lighthouse/beacon_node/beacon_chain/src/test_utils.rs
2023-01-05 13:00:44 -06:00

2027 lines
71 KiB
Rust

pub use crate::persisted_beacon_chain::PersistedBeaconChain;
pub use crate::{
beacon_chain::{BEACON_CHAIN_DB_KEY, ETH1_CACHE_DB_KEY, FORK_CHOICE_DB_KEY, OP_POOL_DB_KEY},
migrate::MigratorConfig,
BeaconChainError, NotifyExecutionLayer, ProduceBlockVerification,
};
use crate::{
builder::{BeaconChainBuilder, Witness},
eth1_chain::CachingEth1Backend,
BeaconChain, BeaconChainTypes, BlockError, ChainConfig, ServerSentEventHandler,
StateSkipConfig,
};
use bls::get_withdrawal_credentials;
use execution_layer::{
auth::JwtKey,
test_utils::{
ExecutionBlockGenerator, MockExecutionLayer, TestingBuilder, DEFAULT_JWT_SECRET,
DEFAULT_TERMINAL_BLOCK,
},
ExecutionLayer,
};
use fork_choice::CountUnrealized;
use futures::channel::mpsc::Receiver;
pub use genesis::{interop_genesis_state, DEFAULT_ETH1_BLOCK_HASH};
use int_to_bytes::int_to_bytes32;
use merkle_proof::MerkleTree;
use parking_lot::Mutex;
use parking_lot::RwLockWriteGuard;
use rand::rngs::StdRng;
use rand::Rng;
use rand::SeedableRng;
use rayon::prelude::*;
use sensitive_url::SensitiveUrl;
use slog::Logger;
use slot_clock::{SlotClock, TestingSlotClock};
use state_processing::per_block_processing::compute_timestamp_at_slot;
use state_processing::{
state_advance::{complete_state_advance, partial_state_advance},
StateRootStrategy,
};
use std::borrow::Cow;
use std::collections::{HashMap, HashSet};
use std::fmt;
use std::str::FromStr;
use std::sync::Arc;
use std::time::Duration;
use store::{config::StoreConfig, HotColdDB, ItemStore, LevelDB, MemoryStore};
use task_executor::{test_utils::TestRuntime, ShutdownReason};
use tree_hash::TreeHash;
use types::sync_selection_proof::SyncSelectionProof;
pub use types::test_utils::generate_deterministic_keypairs;
use types::{typenum::U4294967296, *};
// 4th September 2019
pub const HARNESS_GENESIS_TIME: u64 = 1_567_552_690;
// Environment variable to read if `fork_from_env` feature is enabled.
const FORK_NAME_ENV_VAR: &str = "FORK_NAME";
// Default target aggregators to set during testing, this ensures an aggregator at each slot.
//
// You should mutate the `ChainSpec` prior to initialising the harness if you would like to use
// a different value.
pub const DEFAULT_TARGET_AGGREGATORS: u64 = u64::max_value();
pub type BaseHarnessType<TEthSpec, THotStore, TColdStore> =
Witness<TestingSlotClock, CachingEth1Backend<TEthSpec>, TEthSpec, THotStore, TColdStore>;
pub type DiskHarnessType<E> = BaseHarnessType<E, LevelDB<E>, LevelDB<E>>;
pub type EphemeralHarnessType<E> = BaseHarnessType<E, MemoryStore<E>, MemoryStore<E>>;
pub type BoxedMutator<E, Hot, Cold> = Box<
dyn FnOnce(
BeaconChainBuilder<BaseHarnessType<E, Hot, Cold>>,
) -> BeaconChainBuilder<BaseHarnessType<E, Hot, Cold>>,
>;
pub type AddBlocksResult<E> = (
HashMap<Slot, SignedBeaconBlockHash>,
HashMap<Slot, BeaconStateHash>,
SignedBeaconBlockHash,
BeaconState<E>,
);
/// Deprecated: Indicates how the `BeaconChainHarness` should produce blocks.
#[derive(Clone, Copy, Debug)]
pub enum BlockStrategy {
/// Produce blocks upon the canonical head (normal case).
OnCanonicalHead,
/// Ignore the canonical head and produce blocks upon the block at the given slot.
///
/// Useful for simulating forks.
ForkCanonicalChainAt {
/// The slot of the parent of the first block produced.
previous_slot: Slot,
/// The slot of the first block produced (must be higher than `previous_slot`.
first_slot: Slot,
},
}
/// Deprecated: Indicates how the `BeaconChainHarness` should produce attestations.
#[derive(Clone, Debug)]
pub enum AttestationStrategy {
/// All validators attest to whichever block the `BeaconChainHarness` has produced.
AllValidators,
/// Only the given validators should attest. All others should fail to produce attestations.
SomeValidators(Vec<usize>),
}
/// Indicates whether the `BeaconChainHarness` should use the `state.current_sync_committee` or
/// `state.next_sync_committee` when creating sync messages or contributions.
#[derive(Clone, Debug)]
pub enum RelativeSyncCommittee {
Current,
Next,
}
fn make_rng() -> Mutex<StdRng> {
// Nondeterminism in tests is a highly undesirable thing. Seed the RNG to some arbitrary
// but fixed value for reproducibility.
Mutex::new(StdRng::seed_from_u64(0x0DDB1A5E5BAD5EEDu64))
}
/// Return a `ChainSpec` suitable for test usage.
///
/// If the `fork_from_env` feature is enabled, read the fork to use from the FORK_NAME environment
/// variable. Otherwise use the default spec.
pub fn test_spec<E: EthSpec>() -> ChainSpec {
let mut spec = if cfg!(feature = "fork_from_env") {
let fork_name = std::env::var(FORK_NAME_ENV_VAR).unwrap_or_else(|e| {
panic!(
"{} env var must be defined when using fork_from_env: {:?}",
FORK_NAME_ENV_VAR, e
)
});
let fork = ForkName::from_str(fork_name.as_str()).unwrap();
fork.make_genesis_spec(E::default_spec())
} else {
E::default_spec()
};
// Set target aggregators to a high value by default.
spec.target_aggregators_per_committee = DEFAULT_TARGET_AGGREGATORS;
spec
}
pub struct Builder<T: BeaconChainTypes> {
eth_spec_instance: T::EthSpec,
spec: Option<ChainSpec>,
validator_keypairs: Option<Vec<Keypair>>,
chain_config: Option<ChainConfig>,
store_config: Option<StoreConfig>,
#[allow(clippy::type_complexity)]
store: Option<Arc<HotColdDB<T::EthSpec, T::HotStore, T::ColdStore>>>,
initial_mutator: Option<BoxedMutator<T::EthSpec, T::HotStore, T::ColdStore>>,
store_mutator: Option<BoxedMutator<T::EthSpec, T::HotStore, T::ColdStore>>,
execution_layer: Option<ExecutionLayer<T::EthSpec>>,
mock_execution_layer: Option<MockExecutionLayer<T::EthSpec>>,
mock_builder: Option<TestingBuilder<T::EthSpec>>,
testing_slot_clock: Option<TestingSlotClock>,
runtime: TestRuntime,
log: Logger,
}
impl<E: EthSpec> Builder<EphemeralHarnessType<E>> {
pub fn fresh_ephemeral_store(mut self) -> Self {
let spec = self.spec.as_ref().expect("cannot build without spec");
let validator_keypairs = self
.validator_keypairs
.clone()
.expect("cannot build without validator keypairs");
let store = Arc::new(
HotColdDB::open_ephemeral(
self.store_config.clone().unwrap_or_default(),
spec.clone(),
self.log.clone(),
)
.unwrap(),
);
let mutator = move |builder: BeaconChainBuilder<_>| {
let genesis_state = interop_genesis_state::<E>(
&validator_keypairs,
HARNESS_GENESIS_TIME,
Hash256::from_slice(DEFAULT_ETH1_BLOCK_HASH),
None,
builder.get_spec(),
)
.expect("should generate interop state");
builder
.genesis_state(genesis_state)
.expect("should build state using recent genesis")
};
self.store = Some(store);
self.store_mutator(Box::new(mutator))
}
/// Create a new ephemeral store that uses the specified `genesis_state`.
