lighthouse/beacon_node/store/src/chunked_vector.rs
Michael Sproul bf2eeae3f2 Implement freezer database (#508)
* Implement freezer database for state vectors

* Improve BeaconState safe accessors

And fix a bug in the compact committees accessor.

* Banish dodgy type bounds back to gRPC

* Clean up

* Switch to exclusive end points in chunked vec

* Cleaning up and start of tests

* Randao fix, more tests

* Fix unsightly hack

* Resolve test FIXMEs

* Config file support

* More clean-ups, migrator beginnings

* Finish migrator, integrate into BeaconChain

* Fixups

* Fix store tests

* Fix BeaconChain tests

* Fix LMD GHOST tests

* Address review comments, delete 'static bounds

* Cargo format

* Address review comments

* Fix LMD ghost tests

* Update to spec v0.9.0

* Update to v0.9.1

* Bump spec tags for v0.9.1

* Formatting, fix CI failures

* Resolve accidental KeyPair merge conflict

* Document new BeaconState functions

* Fix incorrect cache drops in `advance_caches`

* Update fork choice for v0.9.1

* Clean up some FIXMEs

* Fix a few docs/logs

* Update for new builder paradigm, spec changes

* Freezer DB integration into BeaconNode

* Cleaning up

* This works, clean it up

* Cleanups

* Fix and improve store tests

* Refine store test

* Delete unused beacon_chain_builder.rs

* Fix CLI

* Store state at split slot in hot database

* Make fork choice lookup fast again

* Store freezer DB split slot in the database

* Handle potential div by 0 in chunked_vector

* Exclude committee caches from freezer DB

* Remove FIXME about long-running test
2019-11-27 10:54:46 +11:00

792 lines
26 KiB
Rust

//! Space-efficient storage for `BeaconState` vector fields.
//!
//! This module provides logic for splitting the `FixedVector` fields of a `BeaconState` into
//! chunks, and storing those chunks in contiguous ranges in the on-disk database. The motiviation
//! for doing this is avoiding massive duplication in every on-disk state. For example, rather than
//! storing the whole `historical_roots` vector, which is updated once every couple of thousand
//! slots, at every slot, we instead store all the historical values as a chunked vector on-disk,
//! and fetch only the slice we need when reconstructing the `historical_roots` of a state.
//!
//! ## Terminology
//!
//! * **Chunk size**: the number of vector values stored per on-disk chunk.
//! * **Vector index** (vindex): index into all the historical values, identifying a single element
//! of the vector being stored.
//! * **Chunk index** (cindex): index into the keyspace of the on-disk database, identifying a chunk
//! of elements. To find the chunk index of a vector index: `cindex = vindex / chunk_size`.
use self::UpdatePattern::*;
use crate::*;
use ssz::{Decode, Encode};
use typenum::Unsigned;
/// Description of how a `BeaconState` field is updated during state processing.
///
/// When storing a state, this allows us to efficiently store only those entries
/// which are not present in the DB already.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum UpdatePattern {
/// The value is updated once per `n` slots.
OncePerNSlots { n: u64 },
/// The value is updated once per epoch, for the epoch `current_epoch - lag`.
OncePerEpoch { lag: u64 },
}
/// Map a chunk index to bytes that can be used to key the NoSQL database.
///
/// We shift chunks up by 1 to make room for a genesis chunk that is handled separately.
fn chunk_key(cindex: u64) -> [u8; 8] {
(cindex + 1).to_be_bytes()
}
/// Return the database key for the genesis value.
fn genesis_value_key() -> [u8; 8] {
0u64.to_be_bytes()
}
/// Trait for types representing fields of the `BeaconState`.
///
/// All of the required methods are type-level, because we do most things with fields at the
