lighthouse/beacon_node/beacon_chain/tests/store_tests.rs
Michael Sproul c9702cb0a1
Download checkpoint blobs during checkpoint sync (#5252)
* MVP implementation (untested)

* update store checkpoint sync test

* update cli help

* Merge pull request #5253 from realbigsean/checkpoint-blobs-sean

Checkpoint blobs sean

* Warn only if blobs are missing from server

* Merge remote-tracking branch 'origin/unstable' into checkpoint-blobs

* Verify checkpoint blobs

* Move blob verification earlier
2024-02-19 02:22:23 +00:00

3735 lines
125 KiB
Rust

#![cfg(not(debug_assertions))]
use beacon_chain::attestation_verification::Error as AttnError;
use beacon_chain::block_verification_types::RpcBlock;
use beacon_chain::builder::BeaconChainBuilder;
use beacon_chain::data_availability_checker::AvailableBlock;
use beacon_chain::schema_change::migrate_schema;
use beacon_chain::test_utils::{
mock_execution_layer_from_parts, test_spec, AttestationStrategy, BeaconChainHarness,
BlockStrategy, DiskHarnessType,
};
use beacon_chain::{
data_availability_checker::MaybeAvailableBlock, historical_blocks::HistoricalBlockError,
migrate::MigratorConfig, BeaconChain, BeaconChainError, BeaconChainTypes, BeaconSnapshot,
BlockError, ChainConfig, NotifyExecutionLayer, ServerSentEventHandler, WhenSlotSkipped,
};
use eth2_network_config::TRUSTED_SETUP_BYTES;
use kzg::TrustedSetup;
use lazy_static::lazy_static;
use logging::test_logger;
use maplit::hashset;
use rand::Rng;
use slot_clock::{SlotClock, TestingSlotClock};
use state_processing::{state_advance::complete_state_advance, BlockReplayer};
use std::collections::HashMap;
use std::collections::HashSet;
use std::convert::TryInto;
use std::sync::Arc;
use std::time::Duration;
use store::chunked_vector::Chunk;
use store::metadata::{SchemaVersion, CURRENT_SCHEMA_VERSION, STATE_UPPER_LIMIT_NO_RETAIN};
use store::{
chunked_vector::{chunk_key, Field},
get_key_for_col,
iter::{BlockRootsIterator, StateRootsIterator},
BlobInfo, DBColumn, HotColdDB, KeyValueStore, KeyValueStoreOp, LevelDB, StoreConfig,
};
use tempfile::{tempdir, TempDir};
use tokio::time::sleep;
use tree_hash::TreeHash;
use types::test_utils::{SeedableRng, XorShiftRng};
use types::*;
// Should ideally be divisible by 3.
pub const LOW_VALIDATOR_COUNT: usize = 24;
pub const HIGH_VALIDATOR_COUNT: usize = 64;
lazy_static! {
/// A cached set of keys.
static ref KEYPAIRS: Vec<Keypair> = types::test_utils::generate_deterministic_keypairs(HIGH_VALIDATOR_COUNT);
}
type E = MinimalEthSpec;
type TestHarness = BeaconChainHarness<DiskHarnessType<E>>;
fn get_store(db_path: &TempDir) -> Arc<HotColdDB<E, LevelDB<E>, LevelDB<E>>> {
get_store_generic(db_path, StoreConfig::default(), test_spec::<E>())
}
fn get_store_generic(
db_path: &TempDir,
config: StoreConfig,
spec: ChainSpec,
) -> Arc<HotColdDB<E, LevelDB<E>, LevelDB<E>>> {
let hot_path = db_path.path().join("hot_db");
let cold_path = db_path.path().join("cold_db");
let blobs_path = db_path.path().join("blobs_db");
let log = test_logger();
HotColdDB::open(
&hot_path,
&cold_path,
&blobs_path,
|_, _, _| Ok(()),
config,
spec,
log,
)
.expect("disk store should initialize")
}
fn get_harness(
store: Arc<HotColdDB<E, LevelDB<E>, LevelDB<E>>>,
validator_count: usize,
) -> TestHarness {
// Most tests expect to retain historic states, so we use this as the default.
let chain_config = ChainConfig {
reconstruct_historic_states: true,
..ChainConfig::default()
};
get_harness_generic(store, validator_count, chain_config)
}
fn get_harness_generic(
store: Arc<HotColdDB<E, LevelDB<E>, LevelDB<E>>>,
validator_count: usize,
chain_config: ChainConfig,
) -> TestHarness {
let harness = TestHarness::builder(MinimalEthSpec)
.spec(store.get_chain_spec().clone())
.keypairs(KEYPAIRS[0..validator_count].to_vec())
.logger(store.logger().clone())
.fresh_disk_store(store)
.mock_execution_layer()
.chain_config(chain_config)
.build();
harness.advance_slot();
harness
}
/// Tests that `store.heal_freezer_block_roots_at_split` inserts block roots between last restore point
/// slot and the split slot.
#[tokio::test]
async fn heal_freezer_block_roots_at_split() {
// chunk_size is hard-coded to 128
let num_blocks_produced = E::slots_per_epoch() * 20;
let db_path = tempdir().unwrap();
let store = get_store_generic(
&db_path,
StoreConfig {
slots_per_restore_point: 2 * E::slots_per_epoch(),
..Default::default()
},
test_spec::<E>(),
);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
harness
.extend_chain(
num_blocks_produced as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
let split_slot = store.get_split_slot();
assert_eq!(split_slot, 18 * E::slots_per_epoch());
// Do a heal before deleting to make sure that it doesn't break.
let last_restore_point_slot = Slot::new(16 * E::slots_per_epoch());
store.heal_freezer_block_roots_at_split().unwrap();
check_freezer_block_roots(&harness, last_restore_point_slot, split_slot);
// Delete block roots between `last_restore_point_slot` and `split_slot`.
let chunk_index = <store::chunked_vector::BlockRoots as Field<E>>::chunk_index(
last_restore_point_slot.as_usize(),
);
let key_chunk = get_key_for_col(DBColumn::BeaconBlockRoots.as_str(), &chunk_key(chunk_index));
store
.cold_db
.do_atomically(vec![KeyValueStoreOp::DeleteKey(key_chunk)])
.unwrap();
let block_root_err = store
.forwards_block_roots_iterator_until(
last_restore_point_slot,
last_restore_point_slot + 1,
|| unreachable!(),
&harness.chain.spec,
)
.unwrap()
.next()
.unwrap()
.unwrap_err();
assert!(matches!(block_root_err, store::Error::NoContinuationData));
// Re-insert block roots
store.heal_freezer_block_roots_at_split().unwrap();
check_freezer_block_roots(&harness, last_restore_point_slot, split_slot);
// Run for another two epochs to check that the invariant is maintained.
let additional_blocks_produced = 2 * E::slots_per_epoch();
harness
.extend_slots(additional_blocks_produced as usize)
.await;
check_finalization(&harness, num_blocks_produced + additional_blocks_produced);
check_split_slot(&harness, store);
check_chain_dump(
&harness,
num_blocks_produced + additional_blocks_produced + 1,
);
check_iterators(&harness);
}
/// Tests that `store.heal_freezer_block_roots` inserts block roots between last restore point
/// slot and the split slot.
#[tokio::test]
async fn heal_freezer_block_roots_with_skip_slots() {
// chunk_size is hard-coded to 128
let num_blocks_produced = E::slots_per_epoch() * 20;
let db_path = tempdir().unwrap();
let store = get_store_generic(
&db_path,
StoreConfig {
slots_per_restore_point: 2 * E::slots_per_epoch(),
..Default::default()
},
test_spec::<E>(),
);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
let current_state = harness.get_current_state();
let state_root = harness.get_current_state().tree_hash_root();
let all_validators = &harness.get_all_validators();
harness
.add_attested_blocks_at_slots(
current_state,
state_root,
&(1..=num_blocks_produced)
.filter(|i| i % 12 != 0)
.map(Slot::new)
.collect::<Vec<_>>(),
all_validators,
)
.await;
// split slot should be 18 here
let split_slot = store.get_split_slot();
assert_eq!(split_slot, 18 * E::slots_per_epoch());
let last_restore_point_slot = Slot::new(16 * E::slots_per_epoch());
let chunk_index = <store::chunked_vector::BlockRoots as Field<E>>::chunk_index(
last_restore_point_slot.as_usize(),
);
let key_chunk = get_key_for_col(DBColumn::BeaconBlockRoots.as_str(), &chunk_key(chunk_index));
store
.cold_db
.do_atomically(vec![KeyValueStoreOp::DeleteKey(key_chunk)])
.unwrap();
let block_root_err = store
.forwards_block_roots_iterator_until(
last_restore_point_slot,
last_restore_point_slot + 1,
|| unreachable!(),
&harness.chain.spec,
)
.unwrap()
.next()
.unwrap()
.unwrap_err();
assert!(matches!(block_root_err, store::Error::NoContinuationData));
// heal function
store.heal_freezer_block_roots_at_split().unwrap();
check_freezer_block_roots(&harness, last_restore_point_slot, split_slot);
// Run for another two epochs to check that the invariant is maintained.
let additional_blocks_produced = 2 * E::slots_per_epoch();
harness
.extend_slots(additional_blocks_produced as usize)
.await;
check_finalization(&harness, num_blocks_produced + additional_blocks_produced);
check_split_slot(&harness, store);
check_iterators(&harness);
}
/// Tests that `store.heal_freezer_block_roots_at_genesis` replaces 0x0 block roots between slot
/// 0 and the first non-skip slot with genesis block root.
#[tokio::test]
async fn heal_freezer_block_roots_at_genesis() {
// Run for a few epochs to ensure we're past finalization.
let num_blocks_produced = E::slots_per_epoch() * 4;
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
// Start with 2 skip slots.
harness.advance_slot();
harness.advance_slot();
harness
.extend_chain(
num_blocks_produced as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
// Do a heal before deleting to make sure that it doesn't break.
store.heal_freezer_block_roots_at_genesis().unwrap();
check_freezer_block_roots(
&harness,
Slot::new(0),
Epoch::new(1).end_slot(E::slots_per_epoch()),
);
// Write 0x0 block roots at slot 1 and slot 2.
let chunk_index = 0;
let chunk_db_key = chunk_key(chunk_index);
let mut chunk =
Chunk::<Hash256>::load(&store.cold_db, DBColumn::BeaconBlockRoots, &chunk_db_key)
.unwrap()
.unwrap();
chunk.values[1] = Hash256::zero();
chunk.values[2] = Hash256::zero();
let mut ops = vec![];
chunk
.store(DBColumn::BeaconBlockRoots, &chunk_db_key, &mut ops)
.unwrap();
store.cold_db.do_atomically(ops).unwrap();
// Ensure the DB is corrupted
let block_roots = store
.forwards_block_roots_iterator_until(
Slot::new(1),
Slot::new(2),
|| unreachable!(),
&harness.chain.spec,
)
.unwrap()
.map(Result::unwrap)
.take(2)
.collect::<Vec<_>>();
assert_eq!(
block_roots,
vec![
(Hash256::zero(), Slot::new(1)),
(Hash256::zero(), Slot::new(2))
]
);
// Insert genesis block roots at skip slots before first block slot
store.heal_freezer_block_roots_at_genesis().unwrap();
check_freezer_block_roots(
&harness,
Slot::new(0),
Epoch::new(1).end_slot(E::slots_per_epoch()),
);
}
fn check_freezer_block_roots(harness: &TestHarness, start_slot: Slot, end_slot: Slot) {
for slot in (start_slot.as_u64()..end_slot.as_u64()).map(Slot::new) {
let (block_root, result_slot) = harness
.chain
.store
.forwards_block_roots_iterator_until(slot, slot, || unreachable!(), &harness.chain.spec)
.unwrap()
.next()
.unwrap()
.unwrap();
assert_eq!(slot, result_slot);
let expected_block_root = harness
.chain
.block_root_at_slot(slot, WhenSlotSkipped::Prev)
.unwrap()
.unwrap();
assert_eq!(expected_block_root, block_root);
}
}
#[tokio::test]
async fn full_participation_no_skips() {
let num_blocks_produced = E::slots_per_epoch() * 5;
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
harness
.extend_chain(
num_blocks_produced as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
check_finalization(&harness, num_blocks_produced);
check_split_slot(&harness, store);
check_chain_dump(&harness, num_blocks_produced + 1);
check_iterators(&harness);
}
#[tokio::test]
async fn randomised_skips() {
let num_slots = E::slots_per_epoch() * 5;
let mut num_blocks_produced = 0;
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
let rng = &mut XorShiftRng::from_seed([42; 16]);
let mut head_slot = 0;
for slot in 1..=num_slots {
if rng.gen_bool(0.8) {
harness
.extend_chain(
1,
BlockStrategy::ForkCanonicalChainAt {
previous_slot: Slot::new(head_slot),
first_slot: Slot::new(slot),
},
AttestationStrategy::AllValidators,
)
.await;
harness.advance_slot();
num_blocks_produced += 1;
head_slot = slot;
} else {
harness.advance_slot();
}
}
let state = &harness.chain.head_snapshot().beacon_state;
assert_eq!(
state.slot(),
num_slots,
"head should be at the current slot"
);
check_split_slot(&harness, store.clone());
check_chain_dump(&harness, num_blocks_produced + 1);
check_iterators(&harness);
}
#[tokio::test]
async fn long_skip() {
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
// Number of blocks to create in the first run, intentionally not falling on an epoch
// boundary in order to check that the DB hot -> cold migration is capable of reaching
// back across the skip distance, and correctly migrating those extra non-finalized states.
let initial_blocks = E::slots_per_epoch() * 5 + E::slots_per_epoch() / 2;
let skip_slots = E::slots_per_historical_root() as u64 * 8;
// Create the minimum ~2.5 epochs of extra blocks required to re-finalize the chain.
// Having this set lower ensures that we start justifying and finalizing quickly after a skip.
let final_blocks = 2 * E::slots_per_epoch() + E::slots_per_epoch() / 2;
harness
.extend_chain(
initial_blocks as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
check_finalization(&harness, initial_blocks);
// 2. Skip slots
for _ in 0..skip_slots {
harness.advance_slot();
}
// 3. Produce more blocks, establish a new finalized epoch
harness
.extend_chain(
final_blocks as usize,
BlockStrategy::ForkCanonicalChainAt {
previous_slot: Slot::new(initial_blocks),
first_slot: Slot::new(initial_blocks + skip_slots as u64 + 1),
},
AttestationStrategy::AllValidators,
)
.await;
check_finalization(&harness, initial_blocks + skip_slots + final_blocks);
check_split_slot(&harness, store);
check_chain_dump(&harness, initial_blocks + final_blocks + 1);
check_iterators(&harness);
}
/// Go forward to the point where the genesis randao value is no longer part of the vector.