pub fn genesis_state_ephemeral_store(mut self, genesis_state: BeaconState<E>) -> Self {
let spec = self.spec.as_ref().expect("cannot build without spec");
let store = Arc::new(
HotColdDB::open_ephemeral(
self.store_config.clone().unwrap_or_default(),
spec.clone(),
self.log.clone(),
)
.unwrap(),
);
let mutator = move |builder: BeaconChainBuilder<_>| {
builder
.genesis_state(genesis_state)
.expect("should build state using recent genesis")
};
self.store = Some(store);
self.store_mutator(Box::new(mutator))
}
/// Manually restore from a given `MemoryStore`.
pub fn resumed_ephemeral_store(
mut self,
store: Arc<HotColdDB<E, MemoryStore<E>, MemoryStore<E>>>,
) -> Self {
let mutator = move |builder: BeaconChainBuilder<_>| {
builder
.resume_from_db()
.expect("should resume from database")
};
self.store = Some(store);
self.store_mutator(Box::new(mutator))
}
}
impl<E: EthSpec> Builder<DiskHarnessType<E>> {
/// Disk store, start from genesis.
pub fn fresh_disk_store(mut self, store: Arc<HotColdDB<E, LevelDB<E>, LevelDB<E>>>) -> Self {
let validator_keypairs = self
.validator_keypairs
.clone()
.expect("cannot build without validator keypairs");
let mutator = move |builder: BeaconChainBuilder<_>| {
let genesis_state = interop_genesis_state::<E>(
&validator_keypairs,
HARNESS_GENESIS_TIME,
Hash256::from_slice(DEFAULT_ETH1_BLOCK_HASH),
None,
builder.get_spec(),
)
.expect("should generate interop state");
builder
.genesis_state(genesis_state)
.expect("should build state using recent genesis")
};
self.store = Some(store);
self.store_mutator(Box::new(mutator))
}
/// Disk store, resume.
pub fn resumed_disk_store(mut self, store: Arc<HotColdDB<E, LevelDB<E>, LevelDB<E>>>) -> Self {
let mutator = move |builder: BeaconChainBuilder<_>| {
builder
.resume_from_db()
.expect("should resume from database")
};
self.store = Some(store);
self.store_mutator(Box::new(mutator))
}
}
impl<E, Hot, Cold> Builder<BaseHarnessType<E, Hot, Cold>>
where
E: EthSpec,
Hot: ItemStore<E>,
Cold: ItemStore<E>,
{
pub fn new(eth_spec_instance: E) -> Self {
let runtime = TestRuntime::default();
let log = runtime.log.clone();
Self {
eth_spec_instance,
spec: None,
validator_keypairs: None,
chain_config: None,
store_config: None,
store: None,
initial_mutator: None,
store_mutator: None,
execution_layer: None,
mock_execution_layer: None,
mock_builder: None,
testing_slot_clock: None,
runtime,
log,
}
}
pub fn deterministic_keypairs(self, num_keypairs: usize) -> Self {
self.keypairs(types::test_utils::generate_deterministic_keypairs(
num_keypairs,
))
}
pub fn keypairs(mut self, validator_keypairs: Vec<Keypair>) -> Self {
self.validator_keypairs = Some(validator_keypairs);
self
}
pub fn default_spec(self) -> Self {
self.spec_or_default(None)
}
pub fn spec(self, spec: ChainSpec) -> Self {
self.spec_or_default(Some(spec))
}
pub fn spec_or_default(mut self, spec: Option<ChainSpec>) -> Self {
self.spec = Some(spec.unwrap_or_else(test_spec::<E>));
self
}
pub fn logger(mut self, log: Logger) -> Self {
self.log = log.clone();
self.runtime.set_logger(log);
self
}
/// This mutator will be run before the `store_mutator`.
pub fn initial_mutator(mut self, mutator: BoxedMutator<E, Hot, Cold>) -> Self {
assert!(
self.initial_mutator.is_none(),
"initial mutator already set"
);
self.initial_mutator = Some(mutator);
self
}
/// This mutator will be run after the `initial_mutator`.
pub fn store_mutator(mut self, mutator: BoxedMutator<E, Hot, Cold>) -> Self {
assert!(self.store_mutator.is_none(), "store mutator already set");
self.store_mutator = Some(mutator);
self
}
/// Purposefully replace the `store_mutator`.
pub fn override_store_mutator(mut self, mutator: BoxedMutator<E, Hot, Cold>) -> Self {
assert!(self.store_mutator.is_some(), "store mutator not set");
self.store_mutator = Some(mutator);
self
}
pub fn chain_config(mut self, chain_config: ChainConfig) -> Self {
self.chain_config = Some(chain_config);
self
}
pub fn execution_layer(mut self, urls: &[&str]) -> Self {
assert!(
self.execution_layer.is_none(),
"execution layer already defined"
);
let urls: Vec<SensitiveUrl> = urls
.iter()
.map(|s| SensitiveUrl::parse(s))
.collect::<Result<_, _>>()
.unwrap();
let config = execution_layer::Config {
execution_endpoints: urls,
secret_files: vec![],
suggested_fee_recipient: Some(Address::repeat_byte(42)),
..Default::default()
};
let execution_layer = ExecutionLayer::from_config(
config,
self.runtime.task_executor.clone(),
self.log.clone(),
)
.unwrap();
self.execution_layer = Some(execution_layer);
self
}
pub fn recalculate_fork_times_with_genesis(mut self, genesis_time: u64) -> Self {
let mock = self
.mock_execution_layer
.as_mut()
.expect("must have mock execution layer to recalculate fork times");
let spec = self
.spec
.clone()
.expect("cannot recalculate fork times without spec");
mock.server.execution_block_generator().shanghai_time =
spec.capella_fork_epoch.map(|epoch| {
genesis_time + spec.seconds_per_slot * E::slots_per_epoch() * epoch.as_u64()
});
mock.server.execution_block_generator().eip4844_time =
spec.eip4844_fork_epoch.map(|epoch| {
genesis_time + spec.seconds_per_slot * E::slots_per_epoch() * epoch.as_u64()
});
self
}
pub fn mock_execution_layer(mut self) -> Self {
let spec = self.spec.clone().expect("cannot build without spec");
let shanghai_time = spec.capella_fork_epoch.map(|epoch| {
HARNESS_GENESIS_TIME + spec.seconds_per_slot * E::slots_per_epoch() * epoch.as_u64()
});
let eip4844_time = spec.eip4844_fork_epoch.map(|epoch| {
HARNESS_GENESIS_TIME + spec.seconds_per_slot * E::slots_per_epoch() * epoch.as_u64()
});
let mock = MockExecutionLayer::new(
self.runtime.task_executor.clone(),
spec.terminal_total_difficulty,
DEFAULT_TERMINAL_BLOCK,
spec.terminal_block_hash,
spec.terminal_block_hash_activation_epoch,
shanghai_time,
eip4844_time,
Some(JwtKey::from_slice(&DEFAULT_JWT_SECRET).unwrap()),
None,
);
self.execution_layer = Some(mock.el.clone());
self.mock_execution_layer = Some(mock);
self
}
pub fn mock_execution_layer_with_builder(mut self, beacon_url: SensitiveUrl) -> Self {
// Get a random unused port
let port = unused_port::unused_tcp_port().unwrap();
let builder_url = SensitiveUrl::parse(format!("http://127.0.0.1:{port}").as_str()).unwrap();
let spec = self.spec.clone().expect("cannot build without spec");
let shanghai_time = spec.capella_fork_epoch.map(|epoch| {
HARNESS_GENESIS_TIME + spec.seconds_per_slot * E::slots_per_epoch() * epoch.as_u64()
});
let eip4844_time = spec.eip4844_fork_epoch.map(|epoch| {
HARNESS_GENESIS_TIME + spec.seconds_per_slot * E::slots_per_epoch() * epoch.as_u64()
});
let mock_el = MockExecutionLayer::new(
self.runtime.task_executor.clone(),
spec.terminal_total_difficulty,
DEFAULT_TERMINAL_BLOCK,
spec.terminal_block_hash,
spec.terminal_block_hash_activation_epoch,
shanghai_time,
eip4844_time,
Some(JwtKey::from_slice(&DEFAULT_JWT_SECRET).unwrap()),
Some(builder_url.clone()),
)
.move_to_terminal_block();
let mock_el_url = SensitiveUrl::parse(mock_el.server.url().as_str()).unwrap();
self.mock_builder = Some(TestingBuilder::new(
mock_el_url,
builder_url,
beacon_url,
spec,
self.runtime.task_executor.clone(),
));
self.execution_layer = Some(mock_el.el.clone());
self.mock_execution_layer = Some(mock_el);
self
}
/// Instruct the mock execution engine to always return a "valid" response to any payload it is
/// asked to execute.