/// type-level. We require their value-level witnesses to be `Copy` so that we can avoid the
/// turbofish when calling functions like `store_updated_vector`.
pub trait Field<E: EthSpec>: Copy {
/// The type of value stored in this field: the `T` from `FixedVector<T, N>`.
///
/// The `Default` impl will be used to fill extra vector entries.
type Value: Decode + Encode + Default + Clone + PartialEq + std::fmt::Debug;
/// The length of this field: the `N` from `FixedVector<T, N>`.
type Length: Unsigned;
/// The database column where the integer-indexed chunks for this field should be stored.
///
/// Each field's column **must** be unique.
fn column() -> DBColumn;
/// Update pattern for this field, so that we can do differential updates.
fn update_pattern(spec: &ChainSpec) -> UpdatePattern;
/// The number of values to store per chunk on disk.
///
/// Default is 128 so that we read/write 4K pages when the values are 32 bytes.
// TODO: benchmark and optimise this parameter
fn chunk_size() -> usize {
128
}
/// Get the value of this field at the given vector index, from the state.
fn get_value(
state: &BeaconState<E>,
vindex: u64,
spec: &ChainSpec,
) -> Result<Self::Value, ChunkError>;
/// True if this is a `FixedLengthField`, false otherwise.
fn is_fixed_length() -> bool;
/// Compute the start and end vector indices of the slice of history required at `current_slot`.
///
/// ## Example
///
/// If we have a field that is updated once per epoch, then the end vindex will be
/// `current_epoch + 1`, because we want to include the value for the current epoch, and the
/// start vindex will be `end_vindex - Self::Length`, because that's how far back we can look.
fn start_and_end_vindex(current_slot: Slot, spec: &ChainSpec) -> (usize, usize) {
// We take advantage of saturating subtraction on slots and epochs
match Self::update_pattern(spec) {
OncePerNSlots { n } => {
// Per-slot changes exclude the index for the current slot, because
// it won't be set until the slot completes (think of `state_roots`, `block_roots`).
// This also works for the `historical_roots` because at the `n`th slot, the 0th
// entry of the list is created, and before that the list is empty.
let end_vindex = current_slot / n;
let start_vindex = end_vindex - Self::Length::to_u64();
(start_vindex.as_usize(), end_vindex.as_usize())
}
OncePerEpoch { lag } => {
// Per-epoch changes include the index for the current epoch, because it
// will have been set at the most recent epoch boundary.
let current_epoch = current_slot.epoch(E::slots_per_epoch());
let end_epoch = current_epoch + 1 - lag;
let start_epoch = end_epoch + lag - Self::Length::to_u64();
(start_epoch.as_usize(), end_epoch.as_usize())
}
}
}
/// Given an `existing_chunk` stored in the DB, construct an updated chunk to replace it.
fn get_updated_chunk(
existing_chunk: &Chunk<Self::Value>,
chunk_index: usize,
start_vindex: usize,
end_vindex: usize,
state: &BeaconState<E>,
spec: &ChainSpec,
) -> Result<Chunk<Self::Value>, Error> {
let chunk_size = Self::chunk_size();
let mut new_chunk = Chunk::new(vec![Self::Value::default(); chunk_size]);
for i in 0..chunk_size {
let vindex = chunk_index * chunk_size + i;
if vindex >= start_vindex && vindex < end_vindex {
let vector_value = Self::get_value(state, vindex as u64, spec)?;
if let Some(existing_value) = existing_chunk.values.get(i) {
if *existing_value != vector_value && *existing_value != Self::Value::default()
{
return Err(ChunkError::Inconsistent {
field: Self::column(),
chunk_index,
existing_value: format!("{:?}", existing_value),
new_value: format!("{:?}", vector_value),
}
.into());
}
}
new_chunk.values[i] = vector_value;
} else {
new_chunk.values[i] = existing_chunk
.values
.get(i)
.cloned()
.unwrap_or_else(Self::Value::default);
}
}
Ok(new_chunk)
}
/// Determine whether a state at `slot` possesses (or requires) the genesis value.
