lighthouse/beacon_node/store/src/iter.rs
Adam Szkoda 9db0c28051
Make key value storage abstractions more accurate (#1267)
* Layer do_atomically() abstractions properly

* Reduce allocs and DRY get_key_for_col()

* Parameterize HotColdDB with hot and cold item stores

* -impl Store for MemoryStore

* Replace Store uses with HotColdDB

* Ditch Store trait

* cargo fmt

* Style fix

* Readd missing dep that broke the build
2020-06-16 11:34:04 +10:00

466 lines
16 KiB
Rust

use crate::{Error, HotColdDB, ItemStore};
use std::borrow::Cow;
use std::marker::PhantomData;
use std::sync::Arc;
use types::{
typenum::Unsigned, BeaconState, BeaconStateError, EthSpec, Hash256, SignedBeaconBlock, Slot,
};
/// Implemented for types that have ancestors (e.g., blocks, states) that may be iterated over.
///
/// ## Note
///
/// It is assumed that all ancestors for this object are stored in the database. If this is not the
/// case, the iterator will start returning `None` prior to genesis.
pub trait AncestorIter<E: EthSpec, Hot: ItemStore<E>, Cold: ItemStore<E>, I: Iterator> {
/// Returns an iterator over the roots of the ancestors of `self`.
fn try_iter_ancestor_roots(&self, store: Arc<HotColdDB<E, Hot, Cold>>) -> Option<I>;
}
impl<'a, E: EthSpec, Hot: ItemStore<E>, Cold: ItemStore<E>>
AncestorIter<E, Hot, Cold, BlockRootsIterator<'a, E, Hot, Cold>> for SignedBeaconBlock<E>
{
/// Iterates across all available prior block roots of `self`, starting at the most recent and ending
/// at genesis.
fn try_iter_ancestor_roots(
&self,
store: Arc<HotColdDB<E, Hot, Cold>>,
) -> Option<BlockRootsIterator<'a, E, Hot, Cold>> {
let state = store
.get_state(&self.message.state_root, Some(self.message.slot))
.ok()??;
Some(BlockRootsIterator::owned(store, state))
}
}
impl<'a, E: EthSpec, Hot: ItemStore<E>, Cold: ItemStore<E>>
AncestorIter<E, Hot, Cold, StateRootsIterator<'a, E, Hot, Cold>> for BeaconState<E>
{
/// Iterates across all available prior state roots of `self`, starting at the most recent and ending
/// at genesis.
fn try_iter_ancestor_roots(
&self,
store: Arc<HotColdDB<E, Hot, Cold>>,
) -> Option<StateRootsIterator<'a, E, Hot, Cold>> {
// The `self.clone()` here is wasteful.
Some(StateRootsIterator::owned(store, self.clone()))
}
}
pub struct StateRootsIterator<'a, T: EthSpec, Hot: ItemStore<T>, Cold: ItemStore<T>> {
inner: RootsIterator<'a, T, Hot, Cold>,
}
impl<'a, T: EthSpec, Hot: ItemStore<T>, Cold: ItemStore<T>> Clone
for StateRootsIterator<'a, T, Hot, Cold>
{
fn clone(&self) -> Self {
Self {
inner: self.inner.clone(),
}
}
}
impl<'a, T: EthSpec, Hot: ItemStore<T>, Cold: ItemStore<T>> StateRootsIterator<'a, T, Hot, Cold> {
pub fn new(store: Arc<HotColdDB<T, Hot, Cold>>, beacon_state: &'a BeaconState<T>) -> Self {
Self {
inner: RootsIterator::new(store, beacon_state),
}
}
pub fn owned(store: Arc<HotColdDB<T, Hot, Cold>>, beacon_state: BeaconState<T>) -> Self {
Self {
inner: RootsIterator::owned(store, beacon_state),
}
}
}
impl<'a, T: EthSpec, Hot: ItemStore<T>, Cold: ItemStore<T>> Iterator
for StateRootsIterator<'a, T, Hot, Cold>
{
type Item = Result<(Hash256, Slot), Error>;
fn next(&mut self) -> Option<Self::Item> {
self.inner
.next()
.map(|result| result.map(|(_, state_root, slot)| (state_root, slot)))
}
}
/// Iterates backwards through block roots. If any specified slot is unable to be retrieved, the
/// iterator returns `None` indefinitely.
///
/// Uses the `block_roots` field of `BeaconState` as the source of block roots and will
/// perform a lookup on the `Store` for a prior `BeaconState` if `block_roots` has been
/// exhausted.
///
/// Returns `None` for roots prior to genesis or when there is an error reading from `Store`.
