lighthouse/validator_client/src/service.rs

352 lines
13 KiB
Rust

/// The validator service. Connects to a beacon node and signs blocks when required.
use crate::attester_service::{AttestationGrpcClient, AttesterService};
use crate::block_producer_service::{BeaconBlockGrpcClient, BlockProducerService};
use crate::config::Config as ValidatorConfig;
use crate::duties::UpdateOutcome;
use crate::duties::{DutiesManager, EpochDutiesMap};
use crate::error as error_chain;
use crate::error::ErrorKind;
use attester::test_utils::EpochMap;
use attester::{test_utils::LocalSigner as AttesterLocalSigner, Attester};
use block_proposer::{test_utils::LocalSigner as BlockProposerLocalSigner, BlockProducer};
use bls::Keypair;
use grpcio::{ChannelBuilder, EnvBuilder};
use protos::services::Empty;
use protos::services_grpc::{
AttestationServiceClient, BeaconBlockServiceClient, BeaconNodeServiceClient,
ValidatorServiceClient,
};
use slog::{debug, error, info, warn};
use slot_clock::{SlotClock, SystemTimeSlotClock};
use std::sync::Arc;
use std::time::{Duration, Instant, SystemTime};
use tokio::prelude::*;
use tokio::runtime::Builder;
use tokio::timer::Interval;
use tokio_timer::clock::Clock;
use types::{Epoch, Fork, Slot};
//TODO: This service should be simplified in the future. Can be made more steamlined.
/// The validator service. This is the main thread that executes and maintains validator
/// duties.
pub struct Service {
/// The node we currently connected to.
connected_node_version: String,
/// The chain id we are processing on.
chain_id: u16,
/// The fork state we processing on.
fork: Fork,
/// The slot clock keeping track of time.
slot_clock: Arc<SystemTimeSlotClock>,
/// The current slot we are processing.
current_slot: Slot,
/// Duration until the next slot. This is used for initializing the tokio timer interval.
duration_to_next_slot: Duration,
// GRPC Clients
/// The beacon block GRPC client.
beacon_block_client: Arc<BeaconBlockServiceClient>,
/// The validator GRPC client.
validator_client: Arc<ValidatorServiceClient>,
/// The attester GRPC client.
attester_client: Arc<AttestationServiceClient>,
/// The validator client logger.
log: slog::Logger,
}
impl Service {
/// Initial connection to the beacon node to determine its properties.
///
/// This tries to connect to a beacon node. Once connected, it initialised the gRPC clients
/// and returns an instance of the service.
fn initialize_service(
config: &ValidatorConfig,
log: slog::Logger,
) -> error_chain::Result<Self> {
// initialise the beacon node client to check for a connection
let env = Arc::new(EnvBuilder::new().build());
// Beacon node gRPC beacon node endpoints.
let beacon_node_client = {
let ch = ChannelBuilder::new(env.clone()).connect(&config.server);
Arc::new(BeaconNodeServiceClient::new(ch))
};
// retrieve node information
let node_info = loop {
let info = match beacon_node_client.info(&Empty::new()) {
Err(e) => {
warn!(log, "Could not connect to node. Error: {}", e);
info!(log, "Retrying in 5 seconds...");
std::thread::sleep(Duration::from_secs(5));
continue;
}
Ok(info) => {
if SystemTime::now()
.duration_since(SystemTime::UNIX_EPOCH)
.unwrap()
.as_secs()
< info.genesis_time
{
warn!(
log,
"Beacon Node's genesis time is in the future. No work to do.\n Exiting"
);
return Err("Genesis time in the future".into());
}
break info;
}
};
};
// build requisite objects to form Self
let genesis_time = node_info.get_genesis_time();
info!(log,"Beacon node connected"; "Node Version" => node_info.version.clone(), "Chain ID" => node_info.chain_id, "Genesis time" => genesis_time);
let proto_fork = node_info.get_fork();
let mut previous_version: [u8; 4] = [0; 4];
let mut current_version: [u8; 4] = [0; 4];
previous_version.copy_from_slice(&proto_fork.get_previous_version()[..4]);
current_version.copy_from_slice(&proto_fork.get_current_version()[..4]);
let fork = Fork {
previous_version,
current_version,
epoch: Epoch::from(proto_fork.get_epoch()),
};
// build the validator slot clock
let slot_clock = {
let clock = SystemTimeSlotClock::new(genesis_time, config.spec.seconds_per_slot)
.expect("Unable to instantiate SystemTimeSlotClock.");
Arc::new(clock)
};
// initialize the RPC clients
// Beacon node gRPC beacon block endpoints.
let beacon_block_client = {
let ch = ChannelBuilder::new(env.clone()).connect(&config.server);
Arc::new(BeaconBlockServiceClient::new(ch))
};
// Beacon node gRPC validator endpoints.
let validator_client = {
let ch = ChannelBuilder::new(env.clone()).connect(&config.server);
Arc::new(ValidatorServiceClient::new(ch))
};
//Beacon node gRPC attester endpoints.
let attester_client = {
let ch = ChannelBuilder::new(env.clone()).connect(&config.server);
Arc::new(AttestationServiceClient::new(ch))
};
let current_slot = slot_clock
.present_slot()
.map_err(|e| ErrorKind::SlotClockError(e))?