///
/// This implicitly checks that:
/// 1. The chunked vector scheme doesn't attempt to store an incorrect genesis value
/// 2. We correctly load the genesis value for all required slots
/// NOTE: this test takes about a minute to run
#[tokio::test]
async fn randao_genesis_storage() {
let validator_count = 8;
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store.clone(), validator_count);
let num_slots = E::slots_per_epoch() * (E::epochs_per_historical_vector() - 1) as u64;
// Check we have a non-trivial genesis value
let genesis_value = *harness
.chain
.head_snapshot()
.beacon_state
.get_randao_mix(Epoch::new(0))
.expect("randao mix ok");
assert!(!genesis_value.is_zero());
harness
.extend_chain(
num_slots as usize - 1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
// Check that genesis value is still present
assert!(harness
.chain
.head_snapshot()
.beacon_state
.randao_mixes()
.iter()
.find(|x| **x == genesis_value)
.is_some());
// Then upon adding one more block, it isn't
harness.advance_slot();
harness
.extend_chain(
1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
assert!(harness
.chain
.head_snapshot()
.beacon_state
.randao_mixes()
.iter()
.find(|x| **x == genesis_value)
.is_none());
check_finalization(&harness, num_slots);
check_split_slot(&harness, store);
check_chain_dump(&harness, num_slots + 1);
check_iterators(&harness);
}
// Check that closing and reopening a freezer DB restores the split slot to its correct value.
#[tokio::test]
async fn split_slot_restore() {
let db_path = tempdir().unwrap();
let split_slot = {
let store = get_store(&db_path);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
let num_blocks = 4 * E::slots_per_epoch();
harness
.extend_chain(
num_blocks as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
store.get_split_slot()
};
assert_ne!(split_slot, Slot::new(0));
// Re-open the store
let store = get_store(&db_path);
assert_eq!(store.get_split_slot(), split_slot);
}
// Check attestation processing and `load_epoch_boundary_state` in the presence of a split DB.
// This is a bit of a monster test in that it tests lots of different things, but until they're
// tested elsewhere, this is as good a place as any.
#[tokio::test]
async fn epoch_boundary_state_attestation_processing() {
let num_blocks_produced = E::slots_per_epoch() * 5;
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
let late_validators = vec![0, 1];
let timely_validators = (2..LOW_VALIDATOR_COUNT).collect::<Vec<_>>();
let mut late_attestations = vec![];
for _ in 0..num_blocks_produced {
harness
.extend_chain(
1,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::SomeValidators(timely_validators.clone()),
)
.await;
let head = harness.chain.head_snapshot();
late_attestations.extend(harness.get_unaggregated_attestations(
&AttestationStrategy::SomeValidators(late_validators.clone()),
&head.beacon_state,
head.beacon_state_root(),
head.beacon_block_root,
head.beacon_block.slot(),
));
harness.advance_slot();
}
check_finalization(&harness, num_blocks_produced);
check_split_slot(&harness, store.clone());
check_chain_dump(&harness, num_blocks_produced + 1);
check_iterators(&harness);
let mut checked_pre_fin = false;
for (attestation, subnet_id) in late_attestations.into_iter().flatten() {
// load_epoch_boundary_state is idempotent!
let block_root = attestation.data.beacon_block_root;
let block = store
.get_blinded_block(&block_root)
.unwrap()
.expect("block exists");
let epoch_boundary_state = store
.load_epoch_boundary_state(&block.state_root())
.expect("no error")
.expect("epoch boundary state exists");
let ebs_of_ebs = store
.load_epoch_boundary_state(&epoch_boundary_state.canonical_root())
.expect("no error")
.expect("ebs of ebs exists");
assert_eq!(epoch_boundary_state, ebs_of_ebs);
// If the attestation is pre-finalization it should be rejected.
let finalized_epoch = harness.finalized_checkpoint().epoch;
let res = harness
.chain
.verify_unaggregated_attestation_for_gossip(&attestation, Some(subnet_id));
let current_slot = harness.chain.slot().expect("should get slot");
let expected_attestation_slot = attestation.data.slot;
// Extra -1 to handle gossip clock disparity.
let expected_earliest_permissible_slot = current_slot - E::slots_per_epoch() - 1;
if expected_attestation_slot <= finalized_epoch.start_slot(E::slots_per_epoch())
|| expected_attestation_slot < expected_earliest_permissible_slot
{
checked_pre_fin = true;
assert!(matches!(
res.err().unwrap(),
AttnError::PastSlot {
attestation_slot,
earliest_permissible_slot,
}
if attestation_slot == expected_attestation_slot && earliest_permissible_slot == expected_earliest_permissible_slot
));
} else {
res.expect("should have verified attetation");
}
}
assert!(checked_pre_fin);
}
// Test that the `end_slot` for forwards block and state root iterators works correctly.
#[tokio::test]
async fn forwards_iter_block_and_state_roots_until() {
let num_blocks_produced = E::slots_per_epoch() * 17;
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
let all_validators = &harness.get_all_validators();
let (mut head_state, mut head_state_root) = harness.get_current_state_and_root();
let head_block_root = harness.head_block_root();
let mut block_roots = vec![head_block_root];
let mut state_roots = vec![head_state_root];
for slot in (1..=num_blocks_produced).map(Slot::from) {
let (block_root, mut state) = harness
.add_attested_block_at_slot(slot, head_state, head_state_root, all_validators)
.await
.unwrap();
head_state_root = state.update_tree_hash_cache().unwrap();
head_state = state;
block_roots.push(block_root.into());
state_roots.push(head_state_root);
}
check_finalization(&harness, num_blocks_produced);
check_split_slot(&harness, store.clone());
// The last restore point slot is the point at which the hybrid forwards iterator behaviour
// changes.
let last_restore_point_slot = store.get_latest_restore_point_slot().unwrap();
assert!(last_restore_point_slot > 0);
let chain = &harness.chain;
let head_state = harness.get_current_state();
let head_slot = head_state.slot();
assert_eq!(head_slot, num_blocks_produced);
let test_range = |start_slot: Slot, end_slot: Slot| {
let mut block_root_iter = chain
.forwards_iter_block_roots_until(start_slot, end_slot)
.unwrap();
let mut state_root_iter = chain
.forwards_iter_state_roots_until(start_slot, end_slot)
.unwrap();
for slot in (start_slot.as_u64()..=end_slot.as_u64()).map(Slot::new) {
let block_root = block_roots[slot.as_usize()];
assert_eq!(block_root_iter.next().unwrap().unwrap(), (block_root, slot));
let state_root = state_roots[slot.as_usize()];
assert_eq!(state_root_iter.next().unwrap().unwrap(), (state_root, slot));
}
};
let split_slot = store.get_split_slot();
assert!(split_slot > last_restore_point_slot);
test_range(Slot::new(0), last_restore_point_slot);
test_range(last_restore_point_slot, last_restore_point_slot);
test_range(last_restore_point_slot - 1, last_restore_point_slot);
test_range(Slot::new(0), last_restore_point_slot - 1);
test_range(Slot::new(0), split_slot);
test_range(last_restore_point_slot - 1, split_slot);
test_range(Slot::new(0), head_state.slot());
}
#[tokio::test]
async fn block_replay_with_inaccurate_state_roots() {
let num_blocks_produced = E::slots_per_epoch() * 3 + 31;
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
let chain = &harness.chain;
harness
.extend_chain(
num_blocks_produced as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
// Slot must not be 0 mod 32 or else no blocks will be replayed.
let (mut head_state, head_state_root) = harness.get_current_state_and_root();
let head_block_root = harness.head_block_root();
assert_ne!(head_state.slot() % 32, 0);
let (_, mut fast_head_state) = store
.get_inconsistent_state_for_attestation_verification_only(
&head_block_root,
head_state.slot(),
head_state_root,
)
.unwrap()
.unwrap();
assert_eq!(head_state.validators(), fast_head_state.validators());
head_state.build_all_committee_caches(&chain.spec).unwrap();
fast_head_state
.build_all_committee_caches(&chain.spec)
.unwrap();
assert_eq!(
head_state
.get_cached_active_validator_indices(RelativeEpoch::Current)
.unwrap(),
fast_head_state
.get_cached_active_validator_indices(RelativeEpoch::Current)
.unwrap()
);
}
#[tokio::test]
async fn block_replayer_hooks() {
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
let chain = &harness.chain;
let block_slots = vec![1, 3, 5, 10, 11, 12, 13, 14, 31, 32, 33]
.into_iter()
.map(Slot::new)
.collect::<Vec<_>>();
let max_slot = *block_slots.last().unwrap();
let all_slots = (0..=max_slot.as_u64()).map(Slot::new).collect::<Vec<_>>();
let (state, state_root) = harness.get_current_state_and_root();
let all_validators = harness.get_all_validators();
let (_, _, end_block_root, mut end_state) = harness
.add_attested_blocks_at_slots(state.clone(), state_root, &block_slots, &all_validators)
.await;
let blocks = store
.load_blocks_to_replay(Slot::new(0), max_slot, end_block_root.into())
.unwrap();
let mut pre_slots = vec![];
let mut post_slots = vec![];
let mut pre_block_slots = vec![];
let mut post_block_slots = vec![];
let mut replay_state = BlockReplayer::<MinimalEthSpec>::new(state, &chain.spec)
.pre_slot_hook(Box::new(|state| {
pre_slots.push(state.slot());
Ok(())
}))
.post_slot_hook(Box::new(|state, epoch_summary, is_skip_slot| {
if is_skip_slot {
assert!(!block_slots.contains(&state.slot()));
} else {
assert!(block_slots.contains(&state.slot()));
}
if state.slot() % E::slots_per_epoch() == 0 {
assert!(epoch_summary.is_some());
}
post_slots.push(state.slot());
Ok(())
}))
.pre_block_hook(Box::new(|state, block| {
assert_eq!(state.slot(), block.slot());
pre_block_slots.push(block.slot());
Ok(())
}))
.post_block_hook(Box::new(|state, block| {
assert_eq!(state.slot(), block.slot());
post_block_slots.push(block.slot());
Ok(())
}))
.apply_blocks(blocks, None)
.unwrap()
.into_state();
// All but last slot seen by pre-slot hook
assert_eq!(&pre_slots, all_slots.split_last().unwrap().1);
// All but 0th slot seen by post-slot hook
assert_eq!(&post_slots, all_slots.split_first().unwrap().1);
// All blocks seen by both hooks
assert_eq!(pre_block_slots, block_slots);
assert_eq!(post_block_slots, block_slots);
// States match.
end_state.drop_all_caches().unwrap();
replay_state.drop_all_caches().unwrap();
assert_eq!(end_state, replay_state);
}
#[tokio::test]
async fn delete_blocks_and_states() {
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
let unforked_blocks: u64 = 4 * E::slots_per_epoch();
// Finalize an initial portion of the chain.
let initial_slots: Vec<Slot> = (1..=unforked_blocks).map(Into::into).collect();
let (state, state_root) = harness.get_current_state_and_root();
let all_validators = harness.get_all_validators();
harness
.add_attested_blocks_at_slots(state, state_root, &initial_slots, &all_validators)
.await;
// Create a fork post-finalization.
let two_thirds = (LOW_VALIDATOR_COUNT / 3) * 2;
let honest_validators: Vec<usize> = (0..two_thirds).collect();
let faulty_validators: Vec<usize> = (two_thirds..LOW_VALIDATOR_COUNT).collect();
let fork_blocks = 2 * E::slots_per_epoch();
let slot_u64: u64 = harness.get_current_slot().as_u64() + 1;
let fork1_slots: Vec<Slot> = (slot_u64..(slot_u64 + fork_blocks))
.map(Into::into)
.collect();
let fork2_slots: Vec<Slot> = (slot_u64 + 1..(slot_u64 + 1 + fork_blocks))
.map(Into::into)
.collect();
let fork1_state = harness.get_current_state();
let fork2_state = fork1_state.clone();
let results = harness
.add_blocks_on_multiple_chains(vec![
(fork1_state, fork1_slots, honest_validators),
(fork2_state, fork2_slots, faulty_validators),
])
.await;
let honest_head = results[0].2;
let faulty_head = results[1].2;
assert_ne!(honest_head, faulty_head, "forks should be distinct");
assert_eq!(harness.head_slot(), unforked_blocks + fork_blocks);
assert_eq!(
harness.head_block_root(),
honest_head.into(),
"the honest chain should be the canonical chain",
);
let faulty_head_block = store
.get_blinded_block(&faulty_head.into())
.expect("no errors")
.expect("faulty head block exists");
let faulty_head_state = store
.get_state(
&faulty_head_block.state_root(),
Some(faulty_head_block.slot()),
)
.expect("no db error")
.expect("faulty head state exists");
// Delete faulty fork
// Attempting to load those states should find them unavailable
for (state_root, slot) in
StateRootsIterator::new(&store, &faulty_head_state).map(Result::unwrap)
{
if slot <= unforked_blocks {
break;
}
store.delete_state(&state_root, slot).unwrap();
assert_eq!(store.get_state(&state_root, Some(slot)).unwrap(), None);
}
// Double-deleting should also be OK (deleting non-existent things is fine)
for (state_root, slot) in
StateRootsIterator::new(&store, &faulty_head_state).map(Result::unwrap)
{
if slot <= unforked_blocks {
break;
}
store.delete_state(&state_root, slot).unwrap();
}
// Deleting the blocks from the fork should remove them completely
for (block_root, slot) in
BlockRootsIterator::new(&store, &faulty_head_state).map(Result::unwrap)
{
if slot <= unforked_blocks + 1 {
break;
}
store.delete_block(&block_root).unwrap();
assert_eq!(store.get_blinded_block(&block_root).unwrap(), None);
}
// Deleting frozen states should do nothing
let split_slot = store.get_split_slot();
let finalized_states = harness
.chain
.forwards_iter_state_roots(Slot::new(0))
.expect("should get iter")
.map(Result::unwrap);
for (state_root, slot) in finalized_states {
if slot < split_slot {
store.delete_state(&state_root, slot).unwrap();
}
}
// After all that, the chain dump should still be OK
check_chain_dump(&harness, unforked_blocks + fork_blocks + 1);
}
// Check that we never produce invalid blocks when there is deep forking that changes the shuffling.