fn slot_needs_genesis_value(slot: Slot, spec: &ChainSpec) -> bool {
let (_, end_vindex) = Self::start_and_end_vindex(slot, spec);
match Self::update_pattern(spec) {
// If the end_vindex is less than the length of the vector, then the vector
// has not yet been completely filled with non-genesis values, and so the genesis
// value is still required.
OncePerNSlots { .. } => {
Self::is_fixed_length() && end_vindex < Self::Length::to_usize()
}
// If the field has lag, then it takes an extra `lag` vindices beyond the
// `end_vindex` before the vector has been filled with non-genesis values.
OncePerEpoch { lag } => {
Self::is_fixed_length() && end_vindex + (lag as usize) < Self::Length::to_usize()
}
}
}
/// Load the genesis value for a fixed length field from the store.
///
/// This genesis value should be used to fill the initial state of the vector.
fn load_genesis_value<S: Store>(store: &S) -> Result<Self::Value, Error> {
let key = &genesis_value_key()[..];
let chunk =
Chunk::load(store, Self::column(), key)?.ok_or(ChunkError::MissingGenesisValue)?;
chunk
.values
.first()
.cloned()
.ok_or(ChunkError::MissingGenesisValue.into())
}
/// Store the given `value` as the genesis value for this field, unless stored already.
///
/// Check the existing value (if any) for consistency with the value we intend to store, and
/// return an error if they are inconsistent.
fn check_and_store_genesis_value<S: Store>(store: &S, value: Self::Value) -> Result<(), Error> {
let key = &genesis_value_key()[..];
if let Some(existing_chunk) = Chunk::<Self::Value>::load(store, Self::column(), key)? {
if existing_chunk.values.len() != 1 {
Err(ChunkError::InvalidGenesisChunk {
field: Self::column(),
expected_len: 1,
observed_len: existing_chunk.values.len(),
}
.into())
} else if existing_chunk.values[0] != value {
Err(ChunkError::InconsistentGenesisValue {
field: Self::column(),
existing_value: format!("{:?}", existing_chunk.values[0]),
new_value: format!("{:?}", value),
}
.into())
} else {
Ok(())
}
} else {
Chunk::new(vec![value]).store(store, Self::column(), &genesis_value_key()[..])
}
}
/// Extract the genesis value for a fixed length field from an
///
/// Will only return a correct value if `slot_needs_genesis_value(state.slot, spec) == true`.
fn extract_genesis_value(
state: &BeaconState<E>,
spec: &ChainSpec,
) -> Result<Self::Value, Error> {
let (_, end_vindex) = Self::start_and_end_vindex(state.slot, spec);
match Self::update_pattern(spec) {
// Genesis value is guaranteed to exist at `end_vindex`, as it won't yet have been
// updated
OncePerNSlots { .. } => Ok(Self::get_value(state, end_vindex as u64, spec)?),
// If there's lag, the value of the field at the vindex *without the lag*
// should still be set to the genesis value.
OncePerEpoch { lag } => Ok(Self::get_value(state, end_vindex as u64 + lag, spec)?),
}
}
}
/// Marker trait for fixed-length fields (`FixedVector<T, N>`).
pub trait FixedLengthField<E: EthSpec>: Field<E> {}
/// Marker trait for variable-length fields (`VariableList<T, N>`).
pub trait VariableLengthField<E: EthSpec>: Field<E> {}
/// Macro to implement the `Field` trait on a new unit struct type.
macro_rules! field {
($struct_name:ident, $marker_trait:ident, $value_ty:ty, $length_ty:ty, $column:expr,
$update_pattern:expr, $get_value:expr) => {
#[derive(Clone, Copy)]
pub struct $struct_name;
impl<T> Field<T> for $struct_name
where
T: EthSpec,
{
type Value = $value_ty;
type Length = $length_ty;
fn column() -> DBColumn {
$column
}
fn update_pattern(spec: &ChainSpec) -> UpdatePattern {
$update_pattern(spec)
}
fn get_value(
state: &BeaconState<T>,
vindex: u64,
spec: &ChainSpec,
) -> Result<Self::Value, ChunkError> {
$get_value(state, vindex, spec)
}
fn is_fixed_length() -> bool {
stringify!($marker_trait) == "FixedLengthField"