pub fn mock_execution_layer_all_payloads_valid(self) -> Self {
self.mock_execution_layer
.as_ref()
.expect("requires mock execution layer")
.server
.all_payloads_valid();
self
}
pub fn testing_slot_clock(mut self, slot_clock: TestingSlotClock) -> Self {
self.testing_slot_clock = Some(slot_clock);
self
}
pub fn build(self) -> BeaconChainHarness<BaseHarnessType<E, Hot, Cold>> {
let (shutdown_tx, shutdown_receiver) = futures::channel::mpsc::channel(1);
let log = self.log;
let spec = self.spec.expect("cannot build without spec");
let seconds_per_slot = spec.seconds_per_slot;
let validator_keypairs = self
.validator_keypairs
.expect("cannot build without validator keypairs");
let mut builder = BeaconChainBuilder::new(self.eth_spec_instance)
.logger(log.clone())
.custom_spec(spec)
.store(self.store.expect("cannot build without store"))
.store_migrator_config(MigratorConfig::default().blocking())
.task_executor(self.runtime.task_executor.clone())
.execution_layer(self.execution_layer)
.dummy_eth1_backend()
.expect("should build dummy backend")
.shutdown_sender(shutdown_tx)
.chain_config(self.chain_config.unwrap_or_default())
.event_handler(Some(ServerSentEventHandler::new_with_capacity(
log.clone(),
5,
)))
.monitor_validators(true, vec![], log);
builder = if let Some(mutator) = self.initial_mutator {
mutator(builder)
} else {
builder
};
builder = if let Some(mutator) = self.store_mutator {
mutator(builder)
} else {
builder
};
// Initialize the slot clock only if it hasn't already been initialized.
builder = if let Some(testing_slot_clock) = self.testing_slot_clock {
builder.slot_clock(testing_slot_clock)
} else if builder.get_slot_clock().is_none() {
builder
.testing_slot_clock(Duration::from_secs(seconds_per_slot))
.expect("should configure testing slot clock")
} else {
builder
};
let chain = builder.build().expect("should build");
BeaconChainHarness {
spec: chain.spec.clone(),
chain: Arc::new(chain),
validator_keypairs,
shutdown_receiver: Arc::new(Mutex::new(shutdown_receiver)),
runtime: self.runtime,
mock_execution_layer: self.mock_execution_layer,
mock_builder: self.mock_builder.map(Arc::new),
rng: make_rng(),
}
}
}
/// A testing harness which can instantiate a `BeaconChain` and populate it with blocks and
/// attestations.
///
/// Used for testing.
pub struct BeaconChainHarness<T: BeaconChainTypes> {
pub validator_keypairs: Vec<Keypair>,
pub chain: Arc<BeaconChain<T>>,
pub spec: ChainSpec,
pub shutdown_receiver: Arc<Mutex<Receiver<ShutdownReason>>>,
pub runtime: TestRuntime,
pub mock_execution_layer: Option<MockExecutionLayer<T::EthSpec>>,
pub mock_builder: Option<Arc<TestingBuilder<T::EthSpec>>>,
pub rng: Mutex<StdRng>,
}
pub type CommitteeAttestations<E> = Vec<(Attestation<E>, SubnetId)>;
pub type HarnessAttestations<E> =
Vec<(CommitteeAttestations<E>, Option<SignedAggregateAndProof<E>>)>;
pub type HarnessSyncContributions<E> = Vec<(
Vec<(SyncCommitteeMessage, usize)>,
Option<SignedContributionAndProof<E>>,
)>;
impl<E, Hot, Cold> BeaconChainHarness<BaseHarnessType<E, Hot, Cold>>
where
E: EthSpec,
Hot: ItemStore<E>,
Cold: ItemStore<E>,
{
pub fn builder(eth_spec_instance: E) -> Builder<BaseHarnessType<E, Hot, Cold>> {
Builder::new(eth_spec_instance)
}
pub fn logger(&self) -> &slog::Logger {
&self.chain.log
}
pub fn execution_block_generator(&self) -> RwLockWriteGuard<'_, ExecutionBlockGenerator<E>> {
self.mock_execution_layer
.as_ref()
.expect("harness was not built with mock execution layer")
.server
.execution_block_generator()
}
pub fn get_all_validators(&self) -> Vec<usize> {
(0..self.validator_keypairs.len()).collect()
}
pub fn slots_per_epoch(&self) -> u64 {
E::slots_per_epoch()
}
pub fn epoch_start_slot(&self, epoch: u64) -> u64 {
let epoch = Epoch::new(epoch);
epoch.start_slot(E::slots_per_epoch()).into()
}
pub fn shutdown_reasons(&self) -> Vec<ShutdownReason> {
let mutex = self.shutdown_receiver.clone();
let mut receiver = mutex.lock();
std::iter::from_fn(move || match receiver.try_next() {
Ok(Some(s)) => Some(s),
Ok(None) => panic!("shutdown sender dropped"),
Err(_) => None,
})
.collect()
}
pub fn get_current_state(&self) -> BeaconState<E> {
self.chain.head_beacon_state_cloned()
}
pub fn get_timestamp_at_slot(&self) -> u64 {
let state = self.get_current_state();
compute_timestamp_at_slot(&state, state.slot(), &self.spec).unwrap()
}
pub fn get_current_state_and_root(&self) -> (BeaconState<E>, Hash256) {
let head = self.chain.head_snapshot();
let state_root = head.beacon_state_root();
(
head.beacon_state.clone_with_only_committee_caches(),
state_root,
)
}
pub fn head_slot(&self) -> Slot {
self.chain.canonical_head.cached_head().head_slot()
}
pub fn head_block_root(&self) -> Hash256 {
self.chain.canonical_head.cached_head().head_block_root()
}
pub fn finalized_checkpoint(&self) -> Checkpoint {
self.chain
.canonical_head
.cached_head()
.finalized_checkpoint()
}
pub fn justified_checkpoint(&self) -> Checkpoint {
self.chain
.canonical_head
.cached_head()
.justified_checkpoint()
}
pub fn get_current_slot(&self) -> Slot {
self.chain.slot().unwrap()
}
pub fn get_block(
&self,
block_hash: SignedBeaconBlockHash,
) -> Option<SignedBeaconBlock<E, BlindedPayload<E>>> {
self.chain.get_blinded_block(&block_hash.into()).unwrap()
}
pub fn block_exists(&self, block_hash: SignedBeaconBlockHash) -> bool {
self.get_block(block_hash).is_some()
}
pub fn get_hot_state(&self, state_hash: BeaconStateHash) -> Option<BeaconState<E>> {
self.chain
.store
.load_hot_state(&state_hash.into(), StateRootStrategy::Accurate)
.unwrap()
}
pub fn get_cold_state(&self, state_hash: BeaconStateHash) -> Option<BeaconState<E>> {
self.chain
.store
.load_cold_state(&state_hash.into())
.unwrap()
}
pub fn hot_state_exists(&self, state_hash: BeaconStateHash) -> bool {
self.get_hot_state(state_hash).is_some()
}
pub fn cold_state_exists(&self, state_hash: BeaconStateHash) -> bool {
self.get_cold_state(state_hash).is_some()
}
pub fn is_skipped_slot(&self, state: &BeaconState<E>, slot: Slot) -> bool {
state.get_block_root(slot).unwrap() == state.get_block_root(slot - 1).unwrap()
}
pub async fn make_block(
&self,
mut state: BeaconState<E>,
slot: Slot,
) -> (SignedBeaconBlock<E>, BeaconState<E>) {
assert_ne!(slot, 0, "can't produce a block at slot 0");
assert!(slot >= state.slot());
complete_state_advance(&mut state, None, slot, &self.spec)
.expect("should be able to advance state to slot");
state
.build_all_caches(&self.spec)
.expect("should build caches");
let proposer_index = state.get_beacon_proposer_index(slot, &self.spec).unwrap();
// If we produce two blocks for the same slot, they hash up to the same value and
// BeaconChain errors out with `BlockIsAlreadyKnown`. Vary the graffiti so that we produce
// different blocks each time.
