lighthouse/beacon_node/client/src/notifier.rs
blacktemplar 23a8f31f83 Fix clippy warnings (#1385)
## Issue Addressed

NA

## Proposed Changes

Fixes most clippy warnings and ignores the rest of them, see issue #1388.
2020-07-23 14:18:00 +00:00

299 lines
10 KiB
Rust

use crate::metrics;
use beacon_chain::{BeaconChain, BeaconChainTypes};
use eth2_libp2p::NetworkGlobals;
use futures::prelude::*;
use parking_lot::Mutex;
use slog::{debug, error, info, warn};
use slot_clock::SlotClock;
use std::sync::Arc;
use std::time::{Duration, Instant};
use tokio::time::delay_for;
use types::{EthSpec, Slot};
/// Create a warning log whenever the peer count is at or below this value.
pub const WARN_PEER_COUNT: usize = 1;
const DAYS_PER_WEEK: i64 = 7;
const HOURS_PER_DAY: i64 = 24;
const MINUTES_PER_HOUR: i64 = 60;
/// The number of historical observations that should be used to determine the average sync time.
const SPEEDO_OBSERVATIONS: usize = 4;
/// Spawns a notifier service which periodically logs information about the node.
pub fn spawn_notifier<T: BeaconChainTypes>(
executor: environment::TaskExecutor,
beacon_chain: Arc<BeaconChain<T>>,
network: Arc<NetworkGlobals<T::EthSpec>>,
milliseconds_per_slot: u64,
) -> Result<(), String> {
let slot_duration = Duration::from_millis(milliseconds_per_slot);
let duration_to_next_slot = beacon_chain
.slot_clock
.duration_to_next_slot()
.ok_or_else(|| "slot_notifier unable to determine time to next slot")?;
// Run this half way through each slot.
let start_instant = tokio::time::Instant::now() + duration_to_next_slot + (slot_duration / 2);
// Run this each slot.
let interval_duration = slot_duration;
let speedo = Mutex::new(Speedo::default());
let log = executor.log().clone();
let mut interval = tokio::time::interval_at(start_instant, interval_duration);
let interval_future = async move {
// Perform pre-genesis logging.
loop {
match beacon_chain.slot_clock.duration_to_next_slot() {
// If the duration to the next slot is greater than the slot duration, then we are
// waiting for genesis.
Some(next_slot) if next_slot > slot_duration => {
info!(
log,
"Waiting for genesis";
"peers" => peer_count_pretty(network.connected_peers()),
"wait_time" => estimated_time_pretty(Some(next_slot.as_secs() as f64)),
);
delay_for(slot_duration).await;
}
_ => break,
}
}
// Perform post-genesis logging.
while interval.next().await.is_some() {
let connected_peer_count = network.connected_peers();
let sync_state = network.sync_state();
let head_info = beacon_chain.head_info().map_err(|e| {
error!(
log,
"Failed to get beacon chain head info";
"error" => format!("{:?}", e)
)
})?;
let head_slot = head_info.slot;
let current_slot = beacon_chain.slot().map_err(|e| {
error!(
log,
"Unable to read current slot";
"error" => format!("{:?}", e)
)
})?;
let current_epoch = current_slot.epoch(T::EthSpec::slots_per_epoch());
let finalized_epoch = head_info.finalized_checkpoint.epoch;
let finalized_root = head_info.finalized_checkpoint.root;
let head_root = head_info.block_root;
let mut speedo = speedo.lock();
speedo.observe(head_slot, Instant::now());
metrics::set_gauge(
&metrics::SYNC_SLOTS_PER_SECOND,
speedo.slots_per_second().unwrap_or_else(|| 0_f64) as i64,
);
// The next two lines take advantage of saturating subtraction on `Slot`.
let head_distance = current_slot - head_slot;
if connected_peer_count <= WARN_PEER_COUNT {
warn!(log, "Low peer count"; "peer_count" => peer_count_pretty(connected_peer_count));
}
debug!(
log,
"Slot timer";
"peers" => peer_count_pretty(connected_peer_count),
"finalized_root" => format!("{}", finalized_root),
"finalized_epoch" => finalized_epoch,
"head_block" => format!("{}", head_root),
"head_slot" => head_slot,
"current_slot" => current_slot,
"sync_state" =>format!("{}", sync_state)
);
// Log if we are syncing
if sync_state.is_syncing() {
let distance = format!(
"{} slots ({})",
head_distance.as_u64(),
slot_distance_pretty(head_distance, slot_duration)
);
info!(
log,
"Syncing";
"peers" => peer_count_pretty(connected_peer_count),
"distance" => distance,
"speed" => sync_speed_pretty(speedo.slots_per_second()),
"est_time" => estimated_time_pretty(speedo.estimated_time_till_slot(current_slot)),
);
} else if sync_state.is_synced() {
