lighthouse/beacon_node/lighthouse_network/tests/rpc_tests.rs
Paul Hauner be4e261e74 Use async code when interacting with EL (#3244)
## Overview

This rather extensive PR achieves two primary goals:

1. Uses the finalized/justified checkpoints of fork choice (FC), rather than that of the head state.
2. Refactors fork choice, block production and block processing to `async` functions.

Additionally, it achieves:

- Concurrent forkchoice updates to the EL and cache pruning after a new head is selected.
- Concurrent "block packing" (attestations, etc) and execution payload retrieval during block production.
- Concurrent per-block-processing and execution payload verification during block processing.
- The `Arc`-ification of `SignedBeaconBlock` during block processing (it's never mutated, so why not?):
    - I had to do this to deal with sending blocks into spawned tasks.
    - Previously we were cloning the beacon block at least 2 times during each block processing, these clones are either removed or turned into cheaper `Arc` clones.
    - We were also `Box`-ing and un-`Box`-ing beacon blocks as they moved throughout the networking crate. This is not a big deal, but it's nice to avoid shifting things between the stack and heap.
    - Avoids cloning *all the blocks* in *every chain segment* during sync.
    - It also has the potential to clean up our code where we need to pass an *owned* block around so we can send it back in the case of an error (I didn't do much of this, my PR is already big enough 😅)
- The `BeaconChain::HeadSafetyStatus` struct was removed. It was an old relic from prior merge specs.

For motivation for this change, see https://github.com/sigp/lighthouse/pull/3244#issuecomment-1160963273

## Changes to `canonical_head` and `fork_choice`

Previously, the `BeaconChain` had two separate fields:

```
canonical_head: RwLock<Snapshot>,
fork_choice: RwLock<BeaconForkChoice>
```

Now, we have grouped these values under a single struct:

```
canonical_head: CanonicalHead {
  cached_head: RwLock<Arc<Snapshot>>,
  fork_choice: RwLock<BeaconForkChoice>
} 
```

Apart from ergonomics, the only *actual* change here is wrapping the canonical head snapshot in an `Arc`. This means that we no longer need to hold the `cached_head` (`canonical_head`, in old terms) lock when we want to pull some values from it. This was done to avoid deadlock risks by preventing functions from acquiring (and holding) the `cached_head` and `fork_choice` locks simultaneously.

## Breaking Changes

### The `state` (root) field in the `finalized_checkpoint` SSE event

Consider the scenario where epoch `n` is just finalized, but `start_slot(n)` is skipped. There are two state roots we might in the `finalized_checkpoint` SSE event:

1. The state root of the finalized block, which is `get_block(finalized_checkpoint.root).state_root`.
4. The state root at slot of `start_slot(n)`, which would be the state from (1), but "skipped forward" through any skip slots.

Previously, Lighthouse would choose (2). However, we can see that when [Teku generates that event](de2b2801c8/data/beaconrestapi/src/main/java/tech/pegasys/teku/beaconrestapi/handlers/v1/events/EventSubscriptionManager.java (L171-L182)) it uses [`getStateRootFromBlockRoot`](de2b2801c8/data/provider/src/main/java/tech/pegasys/teku/api/ChainDataProvider.java (L336-L341)) which uses (1).

I have switched Lighthouse from (2) to (1). I think it's a somewhat arbitrary choice between the two, where (1) is easier to compute and is consistent with Teku.

## Notes for Reviewers

I've renamed `BeaconChain::fork_choice` to `BeaconChain::recompute_head`. Doing this helped ensure I broke all previous uses of fork choice and I also find it more descriptive. It describes an action and can't be confused with trying to get a reference to the `ForkChoice` struct.

I've changed the ordering of SSE events when a block is received. It used to be `[block, finalized, head]` and now it's `[block, head, finalized]`. It was easier this way and I don't think we were making any promises about SSE event ordering so it's not "breaking".

I've made it so fork choice will run when it's first constructed. I did this because I wanted to have a cached version of the last call to `get_head`. Ensuring `get_head` has been run *at least once* means that the cached values doesn't need to wrapped in an `Option`. This was fairly simple, it just involved passing a `slot` to the constructor so it knows *when* it's being run. When loading a fork choice from the store and a slot clock isn't handy I've just used the `slot` that was saved in the `fork_choice_store`. That seems like it would be a faithful representation of the slot when we saved it.