// See https://github.com/sigp/lighthouse/issues/845
async fn multi_epoch_fork_valid_blocks_test(
initial_blocks: usize,
num_fork1_blocks_: usize,
num_fork2_blocks_: usize,
num_fork1_validators: usize,
) -> (TempDir, TestHarness, Hash256, Hash256) {
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let validators_keypairs =
types::test_utils::generate_deterministic_keypairs(LOW_VALIDATOR_COUNT);
let harness = TestHarness::builder(MinimalEthSpec)
.default_spec()
.keypairs(validators_keypairs)
.fresh_disk_store(store)
.mock_execution_layer()
.build();
let num_fork1_blocks: u64 = num_fork1_blocks_.try_into().unwrap();
let num_fork2_blocks: u64 = num_fork2_blocks_.try_into().unwrap();
// Create the initial portion of the chain
if initial_blocks > 0 {
let initial_slots: Vec<Slot> = (1..=initial_blocks).map(Into::into).collect();
let (state, state_root) = harness.get_current_state_and_root();
let all_validators = harness.get_all_validators();
harness
.add_attested_blocks_at_slots(state, state_root, &initial_slots, &all_validators)
.await;
}
assert!(num_fork1_validators <= LOW_VALIDATOR_COUNT);
let fork1_validators: Vec<usize> = (0..num_fork1_validators).collect();
let fork2_validators: Vec<usize> = (num_fork1_validators..LOW_VALIDATOR_COUNT).collect();
let fork1_state = harness.get_current_state();
let fork2_state = fork1_state.clone();
let slot_u64: u64 = harness.get_current_slot().as_u64() + 1;
let fork1_slots: Vec<Slot> = (slot_u64..(slot_u64 + num_fork1_blocks))
.map(Into::into)
.collect();
let fork2_slots: Vec<Slot> = (slot_u64 + 1..(slot_u64 + 1 + num_fork2_blocks))
.map(Into::into)
.collect();
let results = harness
.add_blocks_on_multiple_chains(vec![
(fork1_state, fork1_slots, fork1_validators),
(fork2_state, fork2_slots, fork2_validators),
])
.await;
let head1 = results[0].2;
let head2 = results[1].2;
(db_path, harness, head1.into(), head2.into())
}
// This is the minimal test of block production with different shufflings.
#[tokio::test]
async fn block_production_different_shuffling_early() {
let slots_per_epoch = E::slots_per_epoch() as usize;
multi_epoch_fork_valid_blocks_test(
slots_per_epoch - 2,
slots_per_epoch + 3,
slots_per_epoch + 3,
LOW_VALIDATOR_COUNT / 2,
)
.await;
}
#[tokio::test]
async fn block_production_different_shuffling_long() {
let slots_per_epoch = E::slots_per_epoch() as usize;
multi_epoch_fork_valid_blocks_test(
2 * slots_per_epoch - 2,
3 * slots_per_epoch,
3 * slots_per_epoch,
LOW_VALIDATOR_COUNT / 2,
)
.await;
}
// Check that the op pool safely includes multiple attestations per block when necessary.
// This checks the correctness of the shuffling compatibility memoization.
#[tokio::test]
async fn multiple_attestations_per_block() {
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store, HIGH_VALIDATOR_COUNT);
harness
.extend_chain(
E::slots_per_epoch() as usize * 3,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
let head = harness.chain.head_snapshot();
let committees_per_slot = head
.beacon_state
.get_committee_count_at_slot(head.beacon_state.slot())
.unwrap();
assert!(committees_per_slot > 1);
for snapshot in harness.chain.chain_dump().unwrap() {
let slot = snapshot.beacon_block.slot();
assert_eq!(
snapshot
.beacon_block
.as_ref()
.message()
.body()
.attestations()
.len() as u64,
if slot <= 1 { 0 } else { committees_per_slot }
);
}
}
#[tokio::test]
async fn shuffling_compatible_linear_chain() {
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
let head_block_root = harness
.extend_chain(
4 * E::slots_per_epoch() as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
check_shuffling_compatible(
&harness,
&get_state_for_block(&harness, head_block_root),
head_block_root,
);
}
#[tokio::test]
async fn shuffling_compatible_missing_pivot_block() {
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
// Skip the block at the end of the first epoch.
harness
.extend_chain(
E::slots_per_epoch() as usize - 2,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
harness.advance_slot();
harness.advance_slot();
let head_block_root = harness
.extend_chain(
2 * E::slots_per_epoch() as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
check_shuffling_compatible(
&harness,
&get_state_for_block(&harness, head_block_root),
head_block_root,
);
}
#[tokio::test]
async fn shuffling_compatible_simple_fork() {
let slots_per_epoch = E::slots_per_epoch() as usize;
let (db_path, harness, head1, head2) = multi_epoch_fork_valid_blocks_test(
2 * slots_per_epoch,
3 * slots_per_epoch,
3 * slots_per_epoch,
LOW_VALIDATOR_COUNT / 2,
)
.await;
let head1_state = get_state_for_block(&harness, head1);
let head2_state = get_state_for_block(&harness, head2);
check_shuffling_compatible(&harness, &head1_state, head1);
check_shuffling_compatible(&harness, &head1_state, head2);
check_shuffling_compatible(&harness, &head2_state, head1);
check_shuffling_compatible(&harness, &head2_state, head2);
drop(db_path);
}
#[tokio::test]
async fn shuffling_compatible_short_fork() {
let slots_per_epoch = E::slots_per_epoch() as usize;
let (db_path, harness, head1, head2) = multi_epoch_fork_valid_blocks_test(
2 * slots_per_epoch - 2,
slots_per_epoch + 2,
slots_per_epoch + 2,
LOW_VALIDATOR_COUNT / 2,
)
.await;
let head1_state = get_state_for_block(&harness, head1);
let head2_state = get_state_for_block(&harness, head2);
check_shuffling_compatible(&harness, &head1_state, head1);
check_shuffling_compatible(&harness, &head1_state, head2);
check_shuffling_compatible(&harness, &head2_state, head1);
check_shuffling_compatible(&harness, &head2_state, head2);
drop(db_path);
}
fn get_state_for_block(harness: &TestHarness, block_root: Hash256) -> BeaconState<E> {
let head_block = harness
.chain
.store
.get_blinded_block(&block_root)
.unwrap()
.unwrap();
harness
.chain
.get_state(&head_block.state_root(), Some(head_block.slot()))
.unwrap()
.unwrap()
}
/// Check the invariants that apply to `shuffling_is_compatible`.
fn check_shuffling_compatible(
harness: &TestHarness,
head_state: &BeaconState<E>,
head_block_root: Hash256,
) {
for maybe_tuple in harness
.chain
.rev_iter_block_roots_from(head_block_root)
.unwrap()
{
let (block_root, slot) = maybe_tuple.unwrap();
// Would an attestation to `block_root` at the current epoch be compatible with the head
// state's shuffling?
let current_epoch_shuffling_is_compatible = harness.chain.shuffling_is_compatible(
&block_root,
head_state.current_epoch(),
&head_state,
);
// Check for consistency with the more expensive shuffling lookup.
harness
.chain
.with_committee_cache(
block_root,
head_state.current_epoch(),
|committee_cache, _| {
let state_cache = head_state.committee_cache(RelativeEpoch::Current).unwrap();
if current_epoch_shuffling_is_compatible {
assert_eq!(committee_cache, state_cache, "block at slot {slot}");
} else {
assert_ne!(committee_cache, state_cache, "block at slot {slot}");
}
Ok(())
},
)
.unwrap_or_else(|e| {
// If the lookup fails then the shuffling must be invalid in some way, e.g. the
// block with `block_root` is from a later epoch than `previous_epoch`.
assert!(
!current_epoch_shuffling_is_compatible,
"block at slot {slot} has compatible shuffling at epoch {} \
but should be incompatible due to error: {e:?}",
head_state.current_epoch()
);
});
// Similarly for the previous epoch
let previous_epoch_shuffling_is_compatible = harness.chain.shuffling_is_compatible(
&block_root,
head_state.previous_epoch(),
&head_state,
);
harness
.chain
.with_committee_cache(
block_root,
head_state.previous_epoch(),
|committee_cache, _| {
let state_cache = head_state.committee_cache(RelativeEpoch::Previous).unwrap();
if previous_epoch_shuffling_is_compatible {
assert_eq!(committee_cache, state_cache);
} else {
assert_ne!(committee_cache, state_cache);
}
Ok(())
},
)
.unwrap_or_else(|e| {
// If the lookup fails then the shuffling must be invalid in some way, e.g. the
// block with `block_root` is from a later epoch than `previous_epoch`.
assert!(
!previous_epoch_shuffling_is_compatible,
"block at slot {slot} has compatible shuffling at epoch {} \
but should be incompatible due to error: {e:?}",
head_state.previous_epoch()
);
});
// Targeting two epochs before the current epoch should always return false
if head_state.current_epoch() >= 2 {
assert_eq!(
harness.chain.shuffling_is_compatible(
&block_root,
head_state.current_epoch() - 2,
&head_state
),
false
);
}
}
}
// Ensure blocks from abandoned forks are pruned from the Hot DB
#[tokio::test]
async fn prunes_abandoned_fork_between_two_finalized_checkpoints() {
const HONEST_VALIDATOR_COUNT: usize = 32;
const ADVERSARIAL_VALIDATOR_COUNT: usize = 16;
const VALIDATOR_COUNT: usize = HONEST_VALIDATOR_COUNT + ADVERSARIAL_VALIDATOR_COUNT;
let honest_validators: Vec<usize> = (0..HONEST_VALIDATOR_COUNT).collect();
let adversarial_validators: Vec<usize> = (HONEST_VALIDATOR_COUNT..VALIDATOR_COUNT).collect();
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let rig = get_harness(store.clone(), VALIDATOR_COUNT);
let slots_per_epoch = rig.slots_per_epoch();
let (mut state, state_root) = rig.get_current_state_and_root();
let canonical_chain_slots: Vec<Slot> = (1..=rig.epoch_start_slot(1)).map(Slot::new).collect();
let (canonical_chain_blocks_pre_finalization, _, _, new_state) = rig
.add_attested_blocks_at_slots(
state,
state_root,
&canonical_chain_slots,
&honest_validators,
)
.await;
state = new_state;
let canonical_chain_slot: u64 = rig.get_current_slot().into();
let stray_slots: Vec<Slot> = (canonical_chain_slot + 1..rig.epoch_start_slot(2))
.map(Slot::new)
.collect();
let (current_state, current_state_root) = rig.get_current_state_and_root();
let (stray_blocks, stray_states, stray_head, _) = rig
.add_attested_blocks_at_slots(
current_state,
current_state_root,
&stray_slots,
&adversarial_validators,
)
.await;
// Precondition: Ensure all stray_blocks blocks are still known
for &block_hash in stray_blocks.values() {
assert!(
rig.block_exists(block_hash),
"stray block {} should be still present",
block_hash
);
}
for (&slot, &state_hash) in &stray_states {
assert!(
rig.hot_state_exists(state_hash),
"stray state {} at slot {} should be still present",
state_hash,
slot
);
}
assert_eq!(rig.get_finalized_checkpoints(), hashset! {});
assert!(rig.chain.knows_head(&stray_head));
// Trigger finalization
let finalization_slots: Vec<Slot> = ((canonical_chain_slot + 1)
..=(canonical_chain_slot + slots_per_epoch * 5))
.map(Slot::new)
.collect();
let state_root = state.update_tree_hash_cache().unwrap();
let (canonical_chain_blocks_post_finalization, _, _, _) = rig
.add_attested_blocks_at_slots(state, state_root, &finalization_slots, &honest_validators)
.await;
// Postcondition: New blocks got finalized
assert_eq!(
rig.get_finalized_checkpoints(),
hashset! {
canonical_chain_blocks_pre_finalization[&rig.epoch_start_slot(1).into()],
canonical_chain_blocks_post_finalization[&rig.epoch_start_slot(2).into()],
},
);
// Postcondition: Ensure all stray_blocks blocks have been pruned
for &block_hash in stray_blocks.values() {
assert!(
!rig.block_exists(block_hash),
"abandoned block {block_hash:?} should have been pruned",
);
assert!(
!rig.chain.store.blobs_exist(&block_hash.into()).unwrap(),
"blobs for abandoned block {block_hash:?} should have been pruned"
);
}
for (&slot, &state_hash) in &stray_states {
assert!(
!rig.hot_state_exists(state_hash),
"stray state {} at slot {} should have been pruned",
state_hash,
slot
);
assert!(
!rig.cold_state_exists(state_hash),
"stray state {} at slot {} should have been pruned",
state_hash,
slot
);
}
assert!(!rig.chain.knows_head(&stray_head));
}
#[tokio::test]
async fn pruning_does_not_touch_abandoned_block_shared_with_canonical_chain() {
const HONEST_VALIDATOR_COUNT: usize = 32;
const ADVERSARIAL_VALIDATOR_COUNT: usize = 16;
const VALIDATOR_COUNT: usize = HONEST_VALIDATOR_COUNT + ADVERSARIAL_VALIDATOR_COUNT;
let honest_validators: Vec<usize> = (0..HONEST_VALIDATOR_COUNT).collect();
let adversarial_validators: Vec<usize> = (HONEST_VALIDATOR_COUNT..VALIDATOR_COUNT).collect();
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let rig = get_harness(store.clone(), VALIDATOR_COUNT);
let slots_per_epoch = rig.slots_per_epoch();
let (state, state_root) = rig.get_current_state_and_root();
// Fill up 0th epoch
let canonical_chain_slots_zeroth_epoch: Vec<Slot> =
(1..rig.epoch_start_slot(1)).map(Slot::new).collect();
let (_, _, _, mut state) = rig
.add_attested_blocks_at_slots(
state,
state_root,
&canonical_chain_slots_zeroth_epoch,
&honest_validators,
)
.await;
// Fill up 1st epoch
let canonical_chain_slots_first_epoch: Vec<Slot> = (rig.epoch_start_slot(1)
..=rig.epoch_start_slot(1) + 1)
.map(Slot::new)
.collect();
let state_root = state.update_tree_hash_cache().unwrap();
let (canonical_chain_blocks_first_epoch, _, shared_head, mut state) = rig
.add_attested_blocks_at_slots(
state.clone(),
state_root,
&canonical_chain_slots_first_epoch,
&honest_validators,
)
.await;
let canonical_chain_slot: u64 = rig.get_current_slot().into();
let stray_chain_slots_first_epoch: Vec<Slot> = (rig.epoch_start_slot(1) + 2
..=rig.epoch_start_slot(1) + 2)
.map(Slot::new)
.collect();
let state_root = state.update_tree_hash_cache().unwrap();
let (stray_blocks, stray_states, stray_head, _) = rig
.add_attested_blocks_at_slots(
state.clone(),
state_root,
&stray_chain_slots_first_epoch,
&adversarial_validators,
)
.await;
// Preconditions
for &block_hash in stray_blocks.values() {
assert!(
rig.block_exists(block_hash),
"stray block {} should be still present",
block_hash
);
}
for (&slot, &state_hash) in &stray_states {
assert!(
rig.hot_state_exists(state_hash),
"stray state {} at slot {} should be still present",
state_hash,
slot
);
}
let chain_dump = rig.chain.chain_dump().unwrap();
assert_eq!(
get_finalized_epoch_boundary_blocks(&chain_dump),
vec![Hash256::zero().into()].into_iter().collect(),
);
assert!(get_blocks(&chain_dump).contains(&shared_head));
// Trigger finalization
let finalization_slots: Vec<Slot> = ((canonical_chain_slot + 1)
..=(canonical_chain_slot + slots_per_epoch * 5))
.map(Slot::new)
.collect();
let state_root = state.update_tree_hash_cache().unwrap();
let (canonical_chain_blocks, _, _, _) = rig
.add_attested_blocks_at_slots(state, state_root, &finalization_slots, &honest_validators)
.await;
// Postconditions
assert_eq!(
rig.get_finalized_checkpoints(),
hashset! {
canonical_chain_blocks_first_epoch[&rig.epoch_start_slot(1).into()],
canonical_chain_blocks[&rig.epoch_start_slot(2).into()],
},
);
for &block_hash in stray_blocks.values() {
assert!(
!rig.block_exists(block_hash),
"stray block {} should have been pruned",
block_hash,
);
}
for (&slot, &state_hash) in &stray_states {
assert!(
!rig.hot_state_exists(state_hash),
"stray state {} at slot {} should have been pruned",
state_hash,
slot
);
assert!(
!rig.cold_state_exists(state_hash),
"stray state {} at slot {} should have been pruned",
state_hash,
slot
);
}
assert!(!rig.chain.knows_head(&stray_head));
let chain_dump = rig.chain.chain_dump().unwrap();
assert!(get_blocks(&chain_dump).contains(&shared_head));
}
#[tokio::test]
async fn pruning_does_not_touch_blocks_prior_to_finalization() {
const HONEST_VALIDATOR_COUNT: usize = 32;
const ADVERSARIAL_VALIDATOR_COUNT: usize = 16;
const VALIDATOR_COUNT: usize = HONEST_VALIDATOR_COUNT + ADVERSARIAL_VALIDATOR_COUNT;
let honest_validators: Vec<usize> = (0..HONEST_VALIDATOR_COUNT).collect();
let adversarial_validators: Vec<usize> = (HONEST_VALIDATOR_COUNT..VALIDATOR_COUNT).collect();
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let rig = get_harness(store.clone(), VALIDATOR_COUNT);
let slots_per_epoch = rig.slots_per_epoch();
let (mut state, state_root) = rig.get_current_state_and_root();
// Fill up 0th epoch with canonical chain blocks
let zeroth_epoch_slots: Vec<Slot> = (1..=rig.epoch_start_slot(1)).map(Slot::new).collect();
let (canonical_chain_blocks, _, _, new_state) = rig
.add_attested_blocks_at_slots(state, state_root, &zeroth_epoch_slots, &honest_validators)
.await;
state = new_state;
let canonical_chain_slot: u64 = rig.get_current_slot().into();
// Fill up 1st epoch. Contains a fork.