pub struct BlockRootsIterator<'a, T: EthSpec, Hot: ItemStore<T>, Cold: ItemStore<T>> {
inner: RootsIterator<'a, T, Hot, Cold>,
}
impl<'a, T: EthSpec, Hot: ItemStore<T>, Cold: ItemStore<T>> Clone
for BlockRootsIterator<'a, T, Hot, Cold>
{
fn clone(&self) -> Self {
Self {
inner: self.inner.clone(),
}
}
}
impl<'a, T: EthSpec, Hot: ItemStore<T>, Cold: ItemStore<T>> BlockRootsIterator<'a, T, Hot, Cold> {
/// Create a new iterator over all block roots in the given `beacon_state` and prior states.
pub fn new(store: Arc<HotColdDB<T, Hot, Cold>>, beacon_state: &'a BeaconState<T>) -> Self {
Self {
inner: RootsIterator::new(store, beacon_state),
}
}
/// Create a new iterator over all block roots in the given `beacon_state` and prior states.
pub fn owned(store: Arc<HotColdDB<T, Hot, Cold>>, beacon_state: BeaconState<T>) -> Self {
Self {
inner: RootsIterator::owned(store, beacon_state),
}
}
}
impl<'a, T: EthSpec, Hot: ItemStore<T>, Cold: ItemStore<T>> Iterator
for BlockRootsIterator<'a, T, Hot, Cold>
{
type Item = Result<(Hash256, Slot), Error>;
fn next(&mut self) -> Option<Self::Item> {
self.inner
.next()
.map(|result| result.map(|(block_root, _, slot)| (block_root, slot)))
}
}
/// Iterator over state and block roots that backtracks using the vectors from a `BeaconState`.
pub struct RootsIterator<'a, T: EthSpec, Hot: ItemStore<T>, Cold: ItemStore<T>> {
store: Arc<HotColdDB<T, Hot, Cold>>,
beacon_state: Cow<'a, BeaconState<T>>,
slot: Slot,
}
impl<'a, T: EthSpec, Hot: ItemStore<T>, Cold: ItemStore<T>> Clone
for RootsIterator<'a, T, Hot, Cold>
{
fn clone(&self) -> Self {
Self {
store: self.store.clone(),
beacon_state: self.beacon_state.clone(),
slot: self.slot,
}
}
}
impl<'a, T: EthSpec, Hot: ItemStore<T>, Cold: ItemStore<T>> RootsIterator<'a, T, Hot, Cold> {
pub fn new(store: Arc<HotColdDB<T, Hot, Cold>>, beacon_state: &'a BeaconState<T>) -> Self {
Self {
store,
slot: beacon_state.slot,
beacon_state: Cow::Borrowed(beacon_state),
}
}
pub fn owned(store: Arc<HotColdDB<T, Hot, Cold>>, beacon_state: BeaconState<T>) -> Self {
Self {
store,
slot: beacon_state.slot,
beacon_state: Cow::Owned(beacon_state),
}
}
pub fn from_block(
store: Arc<HotColdDB<T, Hot, Cold>>,
block_hash: Hash256,
) -> Result<Self, Error> {
let block = store
.get_block(&block_hash)?
.ok_or_else(|| BeaconStateError::MissingBeaconBlock(block_hash.into()))?;
let state = store
.get_state(&block.state_root(), Some(block.slot()))?
.ok_or_else(|| BeaconStateError::MissingBeaconState(block.state_root().into()))?;
Ok(Self::owned(store, state))
}
fn do_next(&mut self) -> Result<Option<(Hash256, Hash256, Slot)>, Error> {
if self.slot == 0 || self.slot > self.beacon_state.slot {
return Ok(None);
}
self.slot -= 1;
match (
self.beacon_state.get_block_root(self.slot),
self.beacon_state.get_state_root(self.slot),
) {
(Ok(block_root), Ok(state_root)) => Ok(Some((*block_root, *state_root, self.slot))),
(Err(BeaconStateError::SlotOutOfBounds), Err(BeaconStateError::SlotOutOfBounds)) => {
// Read a `BeaconState` from the store that has access to prior historical roots.
let beacon_state =
next_historical_root_backtrack_state(&*self.store, &self.beacon_state)?;
self.beacon_state = Cow::Owned(beacon_state);
let block_root = *self.beacon_state.get_block_root(self.slot)?;
let state_root = *self.beacon_state.get_state_root(self.slot)?;
Ok(Some((block_root, state_root, self.slot)))
}
(Err(e), _) => Err(e.into()),
(Ok(_), Err(e)) => Err(e.into()),
}
}
}
impl<'a, T: EthSpec, Hot: ItemStore<T>, Cold: ItemStore<T>> Iterator
for RootsIterator<'a, T, Hot, Cold>
{
/// (block_root, state_root, slot)
type Item = Result<(Hash256, Hash256, Slot), Error>;