I added the `genesis_time: u64` to the `BeaconChain`. It's small, constant and nice to have around.

Since we're using FC for the fin/just checkpoints, we no longer get the `0x00..00` roots at genesis. You can see I had to remove a work-around in `ef-tests` here: b56be3bc2. I can't find any reason why this would be an issue, if anything I think it'll be better since the genesis-alias has caught us out a few times (0x00..00 isn't actually a real root). Edit: I did find a case where the `network` expected the 0x00..00 alias and patched it here: 3f26ac3e2.

You'll notice a lot of changes in tests. Generally, tests should be functionally equivalent. Here are the things creating the most diff-noise in tests:
- Changing tests to be `tokio::async` tests.
- Adding `.await` to fork choice, block processing and block production functions.
- Refactor of the `canonical_head` "API" provided by the `BeaconChain`. E.g., `chain.canonical_head.cached_head()` instead of `chain.canonical_head.read()`.
- Wrapping `SignedBeaconBlock` in an `Arc`.
- In the `beacon_chain/tests/block_verification`, we can't use the `lazy_static` `CHAIN_SEGMENT` variable anymore since it's generated with an async function. We just generate it in each test, not so efficient but hopefully insignificant.

I had to disable `rayon` concurrent tests in the `fork_choice` tests. This is because the use of `rayon` and `block_on` was causing a panic.