let graffiti = Graffiti::from(self.rng.lock().gen::<[u8; 32]>());
let randao_reveal = self.sign_randao_reveal(&state, proposer_index, slot);
let (block, state) = self
.chain
.produce_block_on_state(
state,
None,
slot,
randao_reveal,
Some(graffiti),
ProduceBlockVerification::VerifyRandao,
)
.await
.unwrap();
let signed_block = block.sign(
&self.validator_keypairs[proposer_index].sk,
&state.fork(),
state.genesis_validators_root(),
&self.spec,
);
(signed_block, state)
}
/// Useful for the `per_block_processing` tests. Creates a block, and returns the state after
/// caches are built but before the generated block is processed.
pub async fn make_block_return_pre_state(
&self,
mut state: BeaconState<E>,
slot: Slot,
) -> (SignedBeaconBlock<E>, BeaconState<E>) {
assert_ne!(slot, 0, "can't produce a block at slot 0");
assert!(slot >= state.slot());
complete_state_advance(&mut state, None, slot, &self.spec)
.expect("should be able to advance state to slot");
state
.build_all_caches(&self.spec)
.expect("should build caches");
let proposer_index = state.get_beacon_proposer_index(slot, &self.spec).unwrap();
// If we produce two blocks for the same slot, they hash up to the same value and
// BeaconChain errors out with `BlockIsAlreadyKnown`. Vary the graffiti so that we produce
// different blocks each time.
let graffiti = Graffiti::from(self.rng.lock().gen::<[u8; 32]>());
let randao_reveal = self.sign_randao_reveal(&state, proposer_index, slot);
let pre_state = state.clone();
let (block, state) = self
.chain
.produce_block_on_state(
state,
None,
slot,
randao_reveal,
Some(graffiti),
ProduceBlockVerification::VerifyRandao,
)
.await
.unwrap();
let signed_block = block.sign(
&self.validator_keypairs[proposer_index].sk,
&state.fork(),
state.genesis_validators_root(),
&self.spec,
);
(signed_block, pre_state)
}
/// Create a randao reveal for a block at `slot`.
pub fn sign_randao_reveal(
&self,
state: &BeaconState<E>,
proposer_index: usize,
slot: Slot,
) -> Signature {
let epoch = slot.epoch(E::slots_per_epoch());
let domain = self.spec.get_domain(
epoch,
Domain::Randao,
&state.fork(),
state.genesis_validators_root(),
);
let message = epoch.signing_root(domain);
let sk = &self.validator_keypairs[proposer_index].sk;
sk.sign(message)
}
/// Sign a beacon block using the proposer's key.
pub fn sign_beacon_block(
&self,
block: BeaconBlock<E>,
state: &BeaconState<E>,
) -> SignedBeaconBlock<E> {
let proposer_index = block.proposer_index() as usize;
block.sign(
&self.validator_keypairs[proposer_index].sk,
&state.fork(),
state.genesis_validators_root(),
&self.spec,
)
}
/// Produces an "unaggregated" attestation for the given `slot` and `index` that attests to
/// `beacon_block_root`. The provided `state` should match the `block.state_root` for the
/// `block` identified by `beacon_block_root`.
///
/// The attestation doesn't _really_ have anything about it that makes it unaggregated per say,
/// however this function is only required in the context of forming an unaggregated
/// attestation. It would be an (undetectable) violation of the protocol to create a
/// `SignedAggregateAndProof` based upon the output of this function.
///
/// This function will produce attestations to optimistic blocks, which is against the
/// specification but useful during testing.
pub fn produce_unaggregated_attestation_for_block(
&self,
slot: Slot,
index: CommitteeIndex,
beacon_block_root: Hash256,
mut state: Cow<BeaconState<E>>,
state_root: Hash256,
) -> Result<Attestation<E>, BeaconChainError> {
let epoch = slot.epoch(E::slots_per_epoch());
if state.slot() > slot {
return Err(BeaconChainError::CannotAttestToFutureState);
} else if state.current_epoch() < epoch {
let mut_state = state.to_mut();
// Only perform a "partial" state advance since we do not require the state roots to be
// accurate.
partial_state_advance(
mut_state,
Some(state_root),
epoch.start_slot(E::slots_per_epoch()),
&self.spec,
)?;
mut_state.build_committee_cache(RelativeEpoch::Current, &self.spec)?;
}
let committee_len = state.get_beacon_committee(slot, index)?.committee.len();
let target_slot = epoch.start_slot(E::slots_per_epoch());
let target_root = if state.slot() <= target_slot {
beacon_block_root
} else {
*state.get_block_root(target_slot)?
};
Ok(Attestation {
aggregation_bits: BitList::with_capacity(committee_len)?,
data: AttestationData {
slot,
index,
beacon_block_root,
source: state.current_justified_checkpoint(),
target: Checkpoint {
epoch,
root: target_root,
},
},
signature: AggregateSignature::empty(),
})
}
/// A list of attestations for each committee for the given slot.