}
}
impl<E: EthSpec> $marker_trait<E> for $struct_name {}
};
}
field!(
BlockRoots,
FixedLengthField,
Hash256,
T::SlotsPerHistoricalRoot,
DBColumn::BeaconBlockRoots,
|_| OncePerNSlots { n: 1 },
|state: &BeaconState<_>, index, _| safe_modulo_index(&state.block_roots, index)
);
field!(
StateRoots,
FixedLengthField,
Hash256,
T::SlotsPerHistoricalRoot,
DBColumn::BeaconStateRoots,
|_| OncePerNSlots { n: 1 },
|state: &BeaconState<_>, index, _| safe_modulo_index(&state.state_roots, index)
);
field!(
HistoricalRoots,
VariableLengthField,
Hash256,
T::HistoricalRootsLimit,
DBColumn::BeaconHistoricalRoots,
|_| OncePerNSlots {
n: T::SlotsPerHistoricalRoot::to_u64()
},
|state: &BeaconState<_>, index, _| safe_modulo_index(&state.historical_roots, index)
);
field!(
RandaoMixes,
FixedLengthField,
Hash256,
T::EpochsPerHistoricalVector,
DBColumn::BeaconRandaoMixes,
|_| OncePerEpoch { lag: 1 },
|state: &BeaconState<_>, index, _| safe_modulo_index(&state.randao_mixes, index)
);
pub fn store_updated_vector<F: Field<E>, E: EthSpec, S: Store>(
field: F,
store: &S,
state: &BeaconState<E>,
spec: &ChainSpec,
) -> Result<(), Error> {
let chunk_size = F::chunk_size();
let (start_vindex, end_vindex) = F::start_and_end_vindex(state.slot, spec);
let start_cindex = start_vindex / chunk_size;
let end_cindex = end_vindex / chunk_size;
// Store the genesis value if we have access to it, and it hasn't been stored already.
if F::slot_needs_genesis_value(state.slot, spec) {
let genesis_value = F::extract_genesis_value(state, spec)?;
F::check_and_store_genesis_value(store, genesis_value)?;
}
// Start by iterating backwards from the last chunk, storing new chunks in the database.
// Stop once a chunk in the database matches what we were about to store, this indicates
// that a previously stored state has already filled-in a portion of the indices covered.
let full_range_checked = store_range(
field,
(start_cindex..=end_cindex).rev(),
start_vindex,
end_vindex,
store,
state,
spec,
)?;
// If the previous `store_range` did not check the entire range, it may be the case that the
// state's vector includes elements at low vector indices that are not yet stored in the
// database, so run another `store_range` to ensure these values are also stored.
if !full_range_checked {
store_range(
field,
start_cindex..end_cindex,
start_vindex,
end_vindex,
store,
state,
spec,
)?;
}
Ok(())
}
fn store_range<F, E, S, I>(
_: F,
range: I,
start_vindex: usize,
end_vindex: usize,
store: &S,
state: &BeaconState<E>,
spec: &ChainSpec,
) -> Result<bool, Error>
where
F: Field<E>,
E: EthSpec,
S: Store,
I: Iterator<Item = usize>,
{
for chunk_index in range {
let chunk_key = &chunk_key(chunk_index as u64)[..];
let existing_chunk =
Chunk::<F::Value>::load(store, F::column(), chunk_key)?.unwrap_or_else(Chunk::default);
let new_chunk = F::get_updated_chunk(
&existing_chunk,
chunk_index,
start_vindex,
end_vindex,
state,
spec,
)?;
if new_chunk == existing_chunk {
return Ok(false);
}
new_chunk.store(store, F::column(), chunk_key)?;
}
Ok(true)
}
// Chunks at the end index are included.
// TODO: could be more efficient with a real range query (perhaps RocksDB)
fn range_query<S: Store, T: Decode + Encode>(
store: &S,
column: DBColumn,
start_index: usize,
end_index: usize,
) -> Result<Vec<Chunk<T>>, Error> {
let mut result = vec![];
for chunk_index in start_index..=end_index {
let key = &chunk_key(chunk_index as u64)[..];
let chunk = Chunk::load(store, column, key)?.ok_or(ChunkError::Missing { chunk_index })?;
result.push(chunk);
}
Ok(result)
}
/// Combine chunks to form a list or vector of all values with vindex in `start_vindex..end_vindex`.
///
/// The `length` parameter is the length of the vec to construct, with entries set to `default` if
/// they lie outside the vindex range.
fn stitch<T: Default + Clone>(