Co-authored-by: Mac L <mjladson@pm.me>
2022-07-03 05:36:50 +00:00

969 lines
38 KiB
Rust

#![cfg(test)]
use lighthouse_network::rpc::methods::*;
use lighthouse_network::{
rpc::max_rpc_size, BehaviourEvent, Libp2pEvent, ReportSource, Request, Response,
};
use slog::{debug, warn, Level};
use ssz::Encode;
use ssz_types::VariableList;
use std::sync::Arc;
use std::time::Duration;
use tokio::runtime::Runtime;
use tokio::time::sleep;
use types::{
BeaconBlock, BeaconBlockAltair, BeaconBlockBase, BeaconBlockMerge, Epoch, EthSpec, ForkContext,
ForkName, Hash256, MinimalEthSpec, Signature, SignedBeaconBlock, Slot,
};
mod common;
type E = MinimalEthSpec;
/// Merge block with length < max_rpc_size.
fn merge_block_small(fork_context: &ForkContext) -> BeaconBlock<E> {
let mut block = BeaconBlockMerge::<E>::empty(&E::default_spec());
let tx = VariableList::from(vec![0; 1024]);
let txs = VariableList::from(std::iter::repeat(tx).take(5000).collect::<Vec<_>>());
block.body.execution_payload.execution_payload.transactions = txs;
let block = BeaconBlock::Merge(block);
assert!(block.ssz_bytes_len() <= max_rpc_size(fork_context));
block
}
/// Merge block with length > MAX_RPC_SIZE.
/// The max limit for a merge block is in the order of ~16GiB which wouldn't fit in memory.
/// Hence, we generate a merge block just greater than `MAX_RPC_SIZE` to test rejection on the rpc layer.
fn merge_block_large(fork_context: &ForkContext) -> BeaconBlock<E> {
let mut block = BeaconBlockMerge::<E>::empty(&E::default_spec());
let tx = VariableList::from(vec![0; 1024]);
let txs = VariableList::from(std::iter::repeat(tx).take(100000).collect::<Vec<_>>());
block.body.execution_payload.execution_payload.transactions = txs;
let block = BeaconBlock::Merge(block);
assert!(block.ssz_bytes_len() > max_rpc_size(fork_context));
block
}
// Tests the STATUS RPC message
#[test]
#[allow(clippy::single_match)]
fn test_status_rpc() {
// set up the logging. The level and enabled logging or not
let log_level = Level::Debug;
let enable_logging = false;
let rt = Arc::new(Runtime::new().unwrap());
let log = common::build_log(log_level, enable_logging);
rt.block_on(async {
// get sender/receiver
let (mut sender, mut receiver) =
common::build_node_pair(Arc::downgrade(&rt), &log, ForkName::Base).await;
// Dummy STATUS RPC message
let rpc_request = Request::Status(StatusMessage {
fork_digest: [0; 4],
finalized_root: Hash256::from_low_u64_be(0),
finalized_epoch: Epoch::new(1),
head_root: Hash256::from_low_u64_be(0),
head_slot: Slot::new(1),
});
// Dummy STATUS RPC message
let rpc_response = Response::Status(StatusMessage {
fork_digest: [0; 4],
finalized_root: Hash256::from_low_u64_be(0),
finalized_epoch: Epoch::new(1),
head_root: Hash256::from_low_u64_be(0),
head_slot: Slot::new(1),
});
// build the sender future
let sender_future = async {
loop {
match sender.next_event().await {
Libp2pEvent::Behaviour(BehaviourEvent::PeerConnectedOutgoing(peer_id)) => {
// Send a STATUS message
debug!(log, "Sending RPC");
sender
.swarm
.behaviour_mut()
.send_request(peer_id, 10, rpc_request.clone());
}
Libp2pEvent::Behaviour(BehaviourEvent::ResponseReceived {
peer_id: _,
id: 10,
response,
}) => {
// Should receive the RPC response
debug!(log, "Sender Received");
assert_eq!(response, rpc_response.clone());
debug!(log, "Sender Completed");
return;
}
_ => {}
}
}
};
// build the receiver future
let receiver_future = async {
loop {
match receiver.next_event().await {
Libp2pEvent::Behaviour(BehaviourEvent::RequestReceived {
peer_id,
id,
request,
}) => {
if request == rpc_request {
// send the response
debug!(log, "Receiver Received");
receiver.swarm.behaviour_mut().send_successful_response(
peer_id,
id,
rpc_response.clone(),
);
}
}
_ => {} // Ignore other events
}
}
};
tokio::select! {
_ = sender_future => {}
_ = receiver_future => {}
_ = sleep(Duration::from_secs(30)) => {
panic!("Future timed out");
}
}
})
}
// Tests a streamed BlocksByRange RPC Message
#[test]
#[allow(clippy::single_match)]
fn test_blocks_by_range_chunked_rpc() {
// set up the logging. The level and enabled logging or not