fn next(&mut self) -> Option<Self::Item> {
self.do_next().transpose()
}
}
/// Block iterator that uses the `parent_root` of each block to backtrack.
pub struct ParentRootBlockIterator<'a, E: EthSpec, Hot: ItemStore<E>, Cold: ItemStore<E>> {
store: &'a HotColdDB<E, Hot, Cold>,
next_block_root: Hash256,
_phantom: PhantomData<E>,
}
impl<'a, E: EthSpec, Hot: ItemStore<E>, Cold: ItemStore<E>>
ParentRootBlockIterator<'a, E, Hot, Cold>
{
pub fn new(store: &'a HotColdDB<E, Hot, Cold>, start_block_root: Hash256) -> Self {
Self {
store,
next_block_root: start_block_root,
_phantom: PhantomData,
}
}
fn do_next(&mut self) -> Result<Option<(Hash256, SignedBeaconBlock<E>)>, Error> {
// Stop once we reach the zero parent, otherwise we'll keep returning the genesis
// block forever.
if self.next_block_root.is_zero() {
Ok(None)
} else {
let block_root = self.next_block_root;
let block = self
.store
.get_block(&block_root)?
.ok_or(Error::BlockNotFound(block_root))?;
self.next_block_root = block.message.parent_root;
Ok(Some((block_root, block)))
}
}
}
impl<'a, E: EthSpec, Hot: ItemStore<E>, Cold: ItemStore<E>> Iterator
for ParentRootBlockIterator<'a, E, Hot, Cold>
{
type Item = Result<(Hash256, SignedBeaconBlock<E>), Error>;
fn next(&mut self) -> Option<Self::Item> {
self.do_next().transpose()
}
}
#[derive(Clone)]
/// Extends `BlockRootsIterator`, returning `SignedBeaconBlock` instances, instead of their roots.
pub struct BlockIterator<'a, T: EthSpec, Hot: ItemStore<T>, Cold: ItemStore<T>> {
roots: BlockRootsIterator<'a, T, Hot, Cold>,
}
impl<'a, T: EthSpec, Hot: ItemStore<T>, Cold: ItemStore<T>> BlockIterator<'a, T, Hot, Cold> {
/// Create a new iterator over all blocks in the given `beacon_state` and prior states.
pub fn new(store: Arc<HotColdDB<T, Hot, Cold>>, beacon_state: &'a BeaconState<T>) -> Self {
Self {
roots: BlockRootsIterator::new(store, beacon_state),
}
}
/// Create a new iterator over all blocks in the given `beacon_state` and prior states.
pub fn owned(store: Arc<HotColdDB<T, Hot, Cold>>, beacon_state: BeaconState<T>) -> Self {
Self {
roots: BlockRootsIterator::owned(store, beacon_state),
}
}
fn do_next(&mut self) -> Result<Option<SignedBeaconBlock<T>>, Error> {
if let Some(result) = self.roots.next() {
let (root, _slot) = result?;
self.roots.inner.store.get_block(&root)
} else {
Ok(None)
}
}
}
impl<'a, T: EthSpec, Hot: ItemStore<T>, Cold: ItemStore<T>> Iterator
for BlockIterator<'a, T, Hot, Cold>
{
type Item = Result<SignedBeaconBlock<T>, Error>;
fn next(&mut self) -> Option<Self::Item> {
self.do_next().transpose()
}
}
/// Fetch the next state to use whilst backtracking in `*RootsIterator`.
fn next_historical_root_backtrack_state<E: EthSpec, Hot: ItemStore<E>, Cold: ItemStore<E>>(
store: &HotColdDB<E, Hot, Cold>,
current_state: &BeaconState<E>,
) -> Result<BeaconState<E>, Error> {
// For compatibility with the freezer database's restore points, we load a state at
// a restore point slot (thus avoiding replaying blocks). In the case where we're
// not frozen, this just means we might not jump back by the maximum amount on
// our first jump (i.e. at most 1 extra state load).
let new_state_slot = slot_of_prev_restore_point::<E>(current_state.slot);
let new_state_root = current_state.get_state_root(new_state_slot)?;
Ok(store
.get_state(new_state_root, Some(new_state_slot))?
.ok_or_else(|| BeaconStateError::MissingBeaconState((*new_state_root).into()))?)
}
/// Compute the slot of the last guaranteed restore point in the freezer database.
fn slot_of_prev_restore_point<E: EthSpec>(current_slot: Slot) -> Slot {
let slots_per_historical_root = E::SlotsPerHistoricalRoot::to_u64();
(current_slot - 1) / slots_per_historical_root * slots_per_historical_root
