/// The Validator Client service. /// /// Connects to a beacon node and negotiates the correct chain id. /// /// Once connected, the service loads known validators keypairs from disk. Every slot, /// the service pings the beacon node, asking for new duties for each of the validators. /// /// When a validator needs to either produce a block or sign an attestation, it requests the /// data from the beacon node and performs the signing before publishing the block to the beacon /// node. use crate::attester_service::{AttestationGrpcClient, AttesterService}; use crate::block_producer_service::{BeaconBlockGrpcClient, BlockProducerService}; use crate::config::Config as ValidatorConfig; use crate::duties::UpdateOutcome; use crate::duties::{DutiesManager, EpochDutiesMap}; use crate::error as error_chain; use crate::error::ErrorKind; use attester::test_utils::EpochMap; use attester::{test_utils::LocalSigner as AttesterLocalSigner, Attester}; use block_proposer::{test_utils::LocalSigner as BlockProposerLocalSigner, BlockProducer}; use bls::Keypair; use grpcio::{ChannelBuilder, EnvBuilder}; use protos::services::Empty; use protos::services_grpc::{ AttestationServiceClient, BeaconBlockServiceClient, BeaconNodeServiceClient, ValidatorServiceClient, }; use slog::{debug, error, info, warn}; use slot_clock::{SlotClock, SystemTimeSlotClock}; use std::sync::Arc; use std::sync::RwLock; use std::time::{Duration, Instant, SystemTime}; use tokio::prelude::*; use tokio::runtime::Builder; use tokio::timer::Interval; use tokio_timer::clock::Clock; use types::test_utils::generate_deterministic_keypairs; use types::{Epoch, Fork, Slot}; //TODO: This service should be simplified in the future. Can be made more steamlined. /// The validator service. This is the main thread that executes and maintains validator /// duties. pub struct Service { /// The node we currently connected to. connected_node_version: String, /// The chain id we are processing on. fork: Fork, /// The slot clock for this service. slot_clock: SystemTimeSlotClock, /// The current slot we are processing. current_slot: Slot, /// The number of slots per epoch to allow for converting slots to epochs. slots_per_epoch: u64, // GRPC Clients /// The beacon block GRPC client. beacon_block_client: Arc, /// The validator GRPC client. validator_client: Arc, /// The attester GRPC client. attester_client: Arc, /// The validator client logger. log: slog::Logger, } impl Service { /// Initial connection to the beacon node to determine its properties. /// /// This tries to connect to a beacon node. Once connected, it initialised the gRPC clients /// and returns an instance of the service. fn initialize_service( config: &ValidatorConfig, log: slog::Logger, ) -> error_chain::Result { // initialise the beacon node client to check for a connection let env = Arc::new(EnvBuilder::new().build()); // Beacon node gRPC beacon node endpoints. let beacon_node_client = { let ch = ChannelBuilder::new(env.clone()).connect(&config.server); BeaconNodeServiceClient::new(ch) }; // retrieve node information and validate the beacon node let node_info = loop { match beacon_node_client.info(&Empty::new()) { Err(e) => { warn!(log, "Could not connect to node. Error: {}", e); info!(log, "Retrying in 5 seconds..."); std::thread::sleep(Duration::from_secs(5)); continue; } Ok(info) => { // verify the node's genesis time if SystemTime::now() .duration_since(SystemTime::UNIX_EPOCH) .unwrap() .as_secs() < info.genesis_time { error!( log, "Beacon Node's genesis time is in the future. No work to do.\n Exiting" ); return Err("Genesis time in the future".into()); } // verify the node's chain id if config.spec.chain_id != info.chain_id as u8 { error!( log, "Beacon Node's genesis time is in the future. No work to do.\n Exiting" ); return Err(format!("Beacon node has the wrong chain id. Expected chain id: {}, node's chain id: {}", config.spec.chain_id, info.chain_id).into()); } break info; } }; }; // build requisite objects to form Self let genesis_time = node_info.get_genesis_time(); let genesis_slot = Slot::from(node_info.get_genesis_slot()); info!(log,"Beacon node connected"; "Node Version" => node_info.version.clone(), "Chain ID" => node_info.chain_id, "Genesis time" => genesis_time); let proto_fork = node_info.get_fork(); let mut previous_version: [u8; 4] = [0; 4]; let mut current_version: [u8; 4] = [0; 4]; previous_version.copy_from_slice(&proto_fork.get_previous_version()[..4]); current_version.copy_from_slice(&proto_fork.get_current_version()[..4]); let fork = Fork { previous_version, current_version, epoch: Epoch::from(proto_fork.get_epoch()), }; // initialize the RPC clients // Beacon node gRPC beacon block endpoints. let beacon_block_client = { let ch = ChannelBuilder::new(env.clone()).connect(&config.server); Arc::new(BeaconBlockServiceClient::new(ch)) }; // Beacon node gRPC validator endpoints. let validator_client = { let ch = ChannelBuilder::new(env.clone()).connect(&config.server); Arc::new(ValidatorServiceClient::new(ch)) }; //Beacon node gRPC attester endpoints. let attester_client = { let ch = ChannelBuilder::new(env.clone()).connect(&config.server); Arc::new(AttestationServiceClient::new(ch)) }; // build the validator slot clock