///
/// The first layer of the Vec is organised per committee. For example, if the return value is
/// called `all_attestations`, then all attestations in `all_attestations[0]` will be for
/// committee 0, whilst all in `all_attestations[1]` will be for committee 1.
pub fn make_unaggregated_attestations(
&self,
attesting_validators: &[usize],
state: &BeaconState<E>,
state_root: Hash256,
head_block_root: SignedBeaconBlockHash,
attestation_slot: Slot,
) -> Vec<CommitteeAttestations<E>> {
self.make_unaggregated_attestations_with_limit(
attesting_validators,
state,
state_root,
head_block_root,
attestation_slot,
None,
)
.0
}
pub fn make_unaggregated_attestations_with_limit(
&self,
attesting_validators: &[usize],
state: &BeaconState<E>,
state_root: Hash256,
head_block_root: SignedBeaconBlockHash,
attestation_slot: Slot,
limit: Option<usize>,
) -> (Vec<CommitteeAttestations<E>>, Vec<usize>) {
let committee_count = state.get_committee_count_at_slot(state.slot()).unwrap();
let fork = self
.spec
.fork_at_epoch(attestation_slot.epoch(E::slots_per_epoch()));
let attesters = Mutex::new(vec![]);
let attestations = state
.get_beacon_committees_at_slot(attestation_slot)
.expect("should get committees")
.iter()
.map(|bc| {
bc.committee
.par_iter()
.enumerate()
.filter_map(|(i, validator_index)| {
if !attesting_validators.contains(validator_index) {
return None;
}
let mut attesters = attesters.lock();
if let Some(limit) = limit {
if attesters.len() >= limit {
return None;
}
}
attesters.push(*validator_index);
let mut attestation = self
.produce_unaggregated_attestation_for_block(
attestation_slot,
bc.index,
head_block_root.into(),
Cow::Borrowed(state),
state_root,
)
.unwrap();
attestation.aggregation_bits.set(i, true).unwrap();
attestation.signature = {
let domain = self.spec.get_domain(
attestation.data.target.epoch,
Domain::BeaconAttester,
&fork,
state.genesis_validators_root(),
);
let message = attestation.data.signing_root(domain);
let mut agg_sig = AggregateSignature::infinity();
agg_sig.add_assign(
&self.validator_keypairs[*validator_index].sk.sign(message),
);
agg_sig
};
let subnet_id = SubnetId::compute_subnet_for_attestation_data::<E>(
&attestation.data,
committee_count,
&self.chain.spec,
)
.unwrap();
Some((attestation, subnet_id))
})
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
let attesters = attesters.into_inner();
if let Some(limit) = limit {
assert_eq!(
limit,
attesters.len(),
"failed to generate `limit` attestations"
);
}
(attestations, attesters)
}
/// A list of sync messages for the given state.
pub fn make_sync_committee_messages(
&self,
state: &BeaconState<E>,
head_block_root: Hash256,
message_slot: Slot,
relative_sync_committee: RelativeSyncCommittee,
) -> Vec<Vec<(SyncCommitteeMessage, usize)>> {
let sync_committee: Arc<SyncCommittee<E>> = match relative_sync_committee {
RelativeSyncCommittee::Current => state
.current_sync_committee()
.expect("should be called on altair beacon state")
.clone(),
RelativeSyncCommittee::Next => state
.next_sync_committee()
.expect("should be called on altair beacon state")
.clone(),
};
let fork = self
.spec
.fork_at_epoch(message_slot.epoch(E::slots_per_epoch()));
sync_committee
.pubkeys
.as_ref()
.chunks(E::sync_subcommittee_size())
.map(|subcommittee| {
subcommittee
.iter()
.enumerate()
.map(|(subcommittee_position, pubkey)| {
let validator_index = self
.chain
.validator_index(pubkey)
.expect("should find validator index")
.expect("pubkey should exist in the beacon chain");
let sync_message = SyncCommitteeMessage::new::<E>(
message_slot,
head_block_root,
validator_index as u64,
&self.validator_keypairs[validator_index].sk,
&fork,
state.genesis_validators_root(),
&self.spec,
);
(sync_message, subcommittee_position)
})
.collect()
})
.collect()
}
/// Deprecated: Use make_unaggregated_attestations() instead.
///
/// A list of attestations for each committee for the given slot.
///
/// The first layer of the Vec is organised per committee. For example, if the return value is
/// called `all_attestations`, then all attestations in `all_attestations[0]` will be for
/// committee 0, whilst all in `all_attestations[1]` will be for committee 1.
pub fn get_unaggregated_attestations(
&self,
attestation_strategy: &AttestationStrategy,
state: &BeaconState<E>,
state_root: Hash256,
head_block_root: Hash256,
attestation_slot: Slot,
) -> Vec<Vec<(Attestation<E>, SubnetId)>> {
let validators: Vec<usize> = match attestation_strategy {
AttestationStrategy::AllValidators => self.get_all_validators(),
AttestationStrategy::SomeValidators(vals) => vals.clone(),
};
self.make_unaggregated_attestations(
&validators,
state,
state_root,
head_block_root.into(),
attestation_slot,
)
}
pub fn make_attestations(
&self,
attesting_validators: &[usize],
state: &BeaconState<E>,
state_root: Hash256,
block_hash: SignedBeaconBlockHash,
slot: Slot,
) -> HarnessAttestations<E> {
self.make_attestations_with_limit(
attesting_validators,
state,
state_root,
block_hash,
slot,
None,
)
.0
}
/// Produce exactly `limit` attestations.
///
/// Return attestations and vec of validator indices that attested.
pub fn make_attestations_with_limit(
&self,
attesting_validators: &[usize],
state: &BeaconState<E>,
state_root: Hash256,
block_hash: SignedBeaconBlockHash,
slot: Slot,
limit: Option<usize>,
) -> (HarnessAttestations<E>, Vec<usize>) {
let (unaggregated_attestations, attesters) = self
.make_unaggregated_attestations_with_limit(
attesting_validators,
state,
state_root,
block_hash,
slot,
limit,
);
let fork = self.spec.fork_at_epoch(slot.epoch(E::slots_per_epoch()));
let aggregated_attestations: Vec<Option<SignedAggregateAndProof<E>>> =
unaggregated_attestations
.iter()
.map(|committee_attestations| {
// If there are any attestations in this committee, create an aggregate.
if let Some((attestation, _)) = committee_attestations.first() {
let bc = state
.get_beacon_committee(attestation.data.slot, attestation.data.index)
.unwrap();
// Find an aggregator if one exists. Return `None` if there are no
// aggregators.
let aggregator_index = bc
.committee
.iter()
.find(|&validator_index| {
if !attesters.contains(validator_index) {
return false;
}
let selection_proof = SelectionProof::new::<E>(
slot,
&self.validator_keypairs[*validator_index].sk,
&fork,
state.genesis_validators_root(),
&self.spec,
);
selection_proof
.is_aggregator(bc.committee.len(), &self.spec)
.unwrap_or(false)
})
.copied()?;
// If the chain is able to produce an aggregate, use that. Otherwise, build an
// aggregate locally.
let aggregate = self
.chain
.get_aggregated_attestation(&attestation.data)
.unwrap()
.unwrap_or_else(|| {
committee_attestations.iter().skip(1).fold(
attestation.clone(),
|mut agg, (att, _)| {
agg.aggregate(att);
agg
},
)
});
let signed_aggregate = SignedAggregateAndProof::from_aggregate(
aggregator_index as u64,
aggregate,
None,
&self.validator_keypairs[aggregator_index].sk,
&fork,
state.genesis_validators_root(),
&self.spec,
);
Some(signed_aggregate)
} else {
None
}
})
.collect();
(
unaggregated_attestations
.into_iter()
.zip(aggregated_attestations)
.collect(),
attesters,
)
}
pub fn make_sync_contributions(
&self,
state: &BeaconState<E>,
block_hash: Hash256,
slot: Slot,
relative_sync_committee: RelativeSyncCommittee,
) -> HarnessSyncContributions<E> {
let sync_messages =
self.make_sync_committee_messages(state, block_hash, slot, relative_sync_committee);
let sync_contributions: Vec<Option<SignedContributionAndProof<E>>> = sync_messages
.iter()
.enumerate()
.map(|(subnet_id, committee_messages)| {
// If there are any sync messages in this committee, create an aggregate.
