use crate::{BeaconChain, BeaconChainTypes, BlockProcessingOutcome}; use lmd_ghost::LmdGhost; use slot_clock::SlotClock; use slot_clock::TestingSlotClock; use state_processing::per_slot_processing; use std::marker::PhantomData; use std::sync::Arc; use store::MemoryStore; use store::Store; use tree_hash::{SignedRoot, TreeHash}; use types::{ test_utils::TestingBeaconStateBuilder, AggregateSignature, Attestation, AttestationDataAndCustodyBit, BeaconBlock, BeaconState, Bitfield, ChainSpec, Domain, EthSpec, Hash256, Keypair, RelativeEpoch, SecretKey, Signature, Slot, }; pub use crate::persisted_beacon_chain::{PersistedBeaconChain, BEACON_CHAIN_DB_KEY}; /// Indicates how the `BeaconChainHarness` should produce blocks. #[derive(Clone, Copy, Debug)] pub enum BlockStrategy { /// Produce blocks upon the canonical head (normal case). OnCanonicalHead, /// Ignore the canonical head and produce blocks upon the block at the given slot. /// /// Useful for simulating forks. ForkCanonicalChainAt { /// The slot of the parent of the first block produced. previous_slot: Slot, /// The slot of the first block produced (must be higher than `previous_slot`. first_slot: Slot, }, } /// Indicates how the `BeaconChainHarness` should produce attestations. #[derive(Clone, Debug)] pub enum AttestationStrategy { /// All validators attest to whichever block the `BeaconChainHarness` has produced. AllValidators, /// Only the given validators should attest. All others should fail to produce attestations. SomeValidators(Vec), } /// Used to make the `BeaconChainHarness` generic over some types. pub struct CommonTypes where L: LmdGhost, E: EthSpec, { _phantom_l: PhantomData, _phantom_e: PhantomData, } impl BeaconChainTypes for CommonTypes where L: LmdGhost, E: EthSpec, { type Store = MemoryStore; type SlotClock = TestingSlotClock; type LmdGhost = L; type EthSpec = E; } /// A testing harness which can instantiate a `BeaconChain` and populate it with blocks and /// attestations. pub struct BeaconChainHarness where L: LmdGhost, E: EthSpec, { pub chain: BeaconChain>, pub keypairs: Vec, pub spec: ChainSpec, } impl BeaconChainHarness where L: LmdGhost, E: EthSpec, { /// Instantiate a new harness with `validator_count` initial validators. pub fn new(validator_count: usize) -> Self { let spec = E::default_spec(); let store = Arc::new(MemoryStore::open()); let state_builder = TestingBeaconStateBuilder::from_default_keypairs_file_if_exists(validator_count, &spec); let (genesis_state, keypairs) = state_builder.build(); let mut genesis_block = BeaconBlock::empty(&spec); genesis_block.state_root = Hash256::from_slice(&genesis_state.tree_hash_root()); // Slot clock let slot_clock = TestingSlotClock::new( spec.genesis_slot, genesis_state.genesis_time, spec.seconds_per_slot, ); let chain = BeaconChain::from_genesis( store, slot_clock, genesis_state, genesis_block, spec.clone(), ) .expect("Terminate if beacon chain generation fails"); Self { chain, keypairs, spec, } } /// Advance the slot of the `BeaconChain`. /// /// Does not produce blocks or attestations. pub fn advance_slot(&self) { self.chain.slot_clock.advance_slot(); self.chain.catchup_state().expect("should catchup state"); } /// Extend the `BeaconChain` with some blocks and attestations. Returns the root of the /// last-produced block (the head of the chain). /// /// Chain will be extended by `num_blocks` blocks. /// /// The `block_strategy` dictates where the new blocks will be placed. /// /// The `attestation_strategy` dictates which validators will attest to the newly created /// blocks. pub fn extend_chain( &self, num_blocks: usize, block_strategy: BlockStrategy, attestation_strategy: AttestationStrategy, ) -> Hash256 { let mut state = { // Determine the slot for the first block (or skipped block). let state_slot = match block_strategy { BlockStrategy::OnCanonicalHead => self.chain.read_slot_clock().unwrap() - 1, BlockStrategy::ForkCanonicalChainAt { previous_slot, .. } => previous_slot, }; self.get_state_at_slot(state_slot) }; // Determine the first slot where a block should be built. let mut slot = match block_strategy { BlockStrategy::OnCanonicalHead => self.chain.read_slot_clock().unwrap(), BlockStrategy::ForkCanonicalChainAt { first_slot, .. } => first_slot, }; let mut head_block_root = None; for _ in 0..num_blocks { while self.chain.read_slot_clock().expect("should have a slot") < slot { self.advance_slot(); } let (block, new_state) = self.build_block(state.clone(), slot, block_strategy); let outcome = self .chain .process_block(block) .expect("should not error during block processing"); if let BlockProcessingOutcome::Processed { block_root } = outcome { head_block_root = Some(block_root); self.add_attestations_to_op_pool( &attestation_strategy, &new_state, block_root, slot, ); } else { panic!