let first_epoch_slots: Vec<Slot> = ((rig.epoch_start_slot(1) + 1)..(rig.epoch_start_slot(2)))
.map(Slot::new)
.collect();
let state_root = state.update_tree_hash_cache().unwrap();
let (stray_blocks, stray_states, stray_head, _) = rig
.add_attested_blocks_at_slots(
state.clone(),
state_root,
&first_epoch_slots,
&adversarial_validators,
)
.await;
// Preconditions
for &block_hash in stray_blocks.values() {
assert!(
rig.block_exists(block_hash),
"stray block {} should be still present",
block_hash
);
}
for (&slot, &state_hash) in &stray_states {
assert!(
rig.hot_state_exists(state_hash),
"stray state {} at slot {} should be still present",
state_hash,
slot
);
}
assert_eq!(rig.get_finalized_checkpoints(), hashset! {});
// Trigger finalization
let slots: Vec<Slot> = ((canonical_chain_slot + 1)
..=(canonical_chain_slot + slots_per_epoch * 4))
.map(Slot::new)
.collect();
let state_root = state.update_tree_hash_cache().unwrap();
let (_, _, _, _) = rig
.add_attested_blocks_at_slots(state, state_root, &slots, &honest_validators)
.await;
// Postconditions
assert_eq!(
rig.get_finalized_checkpoints(),
hashset! {canonical_chain_blocks[&rig.epoch_start_slot(1).into()]},
);
for &block_hash in stray_blocks.values() {
assert!(
rig.block_exists(block_hash),
"stray block {} should be still present",
block_hash
);
}
for (&slot, &state_hash) in &stray_states {
assert!(
rig.hot_state_exists(state_hash),
"stray state {} at slot {} should be still present",
state_hash,
slot
);
}
assert!(rig.chain.knows_head(&stray_head));
}
#[tokio::test]
async fn prunes_fork_growing_past_youngest_finalized_checkpoint() {
const HONEST_VALIDATOR_COUNT: usize = 32;
const ADVERSARIAL_VALIDATOR_COUNT: usize = 16;
const VALIDATOR_COUNT: usize = HONEST_VALIDATOR_COUNT + ADVERSARIAL_VALIDATOR_COUNT;
let honest_validators: Vec<usize> = (0..HONEST_VALIDATOR_COUNT).collect();
let adversarial_validators: Vec<usize> = (HONEST_VALIDATOR_COUNT..VALIDATOR_COUNT).collect();
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let rig = get_harness(store.clone(), VALIDATOR_COUNT);
let (state, state_root) = rig.get_current_state_and_root();
// Fill up 0th epoch with canonical chain blocks
let zeroth_epoch_slots: Vec<Slot> = (1..=rig.epoch_start_slot(1)).map(Slot::new).collect();
let (canonical_blocks_zeroth_epoch, _, _, mut state) = rig
.add_attested_blocks_at_slots(state, state_root, &zeroth_epoch_slots, &honest_validators)
.await;
// Fill up 1st epoch. Contains a fork.
let slots_first_epoch: Vec<Slot> = (rig.epoch_start_slot(1) + 1..rig.epoch_start_slot(2))
.map(Into::into)
.collect();
let state_root = state.update_tree_hash_cache().unwrap();
let (stray_blocks_first_epoch, stray_states_first_epoch, _, mut stray_state) = rig
.add_attested_blocks_at_slots(
state.clone(),
state_root,
&slots_first_epoch,
&adversarial_validators,
)
.await;
let (canonical_blocks_first_epoch, _, _, mut canonical_state) = rig
.add_attested_blocks_at_slots(state, state_root, &slots_first_epoch, &honest_validators)
.await;
// Fill up 2nd epoch. Extends both the canonical chain and the fork.
let stray_slots_second_epoch: Vec<Slot> = (rig.epoch_start_slot(2)
..=rig.epoch_start_slot(2) + 1)
.map(Into::into)
.collect();
let stray_state_root = stray_state.update_tree_hash_cache().unwrap();
let (stray_blocks_second_epoch, stray_states_second_epoch, stray_head, _) = rig
.add_attested_blocks_at_slots(
stray_state,
stray_state_root,
&stray_slots_second_epoch,
&adversarial_validators,
)
.await;
// Precondition: Ensure all stray_blocks blocks are still known
let stray_blocks: HashMap<Slot, SignedBeaconBlockHash> = stray_blocks_first_epoch
.into_iter()
.chain(stray_blocks_second_epoch.into_iter())
.collect();
let stray_states: HashMap<Slot, BeaconStateHash> = stray_states_first_epoch
.into_iter()
.chain(stray_states_second_epoch.into_iter())
.collect();
for &block_hash in stray_blocks.values() {
assert!(
rig.block_exists(block_hash),
"stray block {} should be still present",
block_hash
);
}
for (&slot, &state_hash) in &stray_states {
assert!(
rig.hot_state_exists(state_hash),
"stray state {} at slot {} should be still present",
state_hash,
slot
);
}
// Precondition: Nothing is finalized yet
assert_eq!(rig.get_finalized_checkpoints(), hashset! {},);
assert!(rig.chain.knows_head(&stray_head));
// Trigger finalization
let canonical_slots: Vec<Slot> = (rig.epoch_start_slot(2)..=rig.epoch_start_slot(6))
.map(Into::into)
.collect();
let canonical_state_root = canonical_state.update_tree_hash_cache().unwrap();
let (canonical_blocks, _, _, _) = rig
.add_attested_blocks_at_slots(
canonical_state,
canonical_state_root,
&canonical_slots,
&honest_validators,
)
.await;
// Postconditions
let canonical_blocks: HashMap<Slot, SignedBeaconBlockHash> = canonical_blocks_zeroth_epoch
.into_iter()
.chain(canonical_blocks_first_epoch.into_iter())
.chain(canonical_blocks.into_iter())
.collect();
// Postcondition: New blocks got finalized
assert_eq!(
rig.get_finalized_checkpoints(),
hashset! {
canonical_blocks[&rig.epoch_start_slot(1).into()],
canonical_blocks[&rig.epoch_start_slot(2).into()],
},
);
// Postcondition: Ensure all stray_blocks blocks have been pruned
for &block_hash in stray_blocks.values() {
assert!(
!rig.block_exists(block_hash),
"abandoned block {} should have been pruned",
block_hash
);
}
for (&slot, &state_hash) in &stray_states {
assert!(
!rig.hot_state_exists(state_hash),
"stray state {} at slot {} should have been pruned",
state_hash,
slot
);
assert!(
!rig.cold_state_exists(state_hash),
"stray state {} at slot {} should have been pruned",
state_hash,
slot
);
}
assert!(!rig.chain.knows_head(&stray_head));
}
// This is to check if state outside of normal block processing are pruned correctly.
#[tokio::test]
async fn prunes_skipped_slots_states() {
const HONEST_VALIDATOR_COUNT: usize = 32;
const ADVERSARIAL_VALIDATOR_COUNT: usize = 16;
const VALIDATOR_COUNT: usize = HONEST_VALIDATOR_COUNT + ADVERSARIAL_VALIDATOR_COUNT;
let honest_validators: Vec<usize> = (0..HONEST_VALIDATOR_COUNT).collect();
let adversarial_validators: Vec<usize> = (HONEST_VALIDATOR_COUNT..VALIDATOR_COUNT).collect();
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let rig = get_harness(store.clone(), VALIDATOR_COUNT);
let (state, state_root) = rig.get_current_state_and_root();
let canonical_slots_zeroth_epoch: Vec<Slot> =
(1..=rig.epoch_start_slot(1)).map(Into::into).collect();
let (canonical_blocks_zeroth_epoch, _, _, mut canonical_state) = rig
.add_attested_blocks_at_slots(
state.clone(),
state_root,
&canonical_slots_zeroth_epoch,
&honest_validators,
)
.await;
let skipped_slot: Slot = (rig.epoch_start_slot(1) + 1).into();
let stray_slots: Vec<Slot> = ((skipped_slot + 1).into()..rig.epoch_start_slot(2))
.map(Into::into)
.collect();
let canonical_state_root = canonical_state.update_tree_hash_cache().unwrap();
let (stray_blocks, stray_states, _, stray_state) = rig
.add_attested_blocks_at_slots(
canonical_state.clone(),
canonical_state_root,
&stray_slots,
&adversarial_validators,
)
.await;
// Preconditions
for &block_hash in stray_blocks.values() {
assert!(
rig.block_exists(block_hash),
"stray block {} should be still present",
block_hash
);
}
for (&slot, &state_hash) in &stray_states {
assert!(
rig.hot_state_exists(state_hash),
"stray state {} at slot {} should be still present",
state_hash,
slot
);
}
assert_eq!(rig.get_finalized_checkpoints(), hashset! {},);
// Make sure slots were skipped
assert!(rig.is_skipped_slot(&stray_state, skipped_slot));
{
let state_hash = (*stray_state.get_state_root(skipped_slot).unwrap()).into();
assert!(
rig.hot_state_exists(state_hash),
"skipped slot state {} should be still present",
state_hash
);
}
// Trigger finalization
let canonical_slots: Vec<Slot> = ((skipped_slot + 1).into()..rig.epoch_start_slot(7))
.map(Into::into)
.collect();
let canonical_state_root = canonical_state.update_tree_hash_cache().unwrap();
let (canonical_blocks_post_finalization, _, _, _) = rig
.add_attested_blocks_at_slots(
canonical_state,
canonical_state_root,
&canonical_slots,
&honest_validators,
)
.await;
// Postconditions
let canonical_blocks: HashMap<Slot, SignedBeaconBlockHash> = canonical_blocks_zeroth_epoch
.into_iter()
.chain(canonical_blocks_post_finalization.into_iter())
.collect();
assert_eq!(
rig.get_finalized_checkpoints(),
hashset! {
canonical_blocks[&rig.epoch_start_slot(1).into()],
canonical_blocks[&rig.epoch_start_slot(2).into()],
},
);
for (&slot, &state_hash) in &stray_states {
assert!(
!rig.hot_state_exists(state_hash),
"stray state {} at slot {} should have been pruned",
state_hash,
slot
);
assert!(
!rig.cold_state_exists(state_hash),
"stray state {} at slot {} should have been pruned",
state_hash,
slot
);
}
assert!(rig.is_skipped_slot(&stray_state, skipped_slot));
{
let state_hash: BeaconStateHash =
(*stray_state.get_state_root(skipped_slot).unwrap()).into();
assert!(
!rig.hot_state_exists(state_hash),
"skipped slot {} state {} should have been pruned",
skipped_slot,
state_hash
);
}
}
// This is to check if state outside of normal block processing are pruned correctly.