let block_info = if current_slot > head_slot {
" … empty".to_string()
} else {
head_root.to_string()
};
info!(
log,
"Synced";
"peers" => peer_count_pretty(connected_peer_count),
"finalized_root" => format!("{}", finalized_root),
"finalized_epoch" => finalized_epoch,
"epoch" => current_epoch,
"block" => block_info,
"slot" => current_slot,
);
} else {
info!(
log,
"Searching for peers";
"peers" => peer_count_pretty(connected_peer_count),
"finalized_root" => format!("{}", finalized_root),
"finalized_epoch" => finalized_epoch,
"head_slot" => head_slot,
"current_slot" => current_slot,
);
}
}
Ok::<(), ()>(())
};
// run the notifier on the current executor
executor.spawn(interval_future.unwrap_or_else(|_| ()), "notifier");
Ok(())
}
/// Returns the peer count, returning something helpful if it's `usize::max_value` (effectively a
/// `None` value).
fn peer_count_pretty(peer_count: usize) -> String {
if peer_count == usize::max_value() {
String::from("--")
} else {
format!("{}", peer_count)
}
}
/// Returns a nicely formatted string describing the rate of slot imports per second.
fn sync_speed_pretty(slots_per_second: Option<f64>) -> String {
if let Some(slots_per_second) = slots_per_second {
format!("{:.2} slots/sec", slots_per_second)
} else {
"--".into()
}
}
/// Returns a nicely formatted string how long will we reach the target slot.
fn estimated_time_pretty(seconds_till_slot: Option<f64>) -> String {
if let Some(seconds_till_slot) = seconds_till_slot {
seconds_pretty(seconds_till_slot)
} else {
"--".into()
}
}
/// Returns a nicely formatted string describing the `slot_span` in terms of weeks, days, hours
/// and/or minutes.
fn slot_distance_pretty(slot_span: Slot, slot_duration: Duration) -> String {
if slot_duration == Duration::from_secs(0) {
return String::from("Unknown");
}
let secs = (slot_duration * slot_span.as_u64() as u32).as_secs();
seconds_pretty(secs as f64)
}
/// Returns a nicely formatted string describing the `slot_span` in terms of weeks, days, hours
/// and/or minutes.
fn seconds_pretty(secs: f64) -> String {
if secs <= 0.0 {
return "--".into();
}
let d = time::Duration::seconds_f64(secs);
let weeks = d.whole_weeks();
let days = d.whole_days();
let hours = d.whole_hours();
let minutes = d.whole_minutes();
if weeks > 0 {
format!("{:.0} weeks {:.0} days", weeks, days % DAYS_PER_WEEK)
} else if days > 0 {
format!("{:.0} days {:.0} hrs", days, hours % HOURS_PER_DAY)
} else if hours > 0 {
format!("{:.0} hrs {:.0} mins", hours, minutes % MINUTES_PER_HOUR)
} else {
format!("{:.0} mins", minutes)
}
}
/// "Speedo" is Australian for speedometer. This struct observes syncing times.
#[derive(Default)]
pub struct Speedo(Vec<(Slot, Instant)>);
impl Speedo {
/// Observe that we were at some `slot` at the given `instant`.
pub fn observe(&mut self, slot: Slot, instant: Instant) {
if self.0.len() > SPEEDO_OBSERVATIONS {
self.0.remove(0);
}
self.0.push((slot, instant));
}
/// Returns the average of the speeds between each observation.
///
/// Does not gracefully handle slots that are above `u32::max_value()`.
pub fn slots_per_second(&self) -> Option<f64> {
let speeds = self
.0
.windows(2)
.filter_map(|windows| {
let (slot_a, instant_a) = windows[0];
let (slot_b, instant_b) = windows[1];
// Taking advantage of saturating subtraction on `Slot`.
let distance = f64::from((slot_b - slot_a).as_u64() as u32);
let seconds = f64::from((instant_b - instant_a).as_millis() as u32) / 1_000.0;
if seconds > 0.0 {
Some(distance / seconds)
} else {
None
}
})
.collect::<Vec<f64>>();
let count = speeds.len();
let sum: f64 = speeds.iter().sum();
if count > 0 {
Some(sum / f64::from(count as u32))
} else {
None
}
}
/// Returns the time we should reach the given `slot`, judging by the latest observation and
/// historical average syncing time.
///
/// Returns `None` if the slot is prior to our latest observed slot or we have not made any
/// observations.
pub fn estimated_time_till_slot(&self, target_slot: Slot) -> Option<f64> {
let (prev_slot, _) = self.0.last()?;
let slots_per_second = self.slots_per_second()?;
if target_slot > *prev_slot && slots_per_second > 0.0 {
let distance = (target_slot - *prev_slot).as_u64() as f64;
Some(distance / slots_per_second)
} else {
None
}
}
}