if let Some((sync_message, subcommittee_position)) = committee_messages.first() {
let sync_committee: Arc<SyncCommittee<E>> = state
.current_sync_committee()
.expect("should be called on altair beacon state")
.clone();
let aggregator_index = sync_committee
.get_subcommittee_pubkeys(subnet_id)
.unwrap()
.iter()
.find_map(|pubkey| {
let validator_index = self
.chain
.validator_index(pubkey)
.expect("should find validator index")
.expect("pubkey should exist in the beacon chain");
let selection_proof = SyncSelectionProof::new::<E>(
slot,
subnet_id as u64,
&self.validator_keypairs[validator_index].sk,
&state.fork(),
state.genesis_validators_root(),
&self.spec,
);
selection_proof
.is_aggregator::<E>()
.expect("should determine aggregator")
.then_some(validator_index)
})?;
let default = SyncCommitteeContribution::from_message(
sync_message,
subnet_id as u64,
*subcommittee_position,
)
.expect("should derive sync contribution");
let aggregate = committee_messages.iter().skip(1).fold(
default,
|mut agg, (sig, position)| {
let contribution = SyncCommitteeContribution::from_message(
sig,
subnet_id as u64,
*position,
)
.expect("should derive sync contribution");
agg.aggregate(&contribution);
agg
},
);
let signed_aggregate = SignedContributionAndProof::from_aggregate(
aggregator_index as u64,
aggregate,
None,
&self.validator_keypairs[aggregator_index].sk,
&state.fork(),
state.genesis_validators_root(),
&self.spec,
);
Some(signed_aggregate)
} else {
None
}
})
.collect();
sync_messages.into_iter().zip(sync_contributions).collect()
}
pub fn make_attester_slashing(&self, validator_indices: Vec<u64>) -> AttesterSlashing<E> {
self.make_attester_slashing_with_epochs(validator_indices, None, None, None, None)
}
pub fn make_attester_slashing_with_epochs(
&self,
validator_indices: Vec<u64>,
source1: Option<Epoch>,
target1: Option<Epoch>,
source2: Option<Epoch>,
target2: Option<Epoch>,
) -> AttesterSlashing<E> {
let fork = self.chain.canonical_head.cached_head().head_fork();
let mut attestation_1 = IndexedAttestation {
attesting_indices: VariableList::new(validator_indices).unwrap(),
data: AttestationData {
slot: Slot::new(0),
index: 0,
beacon_block_root: Hash256::zero(),
target: Checkpoint {
root: Hash256::zero(),
epoch: target1.unwrap_or(fork.epoch),
},
source: Checkpoint {
root: Hash256::zero(),
epoch: source1.unwrap_or(Epoch::new(0)),
},
},
signature: AggregateSignature::infinity(),
};
let mut attestation_2 = attestation_1.clone();
attestation_2.data.index += 1;
attestation_2.data.source.epoch = source2.unwrap_or(Epoch::new(0));
attestation_2.data.target.epoch = target2.unwrap_or(fork.epoch);
for attestation in &mut [&mut attestation_1, &mut attestation_2] {
for &i in &attestation.attesting_indices {
let sk = &self.validator_keypairs[i as usize].sk;
let genesis_validators_root = self.chain.genesis_validators_root;
let domain = self.chain.spec.get_domain(
attestation.data.target.epoch,
Domain::BeaconAttester,
&fork,
genesis_validators_root,
);
let message = attestation.data.signing_root(domain);
attestation.signature.add_assign(&sk.sign(message));
}
}
AttesterSlashing {
attestation_1,
attestation_2,
}
}
pub fn make_attester_slashing_different_indices(
&self,
validator_indices_1: Vec<u64>,
validator_indices_2: Vec<u64>,
) -> AttesterSlashing<E> {
let data = AttestationData {
slot: Slot::new(0),
index: 0,
beacon_block_root: Hash256::zero(),
target: Checkpoint {
root: Hash256::zero(),
epoch: Epoch::new(0),
},
source: Checkpoint {
root: Hash256::zero(),
epoch: Epoch::new(0),
},
};
let mut attestation_1 = IndexedAttestation {
attesting_indices: VariableList::new(validator_indices_1).unwrap(),
data: data.clone(),
signature: AggregateSignature::infinity(),
};
let mut attestation_2 = IndexedAttestation {
attesting_indices: VariableList::new(validator_indices_2).unwrap(),
data,
signature: AggregateSignature::infinity(),
};
attestation_2.data.index += 1;
let fork = self.chain.canonical_head.cached_head().head_fork();
for attestation in &mut [&mut attestation_1, &mut attestation_2] {
for &i in &attestation.attesting_indices {
let sk = &self.validator_keypairs[i as usize].sk;
let genesis_validators_root = self.chain.genesis_validators_root;
let domain = self.chain.spec.get_domain(
attestation.data.target.epoch,
Domain::BeaconAttester,
&fork,
genesis_validators_root,
);
let message = attestation.data.signing_root(domain);
attestation.signature.add_assign(&sk.sign(message));
}
}
AttesterSlashing {
attestation_1,
attestation_2,
}
}
pub fn make_proposer_slashing(&self, validator_index: u64) -> ProposerSlashing {
self.make_proposer_slashing_at_slot(validator_index, None)
}
pub fn make_proposer_slashing_at_slot(
&self,
validator_index: u64,
slot_override: Option<Slot>,
) -> ProposerSlashing {
let mut block_header_1 = self.chain.head_beacon_block().message().block_header();
block_header_1.proposer_index = validator_index;
if let Some(slot) = slot_override {
block_header_1.slot = slot;
}
let mut block_header_2 = block_header_1.clone();
block_header_2.state_root = Hash256::zero();
let sk = &self.validator_keypairs[validator_index as usize].sk;
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
let mut signed_block_headers = vec![block_header_1, block_header_2]
.into_iter()
.map(|block_header| {
block_header.sign::<E>(sk, &fork, genesis_validators_root, &self.chain.spec)
})
.collect::<Vec<_>>();
ProposerSlashing {
signed_header_2: signed_block_headers.remove(1),
signed_header_1: signed_block_headers.remove(0),
}
}
pub fn make_voluntary_exit(&self, validator_index: u64, epoch: Epoch) -> SignedVoluntaryExit {
let sk = &self.validator_keypairs[validator_index as usize].sk;
let fork = self.chain.canonical_head.cached_head().head_fork();
let genesis_validators_root = self.chain.genesis_validators_root;
VoluntaryExit {
epoch,
validator_index,
}
.sign(sk, &fork, genesis_validators_root, &self.chain.spec)
}
pub fn add_voluntary_exit(
&self,
block: &mut BeaconBlock<E>,
validator_index: u64,
epoch: Epoch,
) {
let exit = self.make_voluntary_exit(validator_index, epoch);
block.body_mut().voluntary_exits_mut().push(exit).unwrap();
}
/// Create a new block, apply `block_modifier` to it, sign it and return it.
///
/// The state returned is a pre-block state at the same slot as the produced block.