#[tokio::test]
async fn finalizes_non_epoch_start_slot() {
const HONEST_VALIDATOR_COUNT: usize = 32;
const ADVERSARIAL_VALIDATOR_COUNT: usize = 16;
const VALIDATOR_COUNT: usize = HONEST_VALIDATOR_COUNT + ADVERSARIAL_VALIDATOR_COUNT;
let honest_validators: Vec<usize> = (0..HONEST_VALIDATOR_COUNT).collect();
let adversarial_validators: Vec<usize> = (HONEST_VALIDATOR_COUNT..VALIDATOR_COUNT).collect();
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let rig = get_harness(store.clone(), VALIDATOR_COUNT);
let (state, state_root) = rig.get_current_state_and_root();
let canonical_slots_zeroth_epoch: Vec<Slot> =
(1..rig.epoch_start_slot(1)).map(Into::into).collect();
let (canonical_blocks_zeroth_epoch, _, _, mut canonical_state) = rig
.add_attested_blocks_at_slots(
state.clone(),
state_root,
&canonical_slots_zeroth_epoch,
&honest_validators,
)
.await;
let skipped_slot: Slot = rig.epoch_start_slot(1).into();
let stray_slots: Vec<Slot> = ((skipped_slot + 1).into()..rig.epoch_start_slot(2))
.map(Into::into)
.collect();
let canonical_state_root = canonical_state.update_tree_hash_cache().unwrap();
let (stray_blocks, stray_states, _, stray_state) = rig
.add_attested_blocks_at_slots(
canonical_state.clone(),
canonical_state_root,
&stray_slots,
&adversarial_validators,
)
.await;
// Preconditions
for &block_hash in stray_blocks.values() {
assert!(
rig.block_exists(block_hash),
"stray block {} should be still present",
block_hash
);
}
for (&slot, &state_hash) in &stray_states {
assert!(
rig.hot_state_exists(state_hash),
"stray state {} at slot {} should be still present",
state_hash,
slot
);
}
assert_eq!(rig.get_finalized_checkpoints(), hashset! {});
// Make sure slots were skipped
assert!(rig.is_skipped_slot(&stray_state, skipped_slot));
{
let state_hash = (*stray_state.get_state_root(skipped_slot).unwrap()).into();
assert!(
rig.hot_state_exists(state_hash),
"skipped slot state {} should be still present",
state_hash
);
}
// Trigger finalization
let canonical_slots: Vec<Slot> = ((skipped_slot + 1).into()..rig.epoch_start_slot(7))
.map(Into::into)
.collect();
let canonical_state_root = canonical_state.update_tree_hash_cache().unwrap();
let (canonical_blocks_post_finalization, _, _, _) = rig
.add_attested_blocks_at_slots(
canonical_state,
canonical_state_root,
&canonical_slots,
&honest_validators,
)
.await;
// Postconditions
let canonical_blocks: HashMap<Slot, SignedBeaconBlockHash> = canonical_blocks_zeroth_epoch
.into_iter()
.chain(canonical_blocks_post_finalization.into_iter())
.collect();
assert_eq!(
rig.get_finalized_checkpoints(),
hashset! {
canonical_blocks[&(rig.epoch_start_slot(1)-1).into()],
canonical_blocks[&rig.epoch_start_slot(2).into()],
},
);
for (&slot, &state_hash) in &stray_states {
assert!(
!rig.hot_state_exists(state_hash),
"stray state {} at slot {} should have been pruned",
state_hash,
slot
);
assert!(
!rig.cold_state_exists(state_hash),
"stray state {} at slot {} should have been pruned",
state_hash,
slot
);
}
assert!(rig.is_skipped_slot(&stray_state, skipped_slot));
{
let state_hash: BeaconStateHash =
(*stray_state.get_state_root(skipped_slot).unwrap()).into();
assert!(
!rig.hot_state_exists(state_hash),
"skipped slot {} state {} should have been pruned",
skipped_slot,
state_hash
);
}
}
fn check_all_blocks_exist<'a>(
harness: &TestHarness,
blocks: impl Iterator<Item = &'a SignedBeaconBlockHash>,
) {
for &block_hash in blocks {
let block = harness.chain.get_blinded_block(&block_hash.into()).unwrap();
assert!(
block.is_some(),
"expected block {:?} to be in DB",
block_hash
);
}
}
fn check_all_states_exist<'a>(
harness: &TestHarness,
states: impl Iterator<Item = &'a BeaconStateHash>,
) {
for &state_hash in states {
let state = harness.chain.get_state(&state_hash.into(), None).unwrap();
assert!(
state.is_some(),
"expected state {:?} to be in DB",
state_hash,
);
}
}
// Check that none of the given states exist in the database.
fn check_no_states_exist<'a>(
harness: &TestHarness,
states: impl Iterator<Item = &'a BeaconStateHash>,
) {
for &state_root in states {
assert!(
harness
.chain
.get_state(&state_root.into(), None)
.unwrap()
.is_none(),
"state {:?} should not be in the DB",
state_root
);
}
}
// Check that none of the given blocks exist in the database.
fn check_no_blocks_exist<'a>(
harness: &TestHarness,
blocks: impl Iterator<Item = &'a SignedBeaconBlockHash>,
) {
for &block_hash in blocks {
let block = harness.chain.get_blinded_block(&block_hash.into()).unwrap();
assert!(
block.is_none(),
"did not expect block {:?} to be in the DB",
block_hash
);
assert!(
!harness.chain.store.blobs_exist(&block_hash.into()).unwrap(),
"blobs for abandoned block {block_hash:?} should have been pruned"
);
}
}
#[tokio::test]
async fn prune_single_block_fork() {
let slots_per_epoch = E::slots_per_epoch();
pruning_test(3 * slots_per_epoch, 1, slots_per_epoch, 0, 1).await;
}
#[tokio::test]
async fn prune_single_block_long_skip() {
let slots_per_epoch = E::slots_per_epoch();
pruning_test(
2 * slots_per_epoch,
1,
2 * slots_per_epoch,
2 * slots_per_epoch as u64,
1,
)
.await;
}
#[tokio::test]
async fn prune_shared_skip_states_mid_epoch() {
let slots_per_epoch = E::slots_per_epoch();
pruning_test(
slots_per_epoch + slots_per_epoch / 2,
1,
slots_per_epoch,
2,
slots_per_epoch - 1,
)
.await;
}
#[tokio::test]
async fn prune_shared_skip_states_epoch_boundaries() {
let slots_per_epoch = E::slots_per_epoch();
pruning_test(slots_per_epoch - 1, 1, slots_per_epoch, 2, slots_per_epoch).await;
pruning_test(slots_per_epoch - 1, 2, slots_per_epoch, 1, slots_per_epoch).await;
pruning_test(
2 * slots_per_epoch + slots_per_epoch / 2,
slots_per_epoch as u64 / 2,
slots_per_epoch,
slots_per_epoch as u64 / 2 + 1,
slots_per_epoch,
)
.await;
pruning_test(
2 * slots_per_epoch + slots_per_epoch / 2,
slots_per_epoch as u64 / 2,
slots_per_epoch,
slots_per_epoch as u64 / 2 + 1,
slots_per_epoch,
)
.await;
pruning_test(
2 * slots_per_epoch - 1,
slots_per_epoch as u64,
1,
0,
2 * slots_per_epoch,
)
.await;
}
/// Generic harness for pruning tests.
async fn pruning_test(
// Number of blocks to start the chain with before forking.
num_initial_blocks: u64,
// Number of skip slots on the main chain after the initial blocks.
num_canonical_skips: u64,
// Number of blocks on the main chain after the skip, but before the finalisation-triggering
// blocks.
num_canonical_middle_blocks: u64,
// Number of skip slots on the fork chain after the initial blocks.
num_fork_skips: u64,
// Number of blocks on the fork chain after the skips.
num_fork_blocks: u64,
) {
const VALIDATOR_COUNT: usize = 24;
const VALIDATOR_SUPERMAJORITY: usize = (VALIDATOR_COUNT / 3) * 2;
const HONEST_VALIDATOR_COUNT: usize = VALIDATOR_SUPERMAJORITY;
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store.clone(), VALIDATOR_COUNT);
let honest_validators: Vec<usize> = (0..HONEST_VALIDATOR_COUNT).collect();
let faulty_validators: Vec<usize> = (HONEST_VALIDATOR_COUNT..VALIDATOR_COUNT).collect();
let slots = |start: Slot, num_blocks: u64| -> Vec<Slot> {
(start.as_u64()..start.as_u64() + num_blocks)
.map(Slot::new)
.collect()
};
let start_slot = Slot::new(1);
let divergence_slot = start_slot + num_initial_blocks;
let (state, state_root) = harness.get_current_state_and_root();
let (_, _, _, divergence_state) = harness
.add_attested_blocks_at_slots(
state,
state_root,
&slots(start_slot, num_initial_blocks)[..],
&honest_validators,
)
.await;
let mut chains = harness
.add_blocks_on_multiple_chains(vec![
// Canonical chain
(
divergence_state.clone(),
slots(
divergence_slot + num_canonical_skips,
num_canonical_middle_blocks,
),
honest_validators.clone(),
),
// Fork chain
(
divergence_state.clone(),
slots(divergence_slot + num_fork_skips, num_fork_blocks),
faulty_validators,
),
])
.await;
let (_, _, _, mut canonical_state) = chains.remove(0);
let (stray_blocks, stray_states, _, stray_head_state) = chains.remove(0);
let stray_head_slot = divergence_slot + num_fork_skips + num_fork_blocks - 1;
let stray_head_state_root = stray_states[&stray_head_slot];
let stray_states = harness
.chain
.rev_iter_state_roots_from(stray_head_state_root.into(), &stray_head_state)
.map(Result::unwrap)
.map(|(state_root, _)| state_root.into())
.collect::<HashSet<_>>();
check_all_blocks_exist(&harness, stray_blocks.values());
check_all_states_exist(&harness, stray_states.iter());
let chain_dump = harness.chain.chain_dump().unwrap();
assert_eq!(
get_finalized_epoch_boundary_blocks(&chain_dump),
vec![Hash256::zero().into()].into_iter().collect(),
);
// Trigger finalization
let num_finalization_blocks = 4 * E::slots_per_epoch();
let canonical_slot = divergence_slot + num_canonical_skips + num_canonical_middle_blocks;
let canonical_state_root = canonical_state.update_tree_hash_cache().unwrap();
harness
.add_attested_blocks_at_slots(
canonical_state,
canonical_state_root,
&slots(canonical_slot, num_finalization_blocks),
&honest_validators,
)
.await;
// Check that finalization has advanced past the divergence slot.
assert!(
harness
.finalized_checkpoint()
.epoch
.start_slot(E::slots_per_epoch())
> divergence_slot
);
check_chain_dump(
&harness,
(num_initial_blocks + num_canonical_middle_blocks + num_finalization_blocks + 1) as u64,
);
let all_canonical_states = harness
.chain
.forwards_iter_state_roots(Slot::new(0))
.unwrap()
.map(Result::unwrap)
.map(|(state_root, _)| state_root.into())
.collect::<HashSet<BeaconStateHash>>();
check_all_states_exist(&harness, all_canonical_states.iter());
check_no_states_exist(&harness, stray_states.difference(&all_canonical_states));
check_no_blocks_exist(&harness, stray_blocks.values());
}
#[tokio::test]
async fn garbage_collect_temp_states_from_failed_block() {
let db_path = tempdir().unwrap();
// Wrap these functions to ensure the variables are dropped before we try to open another
// instance of the store.
let mut store = {
let store = get_store(&db_path);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
let slots_per_epoch = E::slots_per_epoch();
let genesis_state = harness.get_current_state();
let block_slot = Slot::new(2 * slots_per_epoch);
let ((signed_block, _), state) = harness.make_block(genesis_state, block_slot).await;
let (mut block, _) = (*signed_block).clone().deconstruct();
// Mutate the block to make it invalid, and re-sign it.
*block.state_root_mut() = Hash256::repeat_byte(0xff);
let proposer_index = block.proposer_index() as usize;
let block = Arc::new(block.sign(
&harness.validator_keypairs[proposer_index].sk,
&state.fork(),
state.genesis_validators_root(),
&harness.spec,
));
// The block should be rejected, but should store a bunch of temporary states.
harness.set_current_slot(block_slot);
harness
.process_block_result((block, None))
.await
.unwrap_err();
assert_eq!(
store.iter_temporary_state_roots().count(),
block_slot.as_usize() - 1
);
store
};
// Wait until all the references to the store have been dropped, this helps ensure we can
// re-open the store later.
loop {
store = if let Err(store_arc) = Arc::try_unwrap(store) {
sleep(Duration::from_millis(500)).await;
store_arc
} else {
break;
}
}
// On startup, the store should garbage collect all the temporary states.
let store = get_store(&db_path);
assert_eq!(store.iter_temporary_state_roots().count(), 0);
}
#[tokio::test]
async fn weak_subjectivity_sync_easy() {
let num_initial_slots = E::slots_per_epoch() * 11;
let checkpoint_slot = Slot::new(E::slots_per_epoch() * 9);
let slots = (1..num_initial_slots).map(Slot::new).collect();
weak_subjectivity_sync_test(slots, checkpoint_slot).await
}
#[tokio::test]
async fn weak_subjectivity_sync_unaligned_advanced_checkpoint() {
let num_initial_slots = E::slots_per_epoch() * 11;
let checkpoint_slot = Slot::new(E::slots_per_epoch() * 9);
let slots = (1..num_initial_slots)
.map(Slot::new)
.filter(|&slot| {
// Skip 3 slots leading up to the checkpoint slot.
slot <= checkpoint_slot - 3 || slot > checkpoint_slot
})
.collect();
weak_subjectivity_sync_test(slots, checkpoint_slot).await
}
#[tokio::test]
async fn weak_subjectivity_sync_unaligned_unadvanced_checkpoint() {
let num_initial_slots = E::slots_per_epoch() * 11;
let checkpoint_slot = Slot::new(E::slots_per_epoch() * 9 - 3);
let slots = (1..num_initial_slots)
.map(Slot::new)
.filter(|&slot| {
// Skip 3 slots after the checkpoint slot.
slot <= checkpoint_slot || slot > checkpoint_slot + 3
})
.collect();
weak_subjectivity_sync_test(slots, checkpoint_slot).await
}
// Regression test for https://github.com/sigp/lighthouse/issues/4817
// Skip 3 slots immediately after genesis, creating a gap between the genesis block and the first
// real block.
