use super::{LmdGhost, Result as SuperResult}; use parking_lot::RwLock; use std::collections::HashMap; use std::marker::PhantomData; use std::sync::Arc; use store::{iter::BlockRootsIterator, Error as StoreError, Store}; use types::{BeaconBlock, BeaconState, EthSpec, Hash256, Slot}; type Result = std::result::Result; #[derive(Debug, PartialEq)] pub enum Error { MissingNode(Hash256), MissingBlock(Hash256), MissingState(Hash256), NotInTree(Hash256), NoCommonAncestor((Hash256, Hash256)), StoreError(StoreError), ValidatorWeightUnknown(usize), } impl From for Error { fn from(e: StoreError) -> Error { Error::StoreError(e) } } pub struct ThreadSafeReducedTree { core: RwLock>, } impl LmdGhost for ThreadSafeReducedTree where T: Store, E: EthSpec, { fn new(store: Arc, genesis_root: Hash256) -> Self { ThreadSafeReducedTree { core: RwLock::new(ReducedTree::new(store, genesis_root)), } } fn process_attestation( &self, validator_index: usize, block_hash: Hash256, block_slot: Slot, ) -> SuperResult<()> { self.core .write() .process_message(validator_index, block_hash, block_slot) .map_err(Into::into) } /// Process a block that was seen on the network. fn process_block(&self, block_hash: Hash256, block_slot: Slot) -> SuperResult<()> { unimplemented!(); } fn find_head(&self, start_block_root: Hash256, weight_fn: F) -> SuperResult where F: Fn(usize) -> Option + Copy, { self.core .write() .update_weights_and_find_head(start_block_root, weight_fn) .map_err(Into::into) } fn update_finalized_root(&self, new_root: Hash256) -> SuperResult<()> { self.core.write().update_root(new_root).map_err(Into::into) } } struct ReducedTree { store: Arc, /// Stores all nodes of the tree, keyed by the block hash contained in the node. nodes: HashMap, /// Maps validator indices to their latest votes. latest_votes: ElasticList>, /// Stores the root of the tree, used for pruning. root: Hash256, _phantom: PhantomData, } impl ReducedTree where T: Store, E: EthSpec, { pub fn new(store: Arc, genesis_root: Hash256) -> Self { let mut nodes = HashMap::new(); // Insert the genesis node. nodes.insert( genesis_root, Node { block_hash: genesis_root, ..Node::default() }, ); Self { store, nodes, latest_votes: ElasticList::default(), root: genesis_root, _phantom: PhantomData, } } pub fn update_root(&mut self, new_root: Hash256) -> Result<()> { if !self.nodes.contains_key(&new_root) { self.add_node(new_root, vec![])?; } self.retain_subtree(self.root, new_root)?; self.root = new_root; Ok(()) } fn retain_subtree(&mut self, current_hash: Hash256, subtree_hash: Hash256) -> Result<()> { if current_hash != subtree_hash { // Clone satisifies the borrow checker. let children = self.get_node(current_hash)?.children.clone(); for child_hash in children { self.retain_subtree(child_hash, subtree_hash)?; } self.nodes.remove(¤t_hash); } Ok(()) } pub fn process_message( &mut self, validator_index: usize, block_hash: Hash256, slot: Slot, ) -> Result<()> { if let Some(previous_vote) = self.latest_votes.get(validator_index) { if previous_vote.slot > slot { // Given vote is earier than known vote, nothing to do. return Ok(()); } else if previous_vote.slot == slot && previous_vote.hash == block_hash { // Given vote is identical to known vote, nothing to do. return Ok(()); } else if previous_vote.slot == slot && previous_vote.hash != block_hash { // Vote is an equivocation (double-vote), ignore it. // // TODO: this is slashable. return Ok(()); } else { // Given vote is newer or different to current vote, replace the current vote. self.remove_latest_message(validator_index)?; } } self.add_latest_message(validator_index, block_hash)?; Ok(()) } pub fn update_weights_and_find_head( &mut self, start_block_root: Hash256, weight_fn: F, ) -> Result where F: Fn(usize) -> Option + Copy, { let _root_weight = self.update_weight(start_block_root, weight_fn)?; let start_node = self.get_node(start_block_root)?; let head_node = self.find_head_from(start_node)?; Ok(head_node.block_hash) } fn find_head_from<'a>(&'a self, start_node: &'a Node) -> Result<&'a Node> { if start_node.does_not_have_children() { Ok(start_node) } else { let children = start_node .children .iter() .map(|hash| self.get_node(*hash)) .collect::>>()?; // TODO: check if `max_by` is `O(n^2)`. let best_child = children .iter() .max_by(|a, b| { if a.weight != b.weight { a.weight.cmp(&b.weight) } else { a.block_hash.cmp(&b.block_hash) } }) // There can only be no maximum if there are no children. This code path is guarded // against that condition. .expect("There must be a maximally weighted node."); self.find_head_from(best_child) } } fn update_weight(&mut self, start_block_root: Hash256, weight_fn: F) -> Result where F: Fn(usize) -> Option + Copy, { let weight = { let node = self.get_node(start_block_root)?.clone(); let mut weight = 0; for &child in &node.children { weight += self.update_weight(child, weight_fn)?; } for &voter in &node.voters { weight += weight_fn(voter).ok_or_else(|| Error::ValidatorWeightUnknown(voter))?; } weight }; let node = self.get_mut_node(start_block_root)?; node.weight = weight; Ok(weight) } fn remove_latest_message(&mut self, validator_index: usize) -> Result<()> { if self.latest_votes.get(validator_index).is_some() { // Unwrap is safe as prior `if` statements ensures the result is `Some`. let vote = self.latest_votes.get(validator_index).unwrap(); let should_delete = { self.get_mut_node(vote.hash)?.remove_voter(validator_index); let node = self.get_node(vote.hash)?.clone(); if let Some(parent_hash) = node.parent_hash { if node.has_votes() { // A node with votes is never removed. false } else if node.children.len() > 1 { // A node with more than one child is never removed. false } else if node.children.len() == 1 { // A node which has only one child may be removed. // // Load the child of the node and set it's parent to be the parent of this // node (viz., graft the node's child to the node's parent) let child = self .nodes .get_mut(&node.children[0]) .ok_or_else(|| Error::MissingNode(node.children[0]))?; child.parent_hash = node.parent_hash; true } else if node.children.len() == 0 { // A node which has no children may be deleted and potentially it's parent // too. self.maybe_delete_node(parent_hash)?; true } else { // It is impossible for a node to have a number of children that is not 0, 1 or // greater than one. // // This code is strictly unnecessary, however we keep it for readability. unreachable!(); } } else { // A node without a parent is the genesis/finalized node and should never be removed. false } }; if should_delete { self.nodes.remove(&vote.hash); } self.latest_votes.insert(validator_index, Some(vote)); } Ok(()) } fn maybe_delete_node(&mut self, hash: Hash256) -> Result<()> { let should_delete = { let node = self.get_node(hash)?.clone(); if node.parent_hash.is_some() { if (node.children.len() == 1) && !node.has_votes() { let child_node = self.get_mut_node(node.children[0])?; child_node.parent_hash = node.parent_hash; true } else { false } } else { // A node without a parent is the genesis node and should not be deleted. false } }; if should_delete { self.nodes.remove(&hash); } Ok(()) } fn add_latest_message(&mut self, validator_index: usize, hash: Hash256) -> Result<()> { if let Ok(node) = self.get_mut_node(hash) { node.add_voter(validator_index); } else { self.add_node(hash, vec![validator_index])?; } Ok(()) } fn add_node(&mut self, hash: Hash256, voters: Vec) -> Result<()> { // Find the highest (by slot) ancestor of the given hash/block that is in the reduced tree. let mut prev_in_tree = { let hash = self .find_prev_in_tree(hash) .ok_or_else(|| Error::NotInTree(hash))?; self.get_mut_node(hash)?.clone() }; let mut node = Node { block_hash: hash, parent_hash: