()
.server
.all_payloads_syncing_on_new_payload(true);
}
rig.harness
.chain
.process_block(fork_blocks[i].clone(), CountUnrealized::True)
.await
.unwrap();
rig.recompute_head().await;
rig.assert_get_head_error_contains("InvalidBestNode");
let new_head = rig.cached_head();
assert_eq!(
new_head.head_block_root(),
invalid_head.head_block_root(),
"the head should not change"
);
}
// Import the third block, it should become the head.
rig.harness
.chain
.process_block(fork_blocks[2].clone(), CountUnrealized::True)
.await
.unwrap();
rig.recompute_head().await;
let new_head = rig.cached_head();
assert_eq!(
new_head.head_block_root(),
fork_blocks[2].canonical_root(),
"the third block should become the head"
);
let manual_get_head = rig
.harness
.chain
.canonical_head
.fork_choice_write_lock()
.get_head(rig.harness.chain.slot().unwrap(), &rig.harness.chain.spec)
.unwrap();
assert_eq!(manual_get_head, new_head.head_block_root(),);
}
#[tokio::test]
async fn recover_from_invalid_head_after_persist_and_reboot() {
let InvalidHeadSetup {
rig,
fork_blocks: _,
invalid_head,
} = InvalidHeadSetup::new().await;
// Forcefully persist the head and fork choice.
rig.harness.chain.persist_head_and_fork_choice().unwrap();
let resumed = BeaconChainHarness::builder(MainnetEthSpec)
.default_spec()
.deterministic_keypairs(VALIDATOR_COUNT)
.resumed_ephemeral_store(rig.harness.chain.store.clone())
.mock_execution_layer()
.build();
// Forget the original rig so we don't accidentally use it again.
drop(rig);
let resumed_head = resumed.chain.canonical_head.cached_head();
assert_eq!(
resumed_head.head_block_root(),
invalid_head.head_block_root(),
"the resumed harness should have the invalid block as the head"
);
assert!(
resumed
.chain
.canonical_head
.fork_choice_read_lock()
.is_optimistic_block(&resumed_head.head_block_root())
.unwrap(),
"the invalid block should have become optimistic"
);
}
#[tokio::test]
async fn weights_after_resetting_optimistic_status() {
let mut rig = InvalidPayloadRig::new().enable_attestations();
rig.move_to_terminal_block();
rig.import_block(Payload::Valid).await; // Import a valid transition block.
let mut roots = vec![];
for _ in 0..4 {
roots.push(rig.import_block(Payload::Syncing).await);
}
rig.recompute_head().await;
let head = rig.cached_head();
let original_weights = rig
.harness
.chain
.canonical_head
.fork_choice_read_lock()
.proto_array()
.iter_nodes(&head.head_block_root())
.map(|node| (node.root, node.weight))
.collect::<HashMap<_, _>>();
rig.invalidate_manually(roots[1]).await;
rig.harness
.chain
.canonical_head
.fork_choice_write_lock()
.proto_array_mut()
.set_all_blocks_to_optimistic::<E>(&rig.harness.chain.spec)
.unwrap();
let new_weights = rig
.harness
.chain
.canonical_head
.fork_choice_read_lock()
.proto_array()
.iter_nodes(&head.head_block_root())
.map(|node| (node.root, node.weight))
.collect::<HashMap<_, _>>();
assert_eq!(original_weights, new_weights);
// Advance the current slot and run fork choice to remove proposer boost.
rig.harness
.set_current_slot(rig.harness.chain.slot().unwrap() + 1);
rig.recompute_head().await;
assert_eq!(
rig.harness
.chain
.canonical_head
.fork_choice_read_lock()
.get_block_weight(&head.head_block_root())
.unwrap(),
head.snapshot.beacon_state.validators()[0].effective_balance,
"proposer boost should be removed from the head block and the vote of a single validator applied"
);
// Import a length of chain to ensure the chain can be built atop.
for _ in 0..E::slots_per_epoch() * 4 {
rig.import_block(Payload::Valid).await;
}
}