#[tokio::test]
async fn weak_subjectivity_sync_skips_at_genesis() {
let start_slot = 4;
let end_slot = E::slots_per_epoch() * 4;
let slots = (start_slot..end_slot).map(Slot::new).collect();
let checkpoint_slot = Slot::new(E::slots_per_epoch() * 2);
weak_subjectivity_sync_test(slots, checkpoint_slot).await
}
async fn weak_subjectivity_sync_test(slots: Vec<Slot>, checkpoint_slot: Slot) {
// Build an initial chain on one harness, representing a synced node with full history.
let num_final_blocks = E::slots_per_epoch() * 2;
let temp1 = tempdir().unwrap();
let full_store = get_store(&temp1);
let harness = get_harness(full_store.clone(), LOW_VALIDATOR_COUNT);
let all_validators = (0..LOW_VALIDATOR_COUNT).collect::<Vec<_>>();
let (genesis_state, genesis_state_root) = harness.get_current_state_and_root();
harness
.add_attested_blocks_at_slots(
genesis_state.clone(),
genesis_state_root,
&slots,
&all_validators,
)
.await;
let wss_block_root = harness
.chain
.block_root_at_slot(checkpoint_slot, WhenSlotSkipped::Prev)
.unwrap()
.unwrap();
let wss_state_root = harness
.chain
.state_root_at_slot(checkpoint_slot)
.unwrap()
.unwrap();
let wss_block = harness
.chain
.store
.get_full_block(&wss_block_root)
.unwrap()
.unwrap();
let wss_blobs_opt = harness.chain.store.get_blobs(&wss_block_root).unwrap();
let wss_state = full_store
.get_state(&wss_state_root, Some(checkpoint_slot))
.unwrap()
.unwrap();
// Add more blocks that advance finalization further.
harness.advance_slot();
harness
.extend_chain(
num_final_blocks as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
let (shutdown_tx, _shutdown_rx) = futures::channel::mpsc::channel(1);
let log = test_logger();
let temp2 = tempdir().unwrap();
let store = get_store(&temp2);
let spec = test_spec::<E>();
let seconds_per_slot = spec.seconds_per_slot;
let trusted_setup: TrustedSetup = serde_json::from_reader(TRUSTED_SETUP_BYTES)
.map_err(|e| println!("Unable to read trusted setup file: {}", e))
.unwrap();
let mock =
mock_execution_layer_from_parts(&harness.spec, harness.runtime.task_executor.clone());
// Initialise a new beacon chain from the finalized checkpoint.
// The slot clock must be set to a time ahead of the checkpoint state.
let slot_clock = TestingSlotClock::new(
Slot::new(0),
Duration::from_secs(harness.chain.genesis_time),
Duration::from_secs(seconds_per_slot),
);
slot_clock.set_slot(harness.get_current_slot().as_u64());
let beacon_chain = BeaconChainBuilder::<DiskHarnessType<E>>::new(MinimalEthSpec)
.store(store.clone())
.custom_spec(test_spec::<E>())
.task_executor(harness.chain.task_executor.clone())
.logger(log.clone())
.weak_subjectivity_state(
wss_state,
wss_block.clone(),
wss_blobs_opt.clone(),
genesis_state,
)
.unwrap()
.store_migrator_config(MigratorConfig::default().blocking())
.dummy_eth1_backend()
.expect("should build dummy backend")
.slot_clock(slot_clock)
.shutdown_sender(shutdown_tx)
.chain_config(ChainConfig::default())
.event_handler(Some(ServerSentEventHandler::new_with_capacity(
log.clone(),
1,
)))
.execution_layer(Some(mock.el))
.trusted_setup(trusted_setup)
.build()
.expect("should build");
let beacon_chain = Arc::new(beacon_chain);
let wss_block_root = wss_block.canonical_root();
let store_wss_block = harness
.chain
.get_block(&wss_block_root)
.await
.unwrap()
.unwrap();
let store_wss_blobs_opt = beacon_chain.store.get_blobs(&wss_block_root).unwrap();
assert_eq!(store_wss_block, wss_block);
assert_eq!(store_wss_blobs_opt, wss_blobs_opt);
// Apply blocks forward to reach head.
let chain_dump = harness.chain.chain_dump().unwrap();
let new_blocks = chain_dump
.iter()
.filter(|snapshot| snapshot.beacon_block.slot() > checkpoint_slot);
for snapshot in new_blocks {
let block_root = snapshot.beacon_block_root;
let full_block = harness
.chain
.get_block(&snapshot.beacon_block_root)
.await
.unwrap()
.unwrap();
let blobs = harness.chain.get_blobs(&block_root).expect("blobs");
let slot = full_block.slot();
let state_root = full_block.state_root();
beacon_chain.slot_clock.set_slot(slot.as_u64());
beacon_chain
.process_block(
full_block.canonical_root(),
RpcBlock::new(Some(block_root), Arc::new(full_block), Some(blobs)).unwrap(),
NotifyExecutionLayer::Yes,
|| Ok(()),
)
.await
.unwrap();
beacon_chain.recompute_head_at_current_slot().await;
// Check that the new block's state can be loaded correctly.
let mut state = beacon_chain
.store
.get_state(&state_root, Some(slot))
.unwrap()
.unwrap();
assert_eq!(state.update_tree_hash_cache().unwrap(), state_root);
}
// Forwards iterator from 0 should fail as we lack blocks.
assert!(matches!(
beacon_chain.forwards_iter_block_roots(Slot::new(0)),
Err(BeaconChainError::HistoricalBlockError(
HistoricalBlockError::BlockOutOfRange { .. }
))
));
// Simulate processing of a `StatusMessage` with an older finalized epoch by calling
// `block_root_at_slot` with an old slot for which we don't know the block root. It should
// return `None` rather than erroring.
assert_eq!(
beacon_chain
.block_root_at_slot(Slot::new(1), WhenSlotSkipped::None)
.unwrap(),
None
);
// Simulate querying the API for a historic state that is unknown. It should also return
// `None` rather than erroring.
assert_eq!(beacon_chain.state_root_at_slot(Slot::new(1)).unwrap(), None);
// Supply blocks backwards to reach genesis. Omit the genesis block to check genesis handling.
let historical_blocks = chain_dump[..wss_block.slot().as_usize()]
.iter()
.filter(|s| s.beacon_block.slot() != 0)
.map(|s| s.beacon_block.clone())
.collect::<Vec<_>>();
let mut available_blocks = vec![];
for blinded in historical_blocks {
let block_root = blinded.canonical_root();
let full_block = harness
.chain
.get_block(&block_root)
.await
.expect("should get block")
.expect("should get block");
let blobs = harness.chain.get_blobs(&block_root).expect("blobs");
if let MaybeAvailableBlock::Available(block) = harness
.chain
.data_availability_checker
.verify_kzg_for_rpc_block(
RpcBlock::new(Some(block_root), Arc::new(full_block), Some(blobs)).unwrap(),
)
.expect("should verify kzg")
{
available_blocks.push(block);
}
}
// Corrupt the signature on the 1st block to ensure that the backfill processor is checking
// signatures correctly. Regression test for https://github.com/sigp/lighthouse/pull/5120.
let mut batch_with_invalid_first_block = available_blocks.clone();
batch_with_invalid_first_block[0] = {
let (block_root, block, blobs) = available_blocks[0].clone().deconstruct();
let mut corrupt_block = (*block).clone();
*corrupt_block.signature_mut() = Signature::empty();
AvailableBlock::__new_for_testing(block_root, Arc::new(corrupt_block), blobs)
};
// Importing the invalid batch should error.
assert!(matches!(
beacon_chain
.import_historical_block_batch(batch_with_invalid_first_block)
.unwrap_err(),
BeaconChainError::HistoricalBlockError(HistoricalBlockError::InvalidSignature)
));
// Importing the batch with valid signatures should succeed.
beacon_chain
.import_historical_block_batch(available_blocks.clone())
.unwrap();
assert_eq!(beacon_chain.store.get_oldest_block_slot(), 0);
// Resupplying the blocks should not fail, they can be safely ignored.
beacon_chain
.import_historical_block_batch(available_blocks)
.unwrap();
// The forwards iterator should now match the original chain
let forwards = beacon_chain
.forwards_iter_block_roots(Slot::new(0))
.unwrap()
.map(Result::unwrap)
.collect::<Vec<_>>();
let expected = harness
.chain
.forwards_iter_block_roots(Slot::new(0))
.unwrap()
.map(Result::unwrap)
.collect::<Vec<_>>();
assert_eq!(forwards, expected);
// All blocks can be loaded.
let mut prev_block_root = Hash256::zero();
for (block_root, slot) in beacon_chain
.forwards_iter_block_roots(Slot::new(0))
.unwrap()
.map(Result::unwrap)
{
let block = store.get_blinded_block(&block_root).unwrap().unwrap();
if block_root != prev_block_root {
assert_eq!(block.slot(), slot);
}
prev_block_root = block_root;
}
// All states from the oldest state slot can be loaded.
let (_, oldest_state_slot) = store.get_historic_state_limits();
for (state_root, slot) in beacon_chain
.forwards_iter_state_roots(oldest_state_slot)
.unwrap()
.map(Result::unwrap)
{
let state = store.get_state(&state_root, Some(slot)).unwrap().unwrap();
assert_eq!(state.slot(), slot);
assert_eq!(state.canonical_root(), state_root);
}
// Anchor slot is still set to the slot of the checkpoint block.
assert_eq!(store.get_anchor_slot(), Some(wss_block.slot()));
// Reconstruct states.
store.clone().reconstruct_historic_states().unwrap();
assert_eq!(store.get_anchor_slot(), None);
}
/// Test that blocks and attestations that refer to states around an unaligned split state are
/// processed correctly.
#[tokio::test]
async fn process_blocks_and_attestations_for_unaligned_checkpoint() {
let temp = tempdir().unwrap();
let store = get_store(&temp);
let chain_config = ChainConfig {
reconstruct_historic_states: false,
..ChainConfig::default()
};
let harness = get_harness_generic(store.clone(), LOW_VALIDATOR_COUNT, chain_config);
let all_validators = (0..LOW_VALIDATOR_COUNT).collect::<Vec<_>>();
let split_slot = Slot::new(E::slots_per_epoch() * 4);
let pre_skips = 1;
let post_skips = 1;
// Build the chain up to the intended split slot, with 3 skips before the split.
let slots = (1..=split_slot.as_u64() - pre_skips)
.map(Slot::new)
.collect::<Vec<_>>();
let (genesis_state, genesis_state_root) = harness.get_current_state_and_root();
harness
.add_attested_blocks_at_slots(
genesis_state.clone(),
genesis_state_root,
&slots,
&all_validators,
)
.await;
// Before the split slot becomes finalized, create two forking blocks that build on the split
// block:
//
// - one that is invalid because it conflicts with finalization (slot <= finalized_slot)
// - one that is valid because its slot is not finalized (slot > finalized_slot)
let (unadvanced_split_state, unadvanced_split_state_root) =
harness.get_current_state_and_root();
let ((invalid_fork_block, _), _) = harness
.make_block(unadvanced_split_state.clone(), split_slot)
.await;
let ((valid_fork_block, _), _) = harness
.make_block(unadvanced_split_state.clone(), split_slot + 1)
.await;
// Advance the chain so that the intended split slot is finalized.
// Do not attest in the epoch boundary slot, to make attestation production later easier (no
// equivocations).
let finalizing_slot = split_slot + 2 * E::slots_per_epoch();
for _ in 0..pre_skips + post_skips {
harness.advance_slot();
}
harness.extend_to_slot(finalizing_slot - 1).await;
harness
.add_block_at_slot(finalizing_slot, harness.get_current_state())
.await
.unwrap();
// Check that the split slot is as intended.
let split = store.get_split_info();
assert_eq!(split.slot, split_slot);
assert_eq!(split.block_root, valid_fork_block.parent_root());
assert_ne!(split.state_root, unadvanced_split_state_root);
// Applying the invalid block should fail.
let err = harness
.chain
.process_block(
invalid_fork_block.canonical_root(),
invalid_fork_block.clone(),
NotifyExecutionLayer::Yes,
|| Ok(()),
)
.await
.unwrap_err();
assert!(matches!(err, BlockError::WouldRevertFinalizedSlot { .. }));
// Applying the valid block should succeed, but it should not become head.
harness
.chain
.process_block(
valid_fork_block.canonical_root(),
valid_fork_block.clone(),
NotifyExecutionLayer::Yes,
|| Ok(()),
)
.await
.unwrap();
harness.chain.recompute_head_at_current_slot().await;
assert_ne!(harness.head_block_root(), valid_fork_block.canonical_root());
// Attestations to the split block in the next 2 epochs should be processed successfully.
let attestation_start_slot = harness.get_current_slot();
let attestation_end_slot = attestation_start_slot + 2 * E::slots_per_epoch();
let (split_state_root, mut advanced_split_state) = harness
.chain
.store
.get_advanced_hot_state(split.block_root, split.slot, split.state_root)
.unwrap()
.unwrap();
complete_state_advance(
&mut advanced_split_state,
Some(split_state_root),
attestation_start_slot,
&harness.chain.spec,
)
.unwrap();
advanced_split_state
.build_caches(&harness.chain.spec)
.unwrap();
let advanced_split_state_root = advanced_split_state.update_tree_hash_cache().unwrap();
for slot in (attestation_start_slot.as_u64()..attestation_end_slot.as_u64()).map(Slot::new) {
let attestations = harness.make_attestations(
&all_validators,
&advanced_split_state,
advanced_split_state_root,
split.block_root.into(),
slot,
);
harness.advance_slot();
harness.process_attestations(attestations);
}
}
#[tokio::test]
async fn finalizes_after_resuming_from_db() {
let validator_count = 16;
let num_blocks_produced = MinimalEthSpec::slots_per_epoch() * 8;
let first_half = num_blocks_produced / 2;
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = BeaconChainHarness::builder(MinimalEthSpec)
.default_spec()
.keypairs(KEYPAIRS[0..validator_count].to_vec())
.fresh_disk_store(store.clone())
.mock_execution_layer()
.build();
harness.advance_slot();
harness
.extend_chain(
first_half as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
assert!(
harness
.chain
.head_snapshot()
.beacon_state
.finalized_checkpoint()
.epoch
> 0,
"the chain should have already finalized"
);
let latest_slot = harness.chain.slot().expect("should have a slot");
harness
.chain
.persist_head_and_fork_choice()
.expect("should persist the head and fork choice");
harness
.chain
.persist_op_pool()
.expect("should persist the op pool");
harness
.chain
.persist_eth1_cache()
.expect("should persist the eth1 cache");
let original_chain = harness.chain;
let resumed_harness = BeaconChainHarness::<DiskHarnessType<E>>::builder(MinimalEthSpec)
.default_spec()
.keypairs(KEYPAIRS[0..validator_count].to_vec())
.resumed_disk_store(store)
.testing_slot_clock(original_chain.slot_clock.clone())
.execution_layer(original_chain.execution_layer.clone())
.build();
assert_chains_pretty_much_the_same(&original_chain, &resumed_harness.chain);
// Set the slot clock of the resumed harness to be in the slot following the previous harness.