let slot_clock = SystemTimeSlotClock::new(genesis_slot, genesis_time, config.spec.seconds_per_slot) .expect("Unable to instantiate SystemTimeSlotClock."); let current_slot = slot_clock .present_slot() .map_err(|e| ErrorKind::SlotClockError(e))? .expect("Genesis must be in the future"); Ok(Self { connected_node_version: node_info.version, fork, slot_clock, current_slot, slots_per_epoch: config.spec.slots_per_epoch, beacon_block_client, validator_client, attester_client, log, }) } /// Initialise the service then run the core thread. pub fn start(config: ValidatorConfig, log: slog::Logger) -> error_chain::Result<()> { // connect to the node and retrieve its properties and initialize the gRPC clients let service = Service::initialize_service(&config, log)?; // we have connected to a node and established its parameters. Spin up the core service // set up the validator service runtime let mut runtime = Builder::new() .clock(Clock::system()) .name_prefix("validator-client-") .build() .map_err(|e| format!("Tokio runtime failed: {}", e))?; let duration_to_next_slot = service .slot_clock .duration_to_next_slot() .map_err(|e| format!("System clock error: {:?}", e))? .expect("Cannot start before genesis"); // set up the validator work interval - start at next slot and proceed every slot let interval = { // Set the interval to start at the next slot, and every slot after let slot_duration = Duration::from_secs(config.spec.seconds_per_slot); //TODO: Handle checked add correctly Interval::new(Instant::now() + duration_to_next_slot, slot_duration) }; /* kick off core service */ // generate keypairs // TODO: keypairs are randomly generated; they should be loaded from a file or generated. // https://github.com/sigp/lighthouse/issues/160 let keypairs = Arc::new(generate_deterministic_keypairs(8)); /* build requisite objects to pass to core thread */ // Builds a mapping of Epoch -> Map(PublicKey, EpochDuty) // where EpochDuty contains slot numbers and attestation data that each validator needs to // produce work on. let duties_map = RwLock::new(EpochDutiesMap::new(config.spec.slots_per_epoch)); // builds a manager which maintains the list of current duties for all known validators // and can check when a validator needs to perform a task. let manager = Arc::new(DutiesManager { duties_map, pubkeys: keypairs.iter().map(|keypair| keypair.pk.clone()).collect(), beacon_node: service.validator_client.clone(), }); // run the core thread runtime.block_on( interval .for_each(move |_| { let log = service.log.clone(); /* get the current slot and epoch */ let current_slot = match service.slot_clock.present_slot() { Err(e) => { error!(log, "SystemTimeError {:?}", e); return Ok(()); } Ok(slot) => slot.expect("Genesis is in the future"), }; let current_epoch = current_slot.epoch(service.slots_per_epoch); debug_assert!( current_slot > service.current_slot, "The Timer should poll a new slot" ); info!(log, "Processing"; "slot" => current_slot.as_u64(), "epoch" => current_epoch.as_u64()); /* check for new duties */ let cloned_manager = manager.clone(); let cloned_log = log.clone(); // spawn a new thread separate to the runtime std::thread::spawn(move || { let _empty_error = cloned_manager.run_update(current_epoch.clone(), cloned_log.clone()); }); /* execute any specified duties */ if let Some(work) = manager.get_current_work(current_slot) { for (_public_key, work_type) in work { if work_type.produce_block { // TODO: Produce a beacon block in a new thread } if work_type.attestation_duty.is_some() { // available AttestationDuty info let attestation_duty = work_type.attestation_duty.expect("Cannot be None"); //TODO: Produce an attestation in a new thread } } } Ok(()) }) .map_err(|e| format!("Service thread failed: {:?}", e)), ); // completed a slot process Ok(()) } /* // Spawn a new thread to perform block production for the validator. let producer_thread = { let spec = spec.clone(); let signer = Arc::new(BlockProposerLocalSigner::new(keypair.clone())); let duties_map = duties_map.clone(); let slot_clock = slot_clock.clone(); let log = log.clone(); let client = Arc::new(BeaconBlockGrpcClient::new(beacon_block_grpc_client.clone())); thread::spawn(move || { let block_producer = BlockProducer::new(spec, duties_map, slot_clock, client, signer); let mut block_producer_service = BlockProducerService { block_producer, poll_interval_millis, log, }; block_producer_service.run(); }) }; // Spawn a new thread for attestation for the validator. let attester_thread = { let signer = Arc::new(AttesterLocalSigner::new(keypair.clone())); let epoch_map = epoch_map_for_attester.clone(); let slot_clock = slot_clock.clone(); let log = log.clone(); let client = Arc::new(AttestationGrpcClient::new(attester_grpc_client.clone())); thread::spawn(move || { let attester = Attester::new(epoch_map, slot_clock, client, signer); let mut attester_service = AttesterService { attester, poll_interval_millis, log, }; attester_service.run(); }) }; threads.push((duties_manager_thread, producer_thread, attester_thread)); } // Naively wait for all the threads to complete. for tuple in threads { let (manager, producer, attester) = tuple; let _ = producer.join(); let _ = manager.join(); let _ = attester.join(); } */ }