let log_level = Level::Debug;
let enable_logging = false;
let messages_to_send = 6;
let log = common::build_log(log_level, enable_logging);
let rt = Arc::new(Runtime::new().unwrap());
rt.block_on(async {
// get sender/receiver
let (mut sender, mut receiver) =
common::build_node_pair(Arc::downgrade(&rt), &log, ForkName::Merge).await;
// BlocksByRange Request
let rpc_request = Request::BlocksByRange(BlocksByRangeRequest {
start_slot: 0,
count: messages_to_send,
});
let spec = E::default_spec();
// BlocksByRange Response
let full_block = BeaconBlock::Base(BeaconBlockBase::<E>::full(&spec));
let signed_full_block = SignedBeaconBlock::from_block(full_block, Signature::empty());
let rpc_response_base = Response::BlocksByRange(Some(Arc::new(signed_full_block)));
let full_block = BeaconBlock::Altair(BeaconBlockAltair::<E>::full(&spec));
let signed_full_block = SignedBeaconBlock::from_block(full_block, Signature::empty());
let rpc_response_altair = Response::BlocksByRange(Some(Arc::new(signed_full_block)));
let full_block = merge_block_small(&common::fork_context(ForkName::Merge));
let signed_full_block = SignedBeaconBlock::from_block(full_block, Signature::empty());
let rpc_response_merge_small = Response::BlocksByRange(Some(Arc::new(signed_full_block)));
// keep count of the number of messages received
let mut messages_received = 0;
let request_id = messages_to_send as usize;
// build the sender future
let sender_future = async {
loop {
match sender.next_event().await {
Libp2pEvent::Behaviour(BehaviourEvent::PeerConnectedOutgoing(peer_id)) => {
// Send a STATUS message
debug!(log, "Sending RPC");
sender.swarm.behaviour_mut().send_request(
peer_id,
request_id,
rpc_request.clone(),
);
}
Libp2pEvent::Behaviour(BehaviourEvent::ResponseReceived {
peer_id: _,
id: _,
response,
}) => {
warn!(log, "Sender received a response");
match response {
Response::BlocksByRange(Some(_)) => {
if messages_received < 2 {
assert_eq!(response, rpc_response_base.clone());
} else if messages_received < 4 {
assert_eq!(response, rpc_response_altair.clone());
} else {
assert_eq!(response, rpc_response_merge_small.clone());
}
messages_received += 1;
warn!(log, "Chunk received");
}
Response::BlocksByRange(None) => {
// should be exactly `messages_to_send` messages before terminating
assert_eq!(messages_received, messages_to_send);
// end the test
return;
}
_ => panic!("Invalid RPC received"),
}
}
_ => {} // Ignore other behaviour events
}
}
};
// build the receiver future
let receiver_future = async {
loop {
match receiver.next_event().await {
Libp2pEvent::Behaviour(BehaviourEvent::RequestReceived {
peer_id,
id,
request,
}) => {
if request == rpc_request {
// send the response
warn!(log, "Receiver got request");
for i in 0..messages_to_send {
// Send first third of responses as base blocks,
// second as altair and third as merge.
let rpc_response = if i < 2 {
rpc_response_base.clone()
} else if i < 4 {
rpc_response_altair.clone()
} else {
rpc_response_merge_small.clone()
};
receiver.swarm.behaviour_mut().send_successful_response(
peer_id,
id,
rpc_response.clone(),
);
}
// send the stream termination
receiver.swarm.behaviour_mut().send_successful_response(
peer_id,
id,
Response::BlocksByRange(None),
);
}
}
_ => {} // Ignore other events
}
}
};
tokio::select! {
_ = sender_future => {}
_ = receiver_future => {}
_ = sleep(Duration::from_secs(30)) => {
panic!("Future timed out");
}
}
})
}
// Tests rejection of blocks over `MAX_RPC_SIZE`.
#[test]
#[allow(clippy::single_match)]
fn test_blocks_by_range_over_limit() {
// set up the logging. The level and enabled logging or not
let log_level = Level::Debug;
let enable_logging = false;
let messages_to_send = 5;
let log = common::build_log(log_level, enable_logging);
let rt = Arc::new(Runtime::new().unwrap());
rt.block_on(async {
// get sender/receiver
let (mut sender, mut receiver) =
common::build_node_pair(Arc::downgrade(&rt), &log, ForkName::Merge).await;
// BlocksByRange Request
let rpc_request = Request::BlocksByRange(BlocksByRangeRequest {
start_slot: 0,
count: messages_to_send,
});
// BlocksByRange Response