("block should be successfully processed: {:?}", outcome); } state = new_state; slot += 1; } head_block_root.expect("did not produce any blocks") } fn get_state_at_slot(&self, state_slot: Slot) -> BeaconState { let state_root = self .chain .rev_iter_state_roots(self.chain.current_state().slot - 1) .find(|(_hash, slot)| *slot == state_slot) .map(|(hash, _slot)| hash) .expect("could not find state root"); self.chain .store .get(&state_root) .expect("should read db") .expect("should find state root") } /// Returns a newly created block, signed by the proposer for the given slot. fn build_block( &self, mut state: BeaconState, slot: Slot, block_strategy: BlockStrategy, ) -> (BeaconBlock, BeaconState) { if slot < state.slot { panic!("produce slot cannot be prior to the state slot"); } while state.slot < slot { per_slot_processing(&mut state, &self.spec) .expect("should be able to advance state to slot"); } state.build_all_caches(&self.spec).unwrap(); let proposer_index = match block_strategy { BlockStrategy::OnCanonicalHead => self .chain .block_proposer(slot) .expect("should get block proposer from chain"), _ => state .get_beacon_proposer_index(slot, RelativeEpoch::Current, &self.spec) .expect("should get block proposer from state"), }; let sk = &self.keypairs[proposer_index].sk; let fork = &state.fork.clone(); let randao_reveal = { let epoch = slot.epoch(E::slots_per_epoch()); let message = epoch.tree_hash_root(); let domain = self.spec.get_domain(epoch, Domain::Randao, fork); Signature::new(&message, domain, sk) }; let (mut block, state) = self .chain .produce_block_on_state(state, slot, randao_reveal) .expect("should produce block"); block.signature = { let message = block.signed_root(); let epoch = block.slot.epoch(E::slots_per_epoch()); let domain = self.spec.get_domain(epoch, Domain::BeaconProposer, fork); Signature::new(&message, domain, sk) }; (block, state) } /// Adds attestations to the `BeaconChain` operations pool to be included in future blocks. /// /// The `attestation_strategy` dictates which validators should attest. fn add_attestations_to_op_pool( &self, attestation_strategy: &AttestationStrategy, state: &BeaconState, head_block_root: Hash256, head_block_slot: Slot, ) { let spec = &self.spec; let fork = &state.fork; let attesting_validators: Vec = match attestation_strategy { AttestationStrategy::AllValidators => (0..self.keypairs.len()).collect(), AttestationStrategy::SomeValidators(vec) => vec.clone(), }; state .get_crosslink_committees_at_slot(state.slot) .expect("should get committees") .iter() .for_each(|cc| { let committee_size = cc.committee.len(); for (i, validator_index) in cc.committee.iter().enumerate() { // Note: searching this array is worst-case `O(n)`. A hashset could be a better // alternative. if attesting_validators.contains(validator_index) { let data = self .chain .produce_attestation_data_for_block( cc.shard, head_block_root, head_block_slot, state, ) .expect("should produce attestation data"); let mut aggregation_bitfield = Bitfield::new(); aggregation_bitfield.set(i, true); aggregation_bitfield.set(committee_size, false); let mut custody_bitfield = Bitfield::new(); custody_bitfield.set(committee_size, false); let signature = { let message = AttestationDataAndCustodyBit { data: data.clone(), custody_bit: false, } .tree_hash_root(); let domain = spec.get_domain(data.target_epoch, Domain::Attestation, fork); let mut agg_sig = AggregateSignature::new(); agg_sig.add(&Signature::new( &message, domain, self.get_sk(*validator_index), )); agg_sig }; let attestation = Attestation { aggregation_bitfield, data, custody_bitfield, signature, }; self.chain .process_attestation(attestation) .expect("should process attestation"); } } }); } /// Returns the secret key for the given validator index. fn get_sk(&self, validator_index: usize) -> &SecretKey { &self.keypairs[validator_index].sk } }