chunks: Vec<Chunk<T>>,
start_vindex: usize,
end_vindex: usize,
chunk_size: usize,
length: usize,
default: T,
) -> Result<Vec<T>, ChunkError> {
if start_vindex + length < end_vindex {
return Err(ChunkError::OversizedRange {
start_vindex,
end_vindex,
length,
});
}
let start_cindex = start_vindex / chunk_size;
let end_cindex = end_vindex / chunk_size;
let mut result = vec![default; length];
for (chunk_index, chunk) in (start_cindex..=end_cindex).zip(chunks.into_iter()) {
// All chunks but the last chunk must be full-sized
if chunk_index != end_cindex && chunk.values.len() != chunk_size {
return Err(ChunkError::InvalidSize {
chunk_index,
expected: chunk_size,
actual: chunk.values.len(),
});
}
// Copy the chunk entries into the result vector
for (i, value) in chunk.values.into_iter().enumerate() {
let vindex = chunk_index * chunk_size + i;
if vindex >= start_vindex && vindex < end_vindex {
result[vindex % length] = value;
}
}
}
Ok(result)
}
pub fn load_vector_from_db<F: FixedLengthField<E>, E: EthSpec, S: Store>(
store: &S,
slot: Slot,
spec: &ChainSpec,
) -> Result<FixedVector<F::Value, F::Length>, Error> {
// Do a range query
let chunk_size = F::chunk_size();
let (start_vindex, end_vindex) = F::start_and_end_vindex(slot, spec);
let start_cindex = start_vindex / chunk_size;
let end_cindex = end_vindex / chunk_size;
let chunks = range_query(store, F::column(), start_cindex, end_cindex)?;
let default = if F::slot_needs_genesis_value(slot, spec) {
F::load_genesis_value(store)?
} else {
F::Value::default()
};
let result = stitch(
chunks,
start_vindex,
end_vindex,
chunk_size,
F::Length::to_usize(),
default,
)?;
Ok(result.into())
}
/// The historical roots are stored in vector chunks, despite not actually being a vector.
pub fn load_variable_list_from_db<F: VariableLengthField<E>, E: EthSpec, S: Store>(
store: &S,
slot: Slot,
spec: &ChainSpec,
) -> Result<VariableList<F::Value, F::Length>, Error> {
let chunk_size = F::chunk_size();
let (start_vindex, end_vindex) = F::start_and_end_vindex(slot, spec);
let start_cindex = start_vindex / chunk_size;
let end_cindex = end_vindex / chunk_size;
let chunks: Vec<Chunk<F::Value>> = range_query(store, F::column(), start_cindex, end_cindex)?;
let mut result = Vec::with_capacity(chunk_size * chunks.len());
for (chunk_index, chunk) in chunks.into_iter().enumerate() {
for (i, value) in chunk.values.into_iter().enumerate() {
let vindex = chunk_index * chunk_size + i;
if vindex >= start_vindex && vindex < end_vindex {
result.push(value);
}
}
}
Ok(result.into())
}
/// Index into a field of the state, avoiding out of bounds and division by 0.
fn safe_modulo_index<T: Copy>(values: &[T], index: u64) -> Result<T, ChunkError> {
if values.is_empty() {
Err(ChunkError::ZeroLengthVector)
} else {
Ok(values[index as usize % values.len()])
}
}
/// A chunk of a fixed-size vector from the `BeaconState`, stored in the database.
#[derive(Debug, Clone, PartialEq)]
pub struct Chunk<T> {
/// A vector of up-to `chunk_size` values.
pub values: Vec<T>,
}
impl<T> Default for Chunk<T>
where
T: Decode + Encode,
{
fn default() -> Self {
Chunk { values: vec![] }
}
}
impl<T> Chunk<T>
where
T: Decode + Encode,
{
pub fn new(values: Vec<T>) -> Self {
Chunk { values }
}
pub fn load<S: Store>(store: &S, column: DBColumn, key: &[u8]) -> Result<Option<Self>, Error> {
store
.get_bytes(column.into(), key)?
.map(|bytes| Self::decode(&bytes))
.transpose()
}
pub fn store<S: Store>(&self, store: &S, column: DBColumn, key: &[u8]) -> Result<(), Error> {
store.put_bytes(column.into(), key, &self.encode()?)?;
Ok(())
}
/// Attempt to decode a single chunk.
pub fn decode(bytes: &[u8]) -> Result<Self, Error> {
if !<T as Decode>::is_ssz_fixed_len() {
return Err(Error::from(ChunkError::InvalidType));
}
let value_size = <T as Decode>::ssz_fixed_len();