let full_block = merge_block_large(&common::fork_context(ForkName::Merge));
let signed_full_block = SignedBeaconBlock::from_block(full_block, Signature::empty());
let rpc_response_merge_large = Response::BlocksByRange(Some(Arc::new(signed_full_block)));
let request_id = messages_to_send as usize;
// build the sender future
let sender_future = async {
loop {
match sender.next_event().await {
Libp2pEvent::Behaviour(BehaviourEvent::PeerConnectedOutgoing(peer_id)) => {
// Send a STATUS message
debug!(log, "Sending RPC");
sender.swarm.behaviour_mut().send_request(
peer_id,
request_id,
rpc_request.clone(),
);
}
// The request will fail because the sender will refuse to send anything > MAX_RPC_SIZE
Libp2pEvent::Behaviour(BehaviourEvent::RPCFailed { id, .. }) => {
assert_eq!(id, request_id);
return;
}
_ => {} // Ignore other behaviour events
}
}
};
// build the receiver future
let receiver_future = async {
loop {
match receiver.next_event().await {
Libp2pEvent::Behaviour(BehaviourEvent::RequestReceived {
peer_id,
id,
request,
}) => {
if request == rpc_request {
// send the response
warn!(log, "Receiver got request");
for _ in 0..messages_to_send {
let rpc_response = rpc_response_merge_large.clone();
receiver.swarm.behaviour_mut().send_successful_response(
peer_id,
id,
rpc_response.clone(),
);
}
// send the stream termination
receiver.swarm.behaviour_mut().send_successful_response(
peer_id,
id,
Response::BlocksByRange(None),
);
}
}
_ => {} // Ignore other events
}
}
};
tokio::select! {
_ = sender_future => {}
_ = receiver_future => {}
_ = sleep(Duration::from_secs(30)) => {
panic!("Future timed out");
}
}
})
}
// Tests that a streamed BlocksByRange RPC Message terminates when all expected chunks were received
#[test]
fn test_blocks_by_range_chunked_rpc_terminates_correctly() {
// set up the logging. The level and enabled logging or not
let log_level = Level::Debug;
let enable_logging = false;
let messages_to_send = 10;
let extra_messages_to_send = 10;
let log = common::build_log(log_level, enable_logging);
let rt = Arc::new(Runtime::new().unwrap());
rt.block_on(async {
// get sender/receiver
let (mut sender, mut receiver) =
common::build_node_pair(Arc::downgrade(&rt), &log, ForkName::Base).await;
// BlocksByRange Request
let rpc_request = Request::BlocksByRange(BlocksByRangeRequest {
start_slot: 0,
count: messages_to_send,
});
// BlocksByRange Response
let spec = E::default_spec();
let empty_block = BeaconBlock::empty(&spec);
let empty_signed = SignedBeaconBlock::from_block(empty_block, Signature::empty());
let rpc_response = Response::BlocksByRange(Some(Arc::new(empty_signed)));
// keep count of the number of messages received
let mut messages_received: u64 = 0;
let request_id = messages_to_send as usize;
// build the sender future
let sender_future = async {
loop {
match sender.next_event().await {
Libp2pEvent::Behaviour(BehaviourEvent::PeerConnectedOutgoing(peer_id)) => {
// Send a STATUS message
debug!(log, "Sending RPC");
sender.swarm.behaviour_mut().send_request(
peer_id,
request_id,
rpc_request.clone(),
);
}
Libp2pEvent::Behaviour(BehaviourEvent::ResponseReceived {
peer_id: _,
id: _,
response,
}) =>
// Should receive the RPC response
{
debug!(log, "Sender received a response");
match response {
Response::BlocksByRange(Some(_)) => {
assert_eq!(response, rpc_response.clone());
messages_received += 1;
}
Response::BlocksByRange(None) => {
// should be exactly 10 messages, as requested
assert_eq!(messages_received, messages_to_send);
}
_ => panic!("Invalid RPC received"),
}
}
_ => {} // Ignore other behaviour events
}
}
};
// determine messages to send (PeerId, RequestId). If some, indicates we still need to send
// messages
let mut message_info = None;
// the number of messages we've sent
let mut messages_sent = 0;
let receiver_future = async {
loop {
// this future either drives the sending/receiving or times out allowing messages to be
// sent in the timeout
match futures::future::select(
Box::pin(receiver.next_event()),
Box::pin(tokio::time::sleep(Duration::from_secs(1))),
)
.await
{
futures::future::Either::Left((