pub async fn make_block_with_modifier(
&self,
state: BeaconState<E>,
slot: Slot,
block_modifier: impl FnOnce(&mut BeaconBlock<E>),
) -> (SignedBeaconBlock<E>, BeaconState<E>) {
assert_ne!(slot, 0, "can't produce a block at slot 0");
assert!(slot >= state.slot());
let (block, state) = self.make_block_return_pre_state(state, slot).await;
let (mut block, _) = block.deconstruct();
block_modifier(&mut block);
let proposer_index = state.get_beacon_proposer_index(slot, &self.spec).unwrap();
let signed_block = block.sign(
&self.validator_keypairs[proposer_index].sk,
&state.fork(),
state.genesis_validators_root(),
&self.spec,
);
(signed_block, state)
}
pub fn make_deposits<'a>(
&self,
state: &'a mut BeaconState<E>,
num_deposits: usize,
invalid_pubkey: Option<PublicKeyBytes>,
invalid_signature: Option<SignatureBytes>,
) -> (Vec<Deposit>, &'a mut BeaconState<E>) {
let mut datas = vec![];
for _ in 0..num_deposits {
let keypair = Keypair::random();
let pubkeybytes = PublicKeyBytes::from(keypair.pk.clone());
let mut data = DepositData {
pubkey: pubkeybytes,
withdrawal_credentials: Hash256::from_slice(
&get_withdrawal_credentials(&keypair.pk, self.spec.bls_withdrawal_prefix_byte)
[..],
),
amount: self.spec.min_deposit_amount,
signature: SignatureBytes::empty(),
};
data.signature = data.create_signature(&keypair.sk, &self.spec);
if let Some(invalid_pubkey) = invalid_pubkey {
data.pubkey = invalid_pubkey;
}
if let Some(invalid_signature) = invalid_signature.clone() {
data.signature = invalid_signature;
}
datas.push(data);
}
// Vector containing all leaves
let leaves = datas
.iter()
.map(|data| data.tree_hash_root())
.collect::<Vec<_>>();
// Building a VarList from leaves
let deposit_data_list = VariableList::<_, U4294967296>::from(leaves.clone());
// Setting the deposit_root to be the tree_hash_root of the VarList
state.eth1_data_mut().deposit_root = deposit_data_list.tree_hash_root();
state.eth1_data_mut().deposit_count = num_deposits as u64;
*state.eth1_deposit_index_mut() = 0;
// Building the merkle tree used for generating proofs
let tree = MerkleTree::create(&leaves[..], self.spec.deposit_contract_tree_depth as usize);
// Building proofs
let mut proofs = vec![];
for i in 0..leaves.len() {
let (_, mut proof) = tree
.generate_proof(i, self.spec.deposit_contract_tree_depth as usize)
.expect("should generate proof");
proof.push(Hash256::from_slice(&int_to_bytes32(leaves.len() as u64)));
proofs.push(proof);
}
// Building deposits
let deposits = datas
.into_par_iter()
.zip(proofs.into_par_iter())
.map(|(data, proof)| (data, proof.into()))
.map(|(data, proof)| Deposit { proof, data })
.collect::<Vec<_>>();
// Pushing deposits to block body
(deposits, state)
}
pub async fn process_block(
&self,
slot: Slot,
block_root: Hash256,
block: SignedBeaconBlock<E>,
) -> Result<SignedBeaconBlockHash, BlockError<E>> {
self.set_current_slot(slot);
let block_hash: SignedBeaconBlockHash = self
.chain
.process_block(
block_root,
Arc::new(block),
CountUnrealized::True,
NotifyExecutionLayer::Yes,
)
.await?
.into();
self.chain.recompute_head_at_current_slot().await;
Ok(block_hash)
}
pub async fn process_block_result(
&self,
block: SignedBeaconBlock<E>,
) -> Result<SignedBeaconBlockHash, BlockError<E>> {
let block_hash: SignedBeaconBlockHash = self
.chain
.process_block(
block.canonical_root(),
Arc::new(block),
CountUnrealized::True,
NotifyExecutionLayer::Yes,
)
.await?
.into();
self.chain.recompute_head_at_current_slot().await;
Ok(block_hash)
}
pub fn process_attestations(&self, attestations: HarnessAttestations<E>) {
let num_validators = self.validator_keypairs.len();
let mut unaggregated = Vec::with_capacity(num_validators);
// This is an over-allocation, but it should be fine. It won't be *that* memory hungry and
// it's nice to have fast tests.
let mut aggregated = Vec::with_capacity(num_validators);
for (unaggregated_attestations, maybe_signed_aggregate) in attestations.iter() {
for (attn, subnet) in unaggregated_attestations {
unaggregated.push((attn, Some(*subnet)));
}
if let Some(a) = maybe_signed_aggregate {
aggregated.push(a)
}
}
for result in self
.chain
.batch_verify_unaggregated_attestations_for_gossip(unaggregated.into_iter())
.unwrap()
{
let verified = result.unwrap();
self.chain.add_to_naive_aggregation_pool(&verified).unwrap();
}
for result in self
.chain
.batch_verify_aggregated_attestations_for_gossip(aggregated.into_iter())
.unwrap()
{
let verified = result.unwrap();
self.chain
.apply_attestation_to_fork_choice(&verified)
.unwrap();
self.chain.add_to_block_inclusion_pool(verified).unwrap();
}
}
pub fn set_current_slot(&self, slot: Slot) {
let current_slot = self.chain.slot().unwrap();
let current_epoch = current_slot.epoch(E::slots_per_epoch());
let epoch = slot.epoch(E::slots_per_epoch());
assert!(
epoch >= current_epoch,
"Jumping backwards to an earlier epoch isn't well defined. \
Please generate test blocks epoch-by-epoch instead."
);
self.chain.slot_clock.set_slot(slot.into());
}
pub async fn add_block_at_slot(
&self,
slot: Slot,
state: BeaconState<E>,
) -> Result<(SignedBeaconBlockHash, SignedBeaconBlock<E>, BeaconState<E>), BlockError<E>> {
self.set_current_slot(slot);
let (block, new_state) = self.make_block(state, slot).await;
let block_hash = self
.process_block(slot, block.canonical_root(), block.clone())
.await?;
Ok((block_hash, block, new_state))
}
pub fn attest_block(
&self,
state: &BeaconState<E>,
state_root: Hash256,
block_hash: SignedBeaconBlockHash,
block: &SignedBeaconBlock<E>,
validators: &[usize],
) {
let attestations =
self.make_attestations(validators, state, state_root, block_hash, block.slot());
self.process_attestations(attestations);
}
pub async fn add_attested_block_at_slot(
&self,
slot: Slot,
state: BeaconState<E>,
state_root: Hash256,
validators: &[usize],
) -> Result<(SignedBeaconBlockHash, BeaconState<E>), BlockError<E>> {
let (block_hash, block, state) = self.add_block_at_slot(slot, state).await?;
self.attest_block(&state, state_root, block_hash, &block, validators);
Ok((block_hash, state))
}
pub async fn add_attested_blocks_at_slots(
&self,
state: BeaconState<E>,
state_root: Hash256,
slots: &[Slot],
validators: &[usize],
) -> AddBlocksResult<E> {
assert!(!slots.is_empty());
self.add_attested_blocks_at_slots_given_lbh(state, state_root, slots, validators, None)
.await
}
async fn add_attested_blocks_at_slots_given_lbh(
&self,
mut state: BeaconState<E>,
state_root: Hash256,
slots: &[Slot],
validators: &[usize],
mut latest_block_hash: Option<SignedBeaconBlockHash>,
) -> AddBlocksResult<E> {
assert!(
slots.windows(2).all(|w| w[0] <= w[1]),
"Slots have to be sorted"
); // slice.is_sorted() isn't stabilized at the moment of writing this
let mut block_hash_from_slot: HashMap<Slot, SignedBeaconBlockHash> = HashMap::new();
let mut state_hash_from_slot: HashMap<Slot, BeaconStateHash> = HashMap::new();
for slot in slots {
let (block_hash, new_state) = self
.add_attested_block_at_slot(*slot, state, state_root, validators)
.await
.unwrap();
state = new_state;
block_hash_from_slot.insert(*slot, block_hash);
state_hash_from_slot.insert(*slot, state.tree_hash_root().into());
latest_block_hash = Some(block_hash);
}
(
block_hash_from_slot,
state_hash_from_slot,
latest_block_hash.unwrap(),
state,
)
}
/// A monstrosity of great usefulness.
///
/// Calls `add_attested_blocks_at_slots` for each of the chains in `chains`,
/// taking care to batch blocks by epoch so that the slot clock gets advanced one
/// epoch at a time.