if value_size == 0 {
return Err(Error::from(ChunkError::InvalidType));
}
let values = bytes
.chunks(value_size)
.map(T::from_ssz_bytes)
.collect::<Result<_, _>>()?;
Ok(Chunk { values })
}
pub fn encoded_size(&self) -> usize {
self.values.len() * <T as Encode>::ssz_fixed_len()
}
/// Encode a single chunk as bytes.
pub fn encode(&self) -> Result<Vec<u8>, Error> {
if !<T as Encode>::is_ssz_fixed_len() {
return Err(Error::from(ChunkError::InvalidType));
}
Ok(self.values.iter().flat_map(T::as_ssz_bytes).collect())
}
}
#[derive(Debug, PartialEq)]
pub enum ChunkError {
ZeroLengthVector,
InvalidSize {
chunk_index: usize,
expected: usize,
actual: usize,
},
Missing {
chunk_index: usize,
},
MissingGenesisValue,
Inconsistent {
field: DBColumn,
chunk_index: usize,
existing_value: String,
new_value: String,
},
InconsistentGenesisValue {
field: DBColumn,
existing_value: String,
new_value: String,
},
InvalidGenesisChunk {
field: DBColumn,
expected_len: usize,
observed_len: usize,
},
InvalidType,
OversizedRange {
start_vindex: usize,
end_vindex: usize,
length: usize,
},
}
#[cfg(test)]
mod test {
use super::*;
use types::MainnetEthSpec as TestSpec;
use types::*;
fn v(i: u64) -> Hash256 {
Hash256::from_low_u64_be(i)
}
#[test]
fn stitch_default() {
let chunk_size = 4;
let chunks = vec![
Chunk::new(vec![0u64, 1, 2, 3]),
Chunk::new(vec![4, 5, 0, 0]),
];
assert_eq!(
stitch(chunks.clone(), 2, 6, chunk_size, 12, 99).unwrap(),
vec![99, 99, 2, 3, 4, 5, 99, 99, 99, 99, 99, 99]
);
}
#[test]
fn stitch_basic() {
let chunk_size = 4;
let default = v(0);
let chunks = vec![
Chunk::new(vec![v(0), v(1), v(2), v(3)]),
Chunk::new(vec![v(4), v(5), v(6), v(7)]),
Chunk::new(vec![v(8), v(9), v(10), v(11)]),
];
assert_eq!(
stitch(chunks.clone(), 0, 12, chunk_size, 12, default).unwrap(),
(0..12).map(v).collect::<Vec<_>>()
);
assert_eq!(
stitch(chunks.clone(), 2, 10, chunk_size, 8, default).unwrap(),
vec![v(8), v(9), v(2), v(3), v(4), v(5), v(6), v(7)]
);
}
#[test]
fn stitch_oversized_range() {
let chunk_size = 4;
let default = 0;
let chunks = vec![Chunk::new(vec![20u64, 21, 22, 23])];
// Args (start_vindex, end_vindex, length)
let args = vec![(0, 21, 20), (0, 2048, 1024), (0, 2, 1)];
for (start_vindex, end_vindex, length) in args {
assert_eq!(
stitch(
chunks.clone(),
start_vindex,
end_vindex,
chunk_size,
length,
default
),
Err(ChunkError::OversizedRange {
start_vindex,
end_vindex,
length,
})
);
}
}
#[test]
fn fixed_length_fields() {
fn test_fixed_length<F: Field<TestSpec>>(_: F, expected: bool) {
assert_eq!(F::is_fixed_length(), expected);
}
test_fixed_length(BlockRoots, true);
test_fixed_length(StateRoots, true);
test_fixed_length(HistoricalRoots, false);
test_fixed_length(RandaoMixes, true);
}
fn needs_genesis_value_once_per_slot<F: Field<TestSpec>>(_: F) {
let spec = &TestSpec::default_spec();
let max = F::Length::to_u64();
for i in 0..max {
assert!(
F::slot_needs_genesis_value(Slot::new(i), spec),
"slot {}",
i
);
}
assert!(!F::slot_needs_genesis_value(Slot::new(max), spec));
}
#[test]
fn needs_genesis_value_block_roots() {
needs_genesis_value_once_per_slot(BlockRoots);
}
#[test]
fn needs_genesis_value_state_roots() {
needs_genesis_value_once_per_slot(StateRoots);
}
#[test]
fn needs_genesis_value_historical_roots() {
let spec = &TestSpec::default_spec();
assert!(
!<HistoricalRoots as Field<TestSpec>>::slot_needs_genesis_value(Slot::new(0), spec)
);
}
fn needs_genesis_value_test_randao<F: Field<TestSpec>>(_: F) {
let spec = &TestSpec::default_spec();
let max = TestSpec::slots_per_epoch() as u64 * (F::Length::to_u64() - 1);
for i in 0..max {
assert!(
F::slot_needs_genesis_value(Slot::new(i), spec),
"slot {}",
i
);
}
assert!(!F::slot_needs_genesis_value(Slot::new(max), spec));
}
#[test]
fn needs_genesis_value_randao() {
needs_genesis_value_test_randao(RandaoMixes);
}
}