Libp2pEvent::Behaviour(BehaviourEvent::RequestReceived {
peer_id,
id,
request,
}),
_,
)) => {
if request == rpc_request {
// send the response
warn!(log, "Receiver got request");
message_info = Some((peer_id, id));
}
}
futures::future::Either::Right((_, _)) => {} // The timeout hit, send messages if required
_ => continue,
}
// if we need to send messages send them here. This will happen after a delay
if message_info.is_some() {
messages_sent += 1;
let (peer_id, stream_id) = message_info.as_ref().unwrap();
receiver.swarm.behaviour_mut().send_successful_response(
*peer_id,
*stream_id,
rpc_response.clone(),
);
debug!(log, "Sending message {}", messages_sent);
if messages_sent == messages_to_send + extra_messages_to_send {
// stop sending messages
return;
}
}
}
};
tokio::select! {
_ = sender_future => {}
_ = receiver_future => {}
_ = sleep(Duration::from_secs(30)) => {
panic!("Future timed out");
}
}
})
}
// Tests an empty response to a BlocksByRange RPC Message
#[test]
#[allow(clippy::single_match)]
fn test_blocks_by_range_single_empty_rpc() {
// set up the logging. The level and enabled logging or not
let log_level = Level::Trace;
let enable_logging = false;
let log = common::build_log(log_level, enable_logging);
let rt = Arc::new(Runtime::new().unwrap());
rt.block_on(async {
// get sender/receiver
let (mut sender, mut receiver) =
common::build_node_pair(Arc::downgrade(&rt), &log, ForkName::Base).await;
// BlocksByRange Request
let rpc_request = Request::BlocksByRange(BlocksByRangeRequest {
start_slot: 0,
count: 10,
});
// BlocksByRange Response
let spec = E::default_spec();
let empty_block = BeaconBlock::empty(&spec);
let empty_signed = SignedBeaconBlock::from_block(empty_block, Signature::empty());
let rpc_response = Response::BlocksByRange(Some(Arc::new(empty_signed)));
let messages_to_send = 1;
// keep count of the number of messages received
let mut messages_received = 0;
// build the sender future
let sender_future = async {
loop {
match sender.next_event().await {
Libp2pEvent::Behaviour(BehaviourEvent::PeerConnectedOutgoing(peer_id)) => {
// Send a STATUS message
debug!(log, "Sending RPC");
sender
.swarm
.behaviour_mut()
.send_request(peer_id, 10, rpc_request.clone());
}
Libp2pEvent::Behaviour(BehaviourEvent::ResponseReceived {
peer_id: _,
id: 10,
response,
}) => match response {
Response::BlocksByRange(Some(_)) => {
assert_eq!(response, rpc_response.clone());
messages_received += 1;
warn!(log, "Chunk received");
}
Response::BlocksByRange(None) => {
// should be exactly 10 messages before terminating
assert_eq!(messages_received, messages_to_send);
// end the test
return;
}
_ => panic!("Invalid RPC received"),
},
_ => {} // Ignore other behaviour events
}
}
};
// build the receiver future
let receiver_future = async {
loop {
match receiver.next_event().await {
Libp2pEvent::Behaviour(BehaviourEvent::RequestReceived {
peer_id,
id,
request,
}) => {
if request == rpc_request {
// send the response
warn!(log, "Receiver got request");
for _ in 1..=messages_to_send {
receiver.swarm.behaviour_mut().send_successful_response(
peer_id,
id,
rpc_response.clone(),
);
}
// send the stream termination
receiver.swarm.behaviour_mut().send_successful_response(
peer_id,
id,
Response::BlocksByRange(None),
);
}
}
_ => {} // Ignore other events
}
}
};
tokio::select! {
_ = sender_future => {}
_ = receiver_future => {}
_ = sleep(Duration::from_secs(20)) => {
panic!("Future timed out");
}
}
})
}
// Tests a streamed, chunked BlocksByRoot RPC Message
// The size of the reponse is a full `BeaconBlock`
// which is greater than the Snappy frame size. Hence, this test
// serves to test the snappy framing format as well.
#[test]
#[allow(clippy::single_match)]
fn test_blocks_by_root_chunked_rpc() {
// set up the logging. The level and enabled logging or not
let log_level = Level::Debug;
let enable_logging = false;
let messages_to_send = 6;
let log = common::build_log(log_level, enable_logging);
let spec = E::default_spec();
let rt = Arc::new(Runtime::new().unwrap());
// get sender/receiver
rt.block_on(async {
let (mut sender, mut receiver) =