//
// This allows us to produce the block at the next slot.
resumed_harness
.chain
.slot_clock
.set_slot(latest_slot.as_u64() + 1);
resumed_harness
.extend_chain(
(num_blocks_produced - first_half) as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
let state = &resumed_harness.chain.head_snapshot().beacon_state;
assert_eq!(
state.slot(),
num_blocks_produced,
"head should be at the current slot"
);
assert_eq!(
state.current_epoch(),
num_blocks_produced / MinimalEthSpec::slots_per_epoch(),
"head should be at the expected epoch"
);
assert_eq!(
state.current_justified_checkpoint().epoch,
state.current_epoch() - 1,
"the head should be justified one behind the current epoch"
);
assert_eq!(
state.finalized_checkpoint().epoch,
state.current_epoch() - 2,
"the head should be finalized two behind the current epoch"
);
}
#[tokio::test]
async fn revert_minority_fork_on_resume() {
let validator_count = 16;
let slots_per_epoch = MinimalEthSpec::slots_per_epoch();
let fork_epoch = Epoch::new(4);
let fork_slot = fork_epoch.start_slot(slots_per_epoch);
let initial_blocks = slots_per_epoch * fork_epoch.as_u64() - 1;
let post_fork_blocks = slots_per_epoch * 3;
let mut spec1 = MinimalEthSpec::default_spec();
spec1.altair_fork_epoch = None;
let mut spec2 = MinimalEthSpec::default_spec();
spec2.altair_fork_epoch = Some(fork_epoch);
let seconds_per_slot = spec1.seconds_per_slot;
let all_validators = (0..validator_count).collect::<Vec<usize>>();
// Chain with no fork epoch configured.
let db_path1 = tempdir().unwrap();
let store1 = get_store_generic(&db_path1, StoreConfig::default(), spec1.clone());
let harness1 = BeaconChainHarness::builder(MinimalEthSpec)
.spec(spec1)
.keypairs(KEYPAIRS[0..validator_count].to_vec())
.fresh_disk_store(store1)
.mock_execution_layer()
.build();
// Chain with fork epoch configured.
let db_path2 = tempdir().unwrap();
let store2 = get_store_generic(&db_path2, StoreConfig::default(), spec2.clone());
let harness2 = BeaconChainHarness::builder(MinimalEthSpec)
.spec(spec2.clone())
.keypairs(KEYPAIRS[0..validator_count].to_vec())
.fresh_disk_store(store2)
.mock_execution_layer()
.build();
// Apply the same blocks to both chains initially.
let mut state = harness1.get_current_state();
let mut block_root = harness1.chain.genesis_block_root;
for slot in (1..=initial_blocks).map(Slot::new) {
let state_root = state.update_tree_hash_cache().unwrap();
let attestations = harness1.make_attestations(
&all_validators,
&state,
state_root,
block_root.into(),
slot,
);
harness1.set_current_slot(slot);
harness2.set_current_slot(slot);
harness1.process_attestations(attestations.clone());
harness2.process_attestations(attestations);
let ((block, blobs), new_state) = harness1.make_block(state, slot).await;
harness1
.process_block(slot, block.canonical_root(), (block.clone(), blobs.clone()))
.await
.unwrap();
harness2
.process_block(slot, block.canonical_root(), (block.clone(), blobs.clone()))
.await
.unwrap();
state = new_state;
block_root = block.canonical_root();
}
assert_eq!(harness1.head_slot(), fork_slot - 1);
assert_eq!(harness2.head_slot(), fork_slot - 1);
// Fork the two chains.
let mut state1 = state.clone();
let mut state2 = state.clone();
let mut majority_blocks = vec![];
for i in 0..post_fork_blocks {
let slot = fork_slot + i;
// Attestations on majority chain.
let state_root = state.update_tree_hash_cache().unwrap();
let attestations = harness2.make_attestations(
&all_validators,
&state2,
state_root,
block_root.into(),
slot,
);
harness2.set_current_slot(slot);
harness2.process_attestations(attestations);
// Minority chain block (no attesters).
let ((block1, blobs1), new_state1) = harness1.make_block(state1, slot).await;
harness1
.process_block(slot, block1.canonical_root(), (block1, blobs1))
.await
.unwrap();
state1 = new_state1;
// Majority chain block (all attesters).
let ((block2, blobs2), new_state2) = harness2.make_block(state2, slot).await;
harness2
.process_block(slot, block2.canonical_root(), (block2.clone(), blobs2))
.await
.unwrap();
state2 = new_state2;
block_root = block2.canonical_root();
majority_blocks.push(block2);
}
let end_slot = fork_slot + post_fork_blocks - 1;
assert_eq!(harness1.head_slot(), end_slot);
assert_eq!(harness2.head_slot(), end_slot);
// Resume from disk with the hard-fork activated: this should revert the post-fork blocks.
// We have to do some hackery with the `slot_clock` so that the correct slot is set when
// the beacon chain builder loads the head block.
drop(harness1);
let resume_store = get_store_generic(&db_path1, StoreConfig::default(), spec2.clone());
let resumed_harness = TestHarness::builder(MinimalEthSpec)
.spec(spec2)
.keypairs(KEYPAIRS[0..validator_count].to_vec())
.resumed_disk_store(resume_store)
.override_store_mutator(Box::new(move |mut builder| {
builder = builder
.resume_from_db()
.unwrap()
.testing_slot_clock(Duration::from_secs(seconds_per_slot))
.unwrap();
builder
.get_slot_clock()
.unwrap()
.set_slot(end_slot.as_u64());
builder
}))
.mock_execution_layer()
.build();
// Head should now be just before the fork.
resumed_harness.chain.recompute_head_at_current_slot().await;
assert_eq!(resumed_harness.head_slot(), fork_slot - 1);
// Head track should know the canonical head and the rogue head.
assert_eq!(resumed_harness.chain.heads().len(), 2);
assert!(resumed_harness
.chain
.knows_head(&resumed_harness.head_block_root().into()));
// Apply blocks from the majority chain and trigger finalization.
let initial_split_slot = resumed_harness.chain.store.get_split_slot();
for block in &majority_blocks {
resumed_harness
.process_block_result((block.clone(), None))
.await
.unwrap();
// The canonical head should be the block from the majority chain.
resumed_harness.chain.recompute_head_at_current_slot().await;
assert_eq!(resumed_harness.head_slot(), block.slot());
assert_eq!(resumed_harness.head_block_root(), block.canonical_root());
}
let advanced_split_slot = resumed_harness.chain.store.get_split_slot();
// Check that the migration ran successfully.
assert!(advanced_split_slot > initial_split_slot);
// Check that there is only a single head now matching harness2 (the minority chain is gone).
let heads = resumed_harness.chain.heads();
assert_eq!(heads, harness2.chain.heads());
assert_eq!(heads.len(), 1);
}
// This test checks whether the schema downgrade from the latest version to some minimum supported
// version is correct. This is the easiest schema test to write without historic versions of
// Lighthouse on-hand, but has the disadvantage that the min version needs to be adjusted manually
// as old downgrades are deprecated.
#[tokio::test]
async fn schema_downgrade_to_min_version() {
let num_blocks_produced = E::slots_per_epoch() * 4;
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
let spec = &harness.chain.spec.clone();
harness
.extend_chain(
num_blocks_produced as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
let min_version = if harness.spec.deneb_fork_epoch.is_some() {
// Can't downgrade beyond V18 once Deneb is reached, for simplicity don't test that
// at all if Deneb is enabled.
SchemaVersion(18)
} else {
SchemaVersion(16)
};
// Save the slot clock so that the new harness doesn't revert in time.
let slot_clock = harness.chain.slot_clock.clone();
// Close the database to ensure everything is written to disk.
drop(store);
drop(harness);
// Re-open the store.
let store = get_store(&db_path);
// Downgrade.
let deposit_contract_deploy_block = 0;
migrate_schema::<DiskHarnessType<E>>(
store.clone(),
deposit_contract_deploy_block,
CURRENT_SCHEMA_VERSION,
min_version,
store.logger().clone(),
spec,
)
.expect("schema downgrade to minimum version should work");
// Upgrade back.
migrate_schema::<DiskHarnessType<E>>(
store.clone(),
deposit_contract_deploy_block,
min_version,
CURRENT_SCHEMA_VERSION,
store.logger().clone(),
spec,
)
.expect("schema upgrade from minimum version should work");
// Recreate the harness.
let harness = BeaconChainHarness::builder(MinimalEthSpec)
.default_spec()
.keypairs(KEYPAIRS[0..LOW_VALIDATOR_COUNT].to_vec())
.logger(store.logger().clone())
.testing_slot_clock(slot_clock)
.resumed_disk_store(store.clone())
.mock_execution_layer()
.build();
check_finalization(&harness, num_blocks_produced);
check_split_slot(&harness, store.clone());
check_chain_dump(&harness, num_blocks_produced + 1);
check_iterators(&harness);
// Check that downgrading beyond the minimum version fails (bound is *tight*).
let min_version_sub_1 = SchemaVersion(min_version.as_u64().checked_sub(1).unwrap());
migrate_schema::<DiskHarnessType<E>>(
store.clone(),
deposit_contract_deploy_block,
CURRENT_SCHEMA_VERSION,
min_version_sub_1,
harness.logger().clone(),
spec,
)
.expect_err("should not downgrade below minimum version");
}
/// Check that blob pruning prunes blobs older than the data availability boundary.
#[tokio::test]
async fn deneb_prune_blobs_happy_case() {
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let Some(deneb_fork_epoch) = store.get_chain_spec().deneb_fork_epoch else {
// No-op prior to Deneb.
return;
};
let deneb_fork_slot = deneb_fork_epoch.start_slot(E::slots_per_epoch());
let num_blocks_produced = E::slots_per_epoch() * 8;
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
harness
.extend_chain(
num_blocks_produced as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
// Prior to manual pruning with an artifically low data availability boundary all blobs should
// be stored.
assert_eq!(
store.get_blob_info().oldest_blob_slot,
Some(deneb_fork_slot)
);
check_blob_existence(&harness, Slot::new(1), harness.head_slot(), true);
// Trigger blob pruning of blobs older than epoch 2.
let data_availability_boundary = Epoch::new(2);
store
.try_prune_blobs(true, data_availability_boundary)
.unwrap();
// Check oldest blob slot is updated accordingly and prior blobs have been deleted.
let oldest_blob_slot = store.get_blob_info().oldest_blob_slot.unwrap();
assert_eq!(
oldest_blob_slot,
data_availability_boundary.start_slot(E::slots_per_epoch())
);
check_blob_existence(&harness, Slot::new(0), oldest_blob_slot - 1, false);
check_blob_existence(&harness, oldest_blob_slot, harness.head_slot(), true);
}
/// Check that blob pruning does not prune without finalization.
#[tokio::test]
async fn deneb_prune_blobs_no_finalization() {
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let Some(deneb_fork_epoch) = store.get_chain_spec().deneb_fork_epoch else {
// No-op prior to Deneb.
return;
};
let deneb_fork_slot = deneb_fork_epoch.start_slot(E::slots_per_epoch());
let initial_num_blocks = E::slots_per_epoch() * 5;
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
// Finalize to epoch 3.
harness
.extend_chain(
initial_num_blocks as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
// Extend the chain for another few epochs without attestations.
let unfinalized_num_blocks = E::slots_per_epoch() * 3;
harness.advance_slot();
harness
.extend_chain(
unfinalized_num_blocks as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::SomeValidators(vec![]),
)
.await;
// Finalization should be at epoch 3.
let finalized_slot = Slot::new(E::slots_per_epoch() * 3);
assert_eq!(harness.get_current_state().finalized_checkpoint().epoch, 3);
assert_eq!(store.get_split_slot(), finalized_slot);
// All blobs should still be available.
assert_eq!(
store.get_blob_info().oldest_blob_slot,
Some(deneb_fork_slot)
);
check_blob_existence(&harness, Slot::new(0), harness.head_slot(), true);
// Attempt blob pruning of blobs older than epoch 4, which is newer than finalization.
let data_availability_boundary = Epoch::new(4);
store
.try_prune_blobs(true, data_availability_boundary)
.unwrap();
// Check oldest blob slot is only updated to finalization, and NOT to the DAB.
let oldest_blob_slot = store.get_blob_info().oldest_blob_slot.unwrap();
assert_eq!(oldest_blob_slot, finalized_slot);
check_blob_existence(&harness, Slot::new(0), finalized_slot - 1, false);
check_blob_existence(&harness, finalized_slot, harness.head_slot(), true);
}
/// Check that blob pruning does not fail trying to prune across the fork boundary.