///
/// Chains is a vec of `(state, slots, validators)` tuples.
pub async fn add_blocks_on_multiple_chains(
&self,
chains: Vec<(BeaconState<E>, Vec<Slot>, Vec<usize>)>,
) -> Vec<AddBlocksResult<E>> {
let slots_per_epoch = E::slots_per_epoch();
let min_epoch = chains
.iter()
.map(|(_, slots, _)| slots.iter().min().unwrap())
.min()
.unwrap()
.epoch(slots_per_epoch);
let max_epoch = chains
.iter()
.map(|(_, slots, _)| slots.iter().max().unwrap())
.max()
.unwrap()
.epoch(slots_per_epoch);
let mut chains = chains
.into_iter()
.map(|(state, slots, validators)| {
(
state,
slots,
validators,
HashMap::new(),
HashMap::new(),
SignedBeaconBlockHash::from(Hash256::zero()),
)
})
.collect::<Vec<_>>();
for epoch in min_epoch.as_u64()..=max_epoch.as_u64() {
let mut new_chains = vec![];
for (
mut head_state,
slots,
validators,
mut block_hashes,
mut state_hashes,
head_block,
) in chains
{
let epoch_slots = slots
.iter()
.filter(|s| s.epoch(slots_per_epoch).as_u64() == epoch)
.copied()
.collect::<Vec<_>>();
let head_state_root = head_state.update_tree_hash_cache().unwrap();
let (new_block_hashes, new_state_hashes, new_head_block, new_head_state) = self
.add_attested_blocks_at_slots_given_lbh(
head_state,
head_state_root,
&epoch_slots,
&validators,
Some(head_block),
)
.await;
block_hashes.extend(new_block_hashes);
state_hashes.extend(new_state_hashes);
new_chains.push((
new_head_state,
slots,
validators,
block_hashes,
state_hashes,
new_head_block,
));
}
chains = new_chains;
}
chains
.into_iter()
.map(|(state, _, _, block_hashes, state_hashes, head_block)| {
(block_hashes, state_hashes, head_block, state)
})
.collect()
}
pub fn get_finalized_checkpoints(&self) -> HashSet<SignedBeaconBlockHash> {
let chain_dump = self.chain.chain_dump().unwrap();
chain_dump
.iter()
.cloned()
.map(|checkpoint| checkpoint.beacon_state.finalized_checkpoint().root.into())
.filter(|block_hash| *block_hash != Hash256::zero().into())
.collect()
}
/// Deprecated: Do not modify the slot clock manually; rely on add_attested_blocks_at_slots()
/// instead
///
/// Advance the slot of the `BeaconChain`.
///
/// Does not produce blocks or attestations.
pub fn advance_slot(&self) {
self.chain.slot_clock.advance_slot();
}
/// Advance the clock to `lookahead` before the start of `slot`.
pub fn advance_to_slot_lookahead(&self, slot: Slot, lookahead: Duration) {
let time = self.chain.slot_clock.start_of(slot).unwrap() - lookahead;
self.chain.slot_clock.set_current_time(time);
}
/// Deprecated: Use make_block() instead
///
/// Returns a newly created block, signed by the proposer for the given slot.
pub async fn build_block(
&self,
state: BeaconState<E>,
slot: Slot,
_block_strategy: BlockStrategy,
) -> (SignedBeaconBlock<E>, BeaconState<E>) {
self.make_block(state, slot).await
}
/// Uses `Self::extend_chain` to build the chain out to the `target_slot`.
pub async fn extend_to_slot(&self, target_slot: Slot) -> Hash256 {
if self.chain.slot().unwrap() == self.chain.canonical_head.cached_head().head_slot() {
self.advance_slot();
}
let num_slots = target_slot
.as_usize()
.checked_sub(self.chain.slot().unwrap().as_usize())
.expect("target_slot must be >= current_slot")
.checked_add(1)
.unwrap();
self.extend_slots(num_slots).await
}
/// Uses `Self::extend_chain` to `num_slots` blocks.
///
/// Utilizes:
///
/// - BlockStrategy::OnCanonicalHead,
/// - AttestationStrategy::AllValidators,
pub async fn extend_slots(&self, num_slots: usize) -> Hash256 {
if self.chain.slot().unwrap() == self.chain.canonical_head.cached_head().head_slot() {
self.advance_slot();
}
self.extend_chain(
num_slots,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::AllValidators,
)
.await
}
/// Deprecated: Use add_attested_blocks_at_slots() instead
///
/// Extend the `BeaconChain` with some blocks and attestations. Returns the root of the
/// last-produced block (the head of the chain).
///
/// Chain will be extended by `num_blocks` blocks.
///
/// The `block_strategy` dictates where the new blocks will be placed.
///
/// The `attestation_strategy` dictates which validators will attest to the newly created
/// blocks.
pub async fn extend_chain(
&self,
num_blocks: usize,
block_strategy: BlockStrategy,
attestation_strategy: AttestationStrategy,
) -> Hash256 {
let (mut state, slots) = match block_strategy {
BlockStrategy::OnCanonicalHead => {
let current_slot: u64 = self.get_current_slot().into();
let slots: Vec<Slot> = (current_slot..(current_slot + (num_blocks as u64)))
.map(Slot::new)
.collect();
let state = self.get_current_state();
(state, slots)
}
BlockStrategy::ForkCanonicalChainAt {
previous_slot,
first_slot,
} => {
let first_slot_: u64 = first_slot.into();
let slots: Vec<Slot> = (first_slot_..(first_slot_ + (num_blocks as u64)))
.map(Slot::new)
.collect();
let state = self
.chain
.state_at_slot(previous_slot, StateSkipConfig::WithStateRoots)
.unwrap();
(state, slots)
}
};
let validators = match attestation_strategy {
AttestationStrategy::AllValidators => self.get_all_validators(),
AttestationStrategy::SomeValidators(vals) => vals,
};
let state_root = state.update_tree_hash_cache().unwrap();
let (_, _, last_produced_block_hash, _) = self
.add_attested_blocks_at_slots(state, state_root, &slots, &validators)
.await;
last_produced_block_hash.into()
}
/// Deprecated: Use add_attested_blocks_at_slots() instead
///
/// Creates two forks:
///
/// - The "honest" fork: created by the `honest_validators` who have built `honest_fork_blocks`
/// on the head
/// - The "faulty" fork: created by the `faulty_validators` who skipped a slot and
/// then built `faulty_fork_blocks`.
///
/// Returns `(honest_head, faulty_head)`, the roots of the blocks at the top of each chain.
pub async fn generate_two_forks_by_skipping_a_block(
&self,
honest_validators: &[usize],
faulty_validators: &[usize],
honest_fork_blocks: usize,
faulty_fork_blocks: usize,
) -> (Hash256, Hash256) {
let initial_head_slot = self.chain.head_snapshot().beacon_block.slot();
// Move to the next slot so we may produce some more blocks on the head.
self.advance_slot();
// Extend the chain with blocks where only honest validators agree.
let honest_head = self
.extend_chain(
honest_fork_blocks,
BlockStrategy::OnCanonicalHead,
AttestationStrategy::SomeValidators(honest_validators.to_vec()),
)
.await;
// Go back to the last block where all agreed, and build blocks upon it where only faulty nodes
// agree.
let faulty_head = self
.extend_chain(
faulty_fork_blocks,
BlockStrategy::ForkCanonicalChainAt {
previous_slot: initial_head_slot,
// `initial_head_slot + 2` means one slot is skipped.
first_slot: initial_head_slot + 2,
},
AttestationStrategy::SomeValidators(faulty_validators.to_vec()),
)
.await;
assert_ne!(honest_head, faulty_head, "forks should be distinct");
(honest_head, faulty_head)
}
}
// Junk `Debug` impl to satistfy certain trait bounds during testing.
impl<T: BeaconChainTypes> fmt::Debug for BeaconChainHarness<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "BeaconChainHarness")
}
}