common::build_node_pair(Arc::downgrade(&rt), &log, ForkName::Merge).await;
// BlocksByRoot Request
let rpc_request = Request::BlocksByRoot(BlocksByRootRequest {
block_roots: VariableList::from(vec![
Hash256::from_low_u64_be(0),
Hash256::from_low_u64_be(0),
Hash256::from_low_u64_be(0),
Hash256::from_low_u64_be(0),
Hash256::from_low_u64_be(0),
Hash256::from_low_u64_be(0),
]),
});
// BlocksByRoot Response
let full_block = BeaconBlock::Base(BeaconBlockBase::<E>::full(&spec));
let signed_full_block = SignedBeaconBlock::from_block(full_block, Signature::empty());
let rpc_response_base = Response::BlocksByRoot(Some(Arc::new(signed_full_block)));
let full_block = BeaconBlock::Altair(BeaconBlockAltair::<E>::full(&spec));
let signed_full_block = SignedBeaconBlock::from_block(full_block, Signature::empty());
let rpc_response_altair = Response::BlocksByRoot(Some(Arc::new(signed_full_block)));
let full_block = merge_block_small(&common::fork_context(ForkName::Merge));
let signed_full_block = SignedBeaconBlock::from_block(full_block, Signature::empty());
let rpc_response_merge_small = Response::BlocksByRoot(Some(Arc::new(signed_full_block)));
// keep count of the number of messages received
let mut messages_received = 0;
// build the sender future
let sender_future = async {
loop {
match sender.next_event().await {
Libp2pEvent::Behaviour(BehaviourEvent::PeerConnectedOutgoing(peer_id)) => {
// Send a STATUS message
debug!(log, "Sending RPC");
sender
.swarm
.behaviour_mut()
.send_request(peer_id, 6, rpc_request.clone());
}
Libp2pEvent::Behaviour(BehaviourEvent::ResponseReceived {
peer_id: _,
id: 6,
response,
}) => match response {
Response::BlocksByRoot(Some(_)) => {
if messages_received < 2 {
assert_eq!(response, rpc_response_base.clone());
} else if messages_received < 4 {
assert_eq!(response, rpc_response_altair.clone());
} else {
assert_eq!(response, rpc_response_merge_small.clone());
}
messages_received += 1;
debug!(log, "Chunk received");
}
Response::BlocksByRoot(None) => {
// should be exactly messages_to_send
assert_eq!(messages_received, messages_to_send);
// end the test
return;
}
_ => {} // Ignore other RPC messages
},
_ => {} // Ignore other behaviour events
}
}
};
// build the receiver future
let receiver_future = async {
loop {
match receiver.next_event().await {
Libp2pEvent::Behaviour(BehaviourEvent::RequestReceived {
peer_id,
id,
request,
}) => {
if request == rpc_request {
// send the response
debug!(log, "Receiver got request");
for i in 0..messages_to_send {
// Send equal base, altair and merge blocks
let rpc_response = if i < 2 {
rpc_response_base.clone()
} else if i < 4 {
rpc_response_altair.clone()
} else {
rpc_response_merge_small.clone()
};
receiver.swarm.behaviour_mut().send_successful_response(
peer_id,
id,
rpc_response,
);
debug!(log, "Sending message");
}
// send the stream termination
receiver.swarm.behaviour_mut().send_successful_response(
peer_id,
id,
Response::BlocksByRange(None),
);
debug!(log, "Send stream term");
}
}
_ => {} // Ignore other events
}
}
};
tokio::select! {
_ = sender_future => {}
_ = receiver_future => {}
_ = sleep(Duration::from_secs(30)) => {
panic!("Future timed out");
}
}
})
}
// Tests a streamed, chunked BlocksByRoot RPC Message terminates when all expected reponses have been received
#[test]
fn test_blocks_by_root_chunked_rpc_terminates_correctly() {
// set up the logging. The level and enabled logging or not
let log_level = Level::Debug;
let enable_logging = false;
let messages_to_send: u64 = 10;
let extra_messages_to_send: u64 = 10;
let log = common::build_log(log_level, enable_logging);
let spec = E::default_spec();
let rt = Arc::new(Runtime::new().unwrap());
// get sender/receiver
rt.block_on(async {
let (mut sender, mut receiver) =
common::build_node_pair(Arc::downgrade(&rt), &log, ForkName::Base).await;
// BlocksByRoot Request
let rpc_request = Request::BlocksByRoot(BlocksByRootRequest {
block_roots: VariableList::from(vec![
Hash256::from_low_u64_be(0),
Hash256::from_low_u64_be(0),
Hash256::from_low_u64_be(0),
Hash256::from_low_u64_be(0),
Hash256::from_low_u64_be(0),
Hash256::from_low_u64_be(0),