#[tokio::test]
async fn deneb_prune_blobs_fork_boundary() {
let deneb_fork_epoch = Epoch::new(4);
let mut spec = ForkName::Capella.make_genesis_spec(E::default_spec());
spec.deneb_fork_epoch = Some(deneb_fork_epoch);
let deneb_fork_slot = deneb_fork_epoch.start_slot(E::slots_per_epoch());
let db_path = tempdir().unwrap();
let store = get_store_generic(&db_path, StoreConfig::default(), spec);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
let num_blocks = E::slots_per_epoch() * 7;
// Finalize to epoch 5.
harness
.extend_chain(
num_blocks as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
// Finalization should be at epoch 5.
let finalized_epoch = Epoch::new(5);
let finalized_slot = finalized_epoch.start_slot(E::slots_per_epoch());
assert_eq!(
harness.get_current_state().finalized_checkpoint().epoch,
finalized_epoch
);
assert_eq!(store.get_split_slot(), finalized_slot);
// All blobs should still be available.
assert_eq!(
store.get_blob_info().oldest_blob_slot,
Some(deneb_fork_slot)
);
check_blob_existence(&harness, Slot::new(0), harness.head_slot(), true);
// Attempt pruning with data availability epochs that precede the fork epoch.
// No pruning should occur.
assert!(deneb_fork_epoch < finalized_epoch);
for data_availability_boundary in [Epoch::new(0), Epoch::new(3), deneb_fork_epoch] {
store
.try_prune_blobs(true, data_availability_boundary)
.unwrap();
// Check oldest blob slot is not updated.
assert_eq!(
store.get_blob_info().oldest_blob_slot,
Some(deneb_fork_slot)
);
}
// All blobs should still be available.
check_blob_existence(&harness, Slot::new(0), harness.head_slot(), true);
// Prune one epoch past the fork.
let pruned_slot = (deneb_fork_epoch + 1).start_slot(E::slots_per_epoch());
store.try_prune_blobs(true, deneb_fork_epoch + 1).unwrap();
assert_eq!(store.get_blob_info().oldest_blob_slot, Some(pruned_slot));
check_blob_existence(&harness, Slot::new(0), pruned_slot - 1, false);
check_blob_existence(&harness, pruned_slot, harness.head_slot(), true);
}
/// Check that blob pruning prunes blobs older than the data availability boundary with margin
/// applied.
#[tokio::test]
async fn deneb_prune_blobs_margin1() {
deneb_prune_blobs_margin_test(1).await;
}
#[tokio::test]
async fn deneb_prune_blobs_margin3() {
deneb_prune_blobs_margin_test(3).await;
}
#[tokio::test]
async fn deneb_prune_blobs_margin4() {
deneb_prune_blobs_margin_test(4).await;
}
async fn deneb_prune_blobs_margin_test(margin: u64) {
let config = StoreConfig {
blob_prune_margin_epochs: margin,
..StoreConfig::default()
};
let db_path = tempdir().unwrap();
let store = get_store_generic(&db_path, config, test_spec::<E>());
let Some(deneb_fork_epoch) = store.get_chain_spec().deneb_fork_epoch else {
// No-op prior to Deneb.
return;
};
let deneb_fork_slot = deneb_fork_epoch.start_slot(E::slots_per_epoch());
let num_blocks_produced = E::slots_per_epoch() * 8;
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
harness
.extend_chain(
num_blocks_produced as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
// Prior to manual pruning with an artifically low data availability boundary all blobs should
// be stored.
assert_eq!(
store.get_blob_info().oldest_blob_slot,
Some(deneb_fork_slot)
);
check_blob_existence(&harness, Slot::new(1), harness.head_slot(), true);
// Trigger blob pruning of blobs older than epoch 6 - margin (6 is the minimum, due to
// finalization).
let data_availability_boundary = Epoch::new(6);
let effective_data_availability_boundary =
data_availability_boundary - store.get_config().blob_prune_margin_epochs;
assert!(
effective_data_availability_boundary > 0,
"must be > 0 because epoch 0 won't get pruned alone"
);
store
.try_prune_blobs(true, data_availability_boundary)
.unwrap();
// Check oldest blob slot is updated accordingly and prior blobs have been deleted.
let oldest_blob_slot = store.get_blob_info().oldest_blob_slot.unwrap();
assert_eq!(
oldest_blob_slot,
effective_data_availability_boundary.start_slot(E::slots_per_epoch())
);
check_blob_existence(&harness, Slot::new(0), oldest_blob_slot - 1, false);
check_blob_existence(&harness, oldest_blob_slot, harness.head_slot(), true);
}
/// Check that a database with `blobs_db=false` can be upgraded to `blobs_db=true` before Deneb.
#[tokio::test]
async fn change_to_separate_blobs_db_before_deneb() {
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
// Only run this test on forks prior to Deneb. If the blobs database already has blobs, we can't
// move it.
if store.get_chain_spec().deneb_fork_epoch.is_some() {
return;
}
let init_blob_info = store.get_blob_info();
assert!(
init_blob_info.blobs_db,
"separate blobs DB should be the default"
);
// Change to `blobs_db=false` to emulate legacy Deneb DB.
let legacy_blob_info = BlobInfo {
blobs_db: false,
..init_blob_info
};
store
.compare_and_set_blob_info_with_write(init_blob_info.clone(), legacy_blob_info.clone())
.unwrap();
assert_eq!(store.get_blob_info(), legacy_blob_info);
// Re-open the DB and check that `blobs_db` gets changed back to true.
drop(store);
let store = get_store(&db_path);
assert_eq!(store.get_blob_info(), init_blob_info);
}
/// Check that there are blob sidecars (or not) at every slot in the range.
fn check_blob_existence(
harness: &TestHarness,
start_slot: Slot,
end_slot: Slot,
should_exist: bool,
) {
let mut blobs_seen = 0;
for (block_root, slot) in harness
.chain
.forwards_iter_block_roots_until(start_slot, end_slot)
.unwrap()
.map(Result::unwrap)
{
if let Some(blobs) = harness.chain.store.get_blobs(&block_root).unwrap() {
assert!(should_exist, "blobs at slot {slot} exist but should not");
blobs_seen += blobs.len();
} else {
// We don't actually store empty blobs, so unfortunately we can't assert anything
// meaningful here (like asserting that the blob should not exist).
}
}
if should_exist {
assert_ne!(blobs_seen, 0, "expected non-zero number of blobs");
}
}
#[tokio::test]
async fn prune_historic_states() {
let num_blocks_produced = E::slots_per_epoch() * 5;
let db_path = tempdir().unwrap();
let store = get_store(&db_path);
let harness = get_harness(store.clone(), LOW_VALIDATOR_COUNT);
let genesis_state_root = harness.chain.genesis_state_root;
let genesis_state = harness
.chain
.get_state(&genesis_state_root, None)
.unwrap()
.unwrap();
harness
.extend_chain(
num_blocks_produced as usize,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await;
// Check historical state is present.
let state_roots_iter = harness
.chain
.forwards_iter_state_roots(Slot::new(0))
.unwrap();
for (state_root, slot) in state_roots_iter
.take(E::slots_per_epoch() as usize)
.map(Result::unwrap)
{
assert!(store.get_state(&state_root, Some(slot)).unwrap().is_some());
}
store
.prune_historic_states(genesis_state_root, &genesis_state)
.unwrap();
// Check that anchor info is updated.
let anchor_info = store.get_anchor_info().unwrap();
assert_eq!(anchor_info.state_lower_limit, 0);
assert_eq!(anchor_info.state_upper_limit, STATE_UPPER_LIMIT_NO_RETAIN);
// Historical states should be pruned.
let state_roots_iter = harness
.chain
.forwards_iter_state_roots(Slot::new(1))
.unwrap();
for (state_root, slot) in state_roots_iter
.take(E::slots_per_epoch() as usize)
.map(Result::unwrap)
{
assert!(store.get_state(&state_root, Some(slot)).unwrap().is_none());
}
// Ensure that genesis state is still accessible
let genesis_state_root = harness.chain.genesis_state_root;
assert!(store
.get_state(&genesis_state_root, Some(Slot::new(0)))
.unwrap()
.is_some());
// Run for another two epochs.
let additional_blocks_produced = 2 * E::slots_per_epoch();
harness
.extend_slots(additional_blocks_produced as usize)
.await;
check_finalization(&harness, num_blocks_produced + additional_blocks_produced);
check_split_slot(&harness, store);
}
/// Checks that two chains are the same, for the purpose of these tests.
///
/// Several fields that are hard/impossible to check are ignored (e.g., the store).
fn assert_chains_pretty_much_the_same<T: BeaconChainTypes>(a: &BeaconChain<T>, b: &BeaconChain<T>) {
assert_eq!(a.spec, b.spec, "spec should be equal");
assert_eq!(a.op_pool, b.op_pool, "op_pool should be equal");
let a_head = a.head_snapshot();
let b_head = b.head_snapshot();
assert_eq!(
a_head.beacon_block_root, b_head.beacon_block_root,
"head block roots should be equal"
);
assert_eq!(
a_head.beacon_block, b_head.beacon_block,
"head blocks should be equal"
);
// Clone with committee caches only to prevent other caches from messing with the equality
// check.
assert_eq!(
a_head.beacon_state.clone_with_only_committee_caches(),
b_head.beacon_state.clone_with_only_committee_caches(),
"head states should be equal"
);
assert_eq!(a.heads(), b.heads(), "heads() should be equal");
assert_eq!(
a.genesis_block_root, b.genesis_block_root,
"genesis_block_root should be equal"
);
let slot = a.slot().unwrap();
let spec = T::EthSpec::default_spec();
assert!(
a.canonical_head
.fork_choice_write_lock()
.get_head(slot, &spec)
.unwrap()
== b.canonical_head
.fork_choice_write_lock()
.get_head(slot, &spec)
.unwrap(),
"fork_choice heads should be equal"
);
}
/// Check that the head state's slot matches `expected_slot`.
fn check_slot(harness: &TestHarness, expected_slot: u64) {
let state = &harness.chain.head_snapshot().beacon_state;
assert_eq!(
state.slot(),
expected_slot,
"head should be at the current slot"
);
}
/// Check that the chain has finalized under best-case assumptions, and check the head slot.
fn check_finalization(harness: &TestHarness, expected_slot: u64) {
let state = &harness.chain.head_snapshot().beacon_state;
check_slot(harness, expected_slot);
assert_eq!(
state.current_justified_checkpoint().epoch,
state.current_epoch() - 1,
"the head should be justified one behind the current epoch"
);
assert_eq!(
state.finalized_checkpoint().epoch,
state.current_epoch() - 2,
"the head should be finalized two behind the current epoch"
);
}
/// Check that the HotColdDB's split_slot is equal to the start slot of the last finalized epoch.
fn check_split_slot(harness: &TestHarness, store: Arc<HotColdDB<E, LevelDB<E>, LevelDB<E>>>) {
let split_slot = store.get_split_slot();
assert_eq!(
harness
.chain
.head_snapshot()
.beacon_state
.finalized_checkpoint()
.epoch
.start_slot(E::slots_per_epoch()),
split_slot
);
assert_ne!(split_slot, 0);
}
/// Check that all the states in a chain dump have the correct tree hash.
fn check_chain_dump(harness: &TestHarness, expected_len: u64) {
let chain_dump = harness.chain.chain_dump().unwrap();
let split_slot = harness.chain.store.get_split_slot();
assert_eq!(chain_dump.len() as u64, expected_len);
for checkpoint in &chain_dump {
// Check that the tree hash of the stored state is as expected
assert_eq!(
checkpoint.beacon_state_root(),
checkpoint.beacon_state.tree_hash_root(),
"tree hash of stored state is incorrect"
);
// Check that looking up the state root with no slot hint succeeds.
// This tests the state root -> slot mapping.
assert_eq!(
harness
.chain
.store
.get_state(&checkpoint.beacon_state_root(), None)
.expect("no error")
.expect("state exists")
.slot(),
checkpoint.beacon_state.slot()
);
// Check presence of execution payload on disk.
if harness.chain.spec.bellatrix_fork_epoch.is_some() {
assert_eq!(
harness
.chain
.store
.execution_payload_exists(&checkpoint.beacon_block_root)
.unwrap(),
checkpoint.beacon_block.slot() >= split_slot,
"incorrect payload storage for block at slot {}: {:?}",
checkpoint.beacon_block.slot(),
checkpoint.beacon_block_root,
);
}
}
// Check the forwards block roots iterator against the chain dump
let chain_dump_block_roots = chain_dump
.iter()
.map(|checkpoint| (checkpoint.beacon_block_root, checkpoint.beacon_block.slot()))
.collect::<Vec<_>>();
let mut forward_block_roots = harness
.chain
.forwards_iter_block_roots(Slot::new(0))
.expect("should get iter")
.map(Result::unwrap)
.collect::<Vec<_>>();
// Drop the block roots for skipped slots.
forward_block_roots.dedup_by_key(|(block_root, _)| *block_root);
for i in 0..std::cmp::max(chain_dump_block_roots.len(), forward_block_roots.len()) {
assert_eq!(
chain_dump_block_roots[i],
forward_block_roots[i],
"split slot is {}",
harness.chain.store.get_split_slot()
);
}
}
/// Check that every state from the canonical chain is in the database, and that the
/// reverse state and block root iterators reach genesis.
fn check_iterators(harness: &TestHarness) {
let mut max_slot = None;
for (state_root, slot) in harness
.chain
.forwards_iter_state_roots(Slot::new(0))
.expect("should get iter")
.map(Result::unwrap)
{
assert!(
harness
.chain
.store
.get_state(&state_root, Some(slot))
.unwrap()
.is_some(),
"state {:?} from canonical chain should be in DB",
state_root
);
max_slot = Some(slot);
}
// Assert that we reached the head.
assert_eq!(max_slot, Some(harness.head_slot()));
// Assert that the block root iterator reaches the head.
assert_eq!(
harness
.chain
.forwards_iter_block_roots(Slot::new(0))
.expect("should get iter")
.last()
.map(Result::unwrap)
.map(|(_, slot)| slot),
Some(harness.head_slot())
);
}
fn get_finalized_epoch_boundary_blocks(
dump: &[BeaconSnapshot<MinimalEthSpec, BlindedPayload<MinimalEthSpec>>],
) -> HashSet<SignedBeaconBlockHash> {
dump.iter()
.cloned()
.map(|checkpoint| checkpoint.beacon_state.finalized_checkpoint().root.into())
.collect()
}
fn get_blocks(
dump: &[BeaconSnapshot<MinimalEthSpec, BlindedPayload<MinimalEthSpec>>],
) -> HashSet<SignedBeaconBlockHash> {
dump.iter()
.cloned()
.map(|checkpoint| checkpoint.beacon_block_root.into())
.collect()
}