.expect("Genesis must be in the future");
// calculate the duration to the next slot
let duration_to_next_slot = {
let seconds_per_slot = config.spec.seconds_per_slot;
let syslot_time = SystemTime::now();
let duration_since_epoch = syslot_time
.duration_since(SystemTime::UNIX_EPOCH)
.map_err(|e| ErrorKind::SystemTimeError(e.to_string()))?;
let duration_since_genesis = duration_since_epoch
.checked_sub(Duration::from_secs(genesis_time))
.expect("Genesis must be in the future. Checked on connection");
let elapsed_slots = duration_since_epoch
.as_secs()
.checked_div(seconds_per_slot as u64)
.expect("Seconds per slot should not be 0");
// the duration to the next slot
Duration::from_secs(
(elapsed_slots + 1)
.checked_mul(seconds_per_slot)
.expect("Next slot time should not overflow u64"),
)
.checked_sub(duration_since_genesis)
.expect("This should never saturate")
};
Ok(Self {
connected_node_version: node_info.version,
chain_id: node_info.chain_id as u16,
fork,
slot_clock,
current_slot,
duration_to_next_slot,
beacon_block_client,
validator_client,
attester_client,
log,
})
}
/// Initialise the service then run the core thread.
pub fn start(config: ValidatorConfig, log: slog::Logger) -> error_chain::Result<()> {
// connect to the node and retrieve its properties and initialize the gRPC clients
let service = Service::initialize_service(&config, log)?;
// we have connected to a node and established its parameters. Spin up the core service
// set up the validator service runtime
let mut runtime = Builder::new()
.clock(Clock::system())
.name_prefix("validator-client-")
.build()
.map_err(|e| format!("Tokio runtime failed: {}", e))?;
// set up the validator work interval - start at next slot and proceed every slot
let interval = {
// Set the interval to start at the next slot, and every slot after
let slot_duration = Duration::from_secs(config.spec.seconds_per_slot);
//TODO: Handle checked add correctly
Interval::new(
Instant::now() + service.duration_to_next_slot,
slot_duration,
)
};
// kick off core service
// generate keypairs
// TODO: keypairs are randomly generated; they should be loaded from a file or generated.
// https://github.com/sigp/lighthouse/issues/160
let keypairs = Arc::new(vec![Keypair::random()]);
// build requisite objects to pass to core thread.
let duties_map = Arc::new(EpochDutiesMap::new(config.spec.slots_per_epoch));
let epoch_map_for_attester = Arc::new(EpochMap::new(config.spec.slots_per_epoch));
let manager = Arc::new(DutiesManager {
duties_map,
pubkeys: keypairs.iter().map(|keypair| keypair.pk.clone()).collect(),
spec: Arc::new(config.spec),
slot_clock: service.slot_clock.clone(),
beacon_node: service.validator_client.clone(),
});
// run the core thread
runtime
.block_on(interval.for_each(move |_| {
let log = service.log.clone();
// get the current slot
let current_slot = match service.slot_clock.present_slot() {
Err(e) => {
error!(log, "SystemTimeError {:?}", e);
return Ok(());
}
Ok(slot) => slot.expect("Genesis is in the future"),
};
debug_assert!(
current_slot > service.current_slot,
"The Timer should poll a new slot"
);
info!(log, "Processing slot: {}", current_slot.as_u64());
let cloned_manager = manager.clone();
// check for new duties
tokio::spawn(futures::future::poll_fn(move || {
cloned_manager.run_update(current_slot.clone(), log.clone())
}));
Ok(())
}))
.map_err(|e| format!("Service thread failed: {:?}", e))?;
Ok(())
}
/*
let duties_map = Arc::new(EpochDutiesMap::new(spec.slots_per_epoch));
let epoch_map_for_attester = Arc::new(EpochMap::new(spec.slots_per_epoch));
for keypair in keypairs {
info!(self.log, "Starting validator services"; "validator" => keypair.pk.concatenated_hex_id());
// Spawn a new thread to maintain the validator's `EpochDuties`.
let duties_manager_thread = {
let spec = spec.clone();
let duties_map = duties_map.clone();
let slot_clock = self.slot_clock.clone();
let log = self.log.clone();
let beacon_node = self.validator_client.clone();
let pubkey = keypair.pk.clone();
thread::spawn(move || {
let manager = DutiesManager {
duties_map,
pubkey,
spec,
slot_clock,
beacon_node,
};
let mut duties_manager_service = DutiesManagerService {
manager,
poll_interval_millis,
log,
};
duties_manager_service.run();
})
};
// Spawn a new thread to perform block production for the validator.
let producer_thread = {
let spec = spec.clone();
let signer = Arc::new(BlockProposerLocalSigner::new(keypair.clone()));
let duties_map = duties_map.clone();
let slot_clock = slot_clock.clone();
let log = log.clone();
let client = Arc::new(BeaconBlockGrpcClient::new(beacon_block_grpc_client.clone()));
thread::spawn(move || {
let block_producer =
BlockProducer::new(spec, duties_map, slot_clock, client, signer);
let mut block_producer_service = BlockProducerService {
block_producer,
poll_interval_millis,
log,
};
block_producer_service.run();
})
};
// Spawn a new thread for attestation for the validator.
let attester_thread = {
let signer = Arc::new(AttesterLocalSigner::new(keypair.clone()));
let epoch_map = epoch_map_for_attester.clone();
let slot_clock = slot_clock.clone();
let log = log.clone();
let client = Arc::new(AttestationGrpcClient::new(attester_grpc_client.clone()));
thread::spawn(move || {
let attester = Attester::new(epoch_map, slot_clock, client, signer);
let mut attester_service = AttesterService {
attester,
poll_interval_millis,
log,
};
attester_service.run();
})
};
threads.push((duties_manager_thread, producer_thread, attester_thread));
}
// Naively wait for all the threads to complete.
for tuple in threads {
let (manager, producer, attester) = tuple;
let _ = producer.join();
let _ = manager.join();
let _ = attester.join();
}
*/
}