Hash256::from_low_u64_be(0),
Hash256::from_low_u64_be(0),
Hash256::from_low_u64_be(0),
Hash256::from_low_u64_be(0),
]),
});
// BlocksByRoot Response
let full_block = BeaconBlock::Base(BeaconBlockBase::<E>::full(&spec));
let signed_full_block = SignedBeaconBlock::from_block(full_block, Signature::empty());
let rpc_response = Response::BlocksByRoot(Some(Arc::new(signed_full_block)));
// keep count of the number of messages received
let mut messages_received = 0;
// build the sender future
let sender_future = async {
loop {
match sender.next_event().await {
Libp2pEvent::Behaviour(BehaviourEvent::PeerConnectedOutgoing(peer_id)) => {
// Send a STATUS message
debug!(log, "Sending RPC");
sender
.swarm
.behaviour_mut()
.send_request(peer_id, 10, rpc_request.clone());
}
Libp2pEvent::Behaviour(BehaviourEvent::ResponseReceived {
peer_id: _,
id: 10,
response,
}) => {
debug!(log, "Sender received a response");
match response {
Response::BlocksByRoot(Some(_)) => {
assert_eq!(response, rpc_response.clone());
messages_received += 1;
debug!(log, "Chunk received");
}
Response::BlocksByRoot(None) => {
// should be exactly messages_to_send
assert_eq!(messages_received, messages_to_send);
// end the test
return;
}
_ => {} // Ignore other RPC messages
}
}
_ => {} // Ignore other behaviour events
}
}
};
// determine messages to send (PeerId, RequestId). If some, indicates we still need to send
// messages
let mut message_info = None;
// the number of messages we've sent
let mut messages_sent = 0;
let receiver_future = async {
loop {
// this future either drives the sending/receiving or times out allowing messages to be
// sent in the timeout
match futures::future::select(
Box::pin(receiver.next_event()),
Box::pin(tokio::time::sleep(Duration::from_secs(1))),
)
.await
{
futures::future::Either::Left((
Libp2pEvent::Behaviour(BehaviourEvent::RequestReceived {
peer_id,
id,
request,
}),
_,
)) => {
if request == rpc_request {
// send the response
warn!(log, "Receiver got request");
message_info = Some((peer_id, id));
}
}
futures::future::Either::Right((_, _)) => {} // The timeout hit, send messages if required
_ => continue,
}
// if we need to send messages send them here. This will happen after a delay
if message_info.is_some() {
messages_sent += 1;
let (peer_id, stream_id) = message_info.as_ref().unwrap();
receiver.swarm.behaviour_mut().send_successful_response(
*peer_id,
*stream_id,
rpc_response.clone(),
);
debug!(log, "Sending message {}", messages_sent);
if messages_sent == messages_to_send + extra_messages_to_send {
// stop sending messages
return;
}
}
}
};
tokio::select! {
_ = sender_future => {}
_ = receiver_future => {}
_ = sleep(Duration::from_secs(30)) => {
panic!("Future timed out");
}
}
})
}
// Tests a Goodbye RPC message
#[test]
#[allow(clippy::single_match)]
fn test_goodbye_rpc() {
// set up the logging. The level and enabled logging or not
let log_level = Level::Trace;
let enable_logging = false;
let log = common::build_log(log_level, enable_logging);
let rt = Arc::new(Runtime::new().unwrap());
// get sender/receiver
rt.block_on(async {
let (mut sender, mut receiver) =
common::build_node_pair(Arc::downgrade(&rt), &log, ForkName::Base).await;
// build the sender future
let sender_future = async {
loop {
match sender.next_event().await {
Libp2pEvent::Behaviour(BehaviourEvent::PeerConnectedOutgoing(peer_id)) => {
// Send a goodbye and disconnect
debug!(log, "Sending RPC");
sender.swarm.behaviour_mut().goodbye_peer(
&peer_id,
GoodbyeReason::IrrelevantNetwork,
ReportSource::SyncService,
);
}
Libp2pEvent::Behaviour(BehaviourEvent::PeerDisconnected(_)) => {
return;
}
_ => {} // Ignore other RPC messages
}
}
};
// build the receiver future
let receiver_future = async {
loop {
match receiver.next_event().await {
Libp2pEvent::Behaviour(BehaviourEvent::PeerDisconnected(_)) => {
// Should receive sent RPC request
return;
}
_ => {} // Ignore other events
}
}
};
let total_future = futures::future::join(sender_future, receiver_future);
tokio::select! {
_ = total_future => {}
_ = sleep(Duration::from_secs(30)) => {
panic!("Future timed out");
}
}
})
}