}
#[cfg(test)]
mod test {
use super::*;
use crate::config::StoreConfig;
use crate::HotColdDB;
use sloggers::{null::NullLoggerBuilder, Build};
use types::{test_utils::TestingBeaconStateBuilder, ChainSpec, Keypair, MainnetEthSpec};
fn get_state<T: EthSpec>() -> BeaconState<T> {
let builder = TestingBeaconStateBuilder::from_single_keypair(
0,
&Keypair::random(),
&T::default_spec(),
);
let (state, _keypairs) = builder.build();
state
}
#[test]
fn block_root_iter() {
let log = NullLoggerBuilder.build().unwrap();
let store = Arc::new(
HotColdDB::open_ephemeral(StoreConfig::default(), ChainSpec::minimal(), log).unwrap(),
);
let slots_per_historical_root = MainnetEthSpec::slots_per_historical_root();
let mut state_a: BeaconState<MainnetEthSpec> = get_state();
let mut state_b: BeaconState<MainnetEthSpec> = get_state();
state_a.slot = Slot::from(slots_per_historical_root);
state_b.slot = Slot::from(slots_per_historical_root * 2);
let mut hashes = (0..).map(Hash256::from_low_u64_be);
for root in &mut state_a.block_roots[..] {
*root = hashes.next().unwrap()
}
for root in &mut state_b.block_roots[..] {
*root = hashes.next().unwrap()
}
let state_a_root = hashes.next().unwrap();
state_b.state_roots[0] = state_a_root;
store.put_state(&state_a_root, &state_a).unwrap();
let iter = BlockRootsIterator::new(store, &state_b);
assert!(
iter.clone()
.any(|result| result.map(|(_root, slot)| slot == 0).unwrap()),
"iter should contain zero slot"
);
let mut collected: Vec<(Hash256, Slot)> = iter.collect::<Result<Vec<_>, _>>().unwrap();
collected.reverse();
let expected_len = 2 * MainnetEthSpec::slots_per_historical_root();
assert_eq!(collected.len(), expected_len);
for (i, item) in collected.iter().enumerate() {
assert_eq!(item.0, Hash256::from_low_u64_be(i as u64));
}
}
#[test]
fn state_root_iter() {
let log = NullLoggerBuilder.build().unwrap();
let store = Arc::new(
HotColdDB::open_ephemeral(StoreConfig::default(), ChainSpec::minimal(), log).unwrap(),
);
let slots_per_historical_root = MainnetEthSpec::slots_per_historical_root();
let mut state_a: BeaconState<MainnetEthSpec> = get_state();
let mut state_b: BeaconState<MainnetEthSpec> = get_state();
state_a.slot = Slot::from(slots_per_historical_root);
state_b.slot = Slot::from(slots_per_historical_root * 2);
let mut hashes = (0..).map(Hash256::from_low_u64_be);
for slot in 0..slots_per_historical_root {
state_a
.set_state_root(Slot::from(slot), hashes.next().unwrap())
.unwrap_or_else(|_| panic!("should set state_a slot {}", slot));
}
for slot in slots_per_historical_root..slots_per_historical_root * 2 {
state_b
.set_state_root(Slot::from(slot), hashes.next().unwrap())
.unwrap_or_else(|_| panic!("should set state_b slot {}", slot));
}
let state_a_root = Hash256::from_low_u64_be(slots_per_historical_root as u64);
let state_b_root = Hash256::from_low_u64_be(slots_per_historical_root as u64 * 2);
store.put_state(&state_a_root, &state_a).unwrap();
store.put_state(&state_b_root, &state_b.clone()).unwrap();
let iter = StateRootsIterator::new(store, &state_b);
assert!(
iter.clone()
.any(|result| result.map(|(_root, slot)| slot == 0).unwrap()),
"iter should contain zero slot"
);
let mut collected: Vec<(Hash256, Slot)> = iter.collect::<Result<Vec<_>, _>>().unwrap();
collected.reverse();
let expected_len = MainnetEthSpec::slots_per_historical_root() * 2;
assert_eq!(collected.len(), expected_len, "collection length incorrect");
for (i, item) in collected.iter().enumerate() {
let (hash, slot) = *item;
assert_eq!(slot, i as u64, "slot mismatch at {}: {} vs {}", i, slot, i);
assert_eq!(
hash,
Hash256::from_low_u64_be(i as u64),
"hash mismatch at {}",
i
);
}
}
}