Some(prev_in_tree.block_hash), voters, ..Node::default() }; if prev_in_tree.does_not_have_children() { node.parent_hash = Some(prev_in_tree.block_hash); prev_in_tree.children.push(hash); } else { for &child_hash in &prev_in_tree.children { let ancestor_hash = self.find_least_common_ancestor(hash, child_hash)?; if ancestor_hash != prev_in_tree.block_hash { let child = self.get_mut_node(child_hash)?; let common_ancestor = Node { block_hash: ancestor_hash, parent_hash: Some(prev_in_tree.block_hash), ..Node::default() }; child.parent_hash = Some(common_ancestor.block_hash); node.parent_hash = Some(common_ancestor.block_hash); self.nodes .insert(common_ancestor.block_hash, common_ancestor); } } } // Update `prev_in_tree`. A mutable reference was not maintained to satisfy the borrow // checker. // // This is not an ideal solution and results in unnecessary memory copies -- a better // solution is certainly possible. self.nodes.insert(prev_in_tree.block_hash, prev_in_tree); self.nodes.insert(hash, node); Ok(()) } /// For the given block `hash`, find it's highest (by slot) ancestor that exists in the reduced /// tree. fn find_prev_in_tree(&mut self, hash: Hash256) -> Option { self.iter_ancestors(hash) .ok()? .find(|(root, _slit)| self.get_node(*root).is_ok()) .and_then(|(root, _slot)| Some(root)) } /// For the given `child` block hash, return the block's ancestor at the given `target` slot. fn find_ancestor_at_slot(&self, child: Hash256, target: Slot) -> Result { let (root, slot) = self .iter_ancestors(child)? .find(|(_block, slot)| *slot <= target) .ok_or_else(|| Error::NotInTree(child))?; // Explicitly check that the slot is the target in the case that the given child has a slot // above target. if slot == target { Ok(root) } else { Err(Error::NotInTree(child)) } } /// For the two given block roots (`a_root` and `b_root`), find the first block they share in /// the tree. Viz, find the block that these two distinct blocks forked from. fn find_least_common_ancestor(&self, a_root: Hash256, b_root: Hash256) -> Result { // If the blocks behind `a_root` and `b_root` are not at the same slot, take the highest // block (by slot) down to be equal with the lower slot. // // The result is two roots which identify two blocks at the same height. let (a_root, b_root) = { let a = self.get_block(a_root)?; let b = self.get_block(b_root)?; if a.slot > b.slot { (self.find_ancestor_at_slot(a_root, b.slot)?, b_root) } else if b.slot > a.slot { (a_root, self.find_ancestor_at_slot(b_root, a.slot)?) } else { (a_root, b_root) } }; let ((a_root, _a_slot), (_b_root, _b_slot)) = self .iter_ancestors(a_root)? .zip(self.iter_ancestors(b_root)?) .find(|((a_root, _), (b_root, _))| a_root == b_root) .ok_or_else(|| Error::NoCommonAncestor((a_root, b_root)))?; Ok(a_root) } fn iter_ancestors(&self, child: Hash256) -> Result> { let block = self.get_block(child)?; let state = self.get_state(block.state_root)?; Ok(BlockRootsIterator::new( self.store.clone(), state, block.slot, )) } fn get_node(&self, hash: Hash256) -> Result<&Node> { self.nodes .get(&hash) .ok_or_else(|| Error::MissingNode(hash)) } fn get_mut_node(&mut self, hash: Hash256) -> Result<&mut Node> { self.nodes .get_mut(&hash) .ok_or_else(|| Error::MissingNode(hash)) } fn get_block(&self, block_root: Hash256) -> Result { self.store .get::(&block_root)? .ok_or_else(|| Error::MissingBlock(block_root)) } fn get_state(&self, state_root: Hash256) -> Result> { self.store .get::>(&state_root)? .ok_or_else(|| Error::MissingState(state_root)) } } #[derive(Default, Clone)] pub struct Node { pub parent_hash: Option, pub children: Vec, pub weight: u64, pub block_hash: Hash256, pub voters: Vec, } impl Node { pub fn does_not_have_children(&self) -> bool { self.children.is_empty() } pub fn remove_voter(&mut self, voter: usize) -> Option { let i = self.voters.iter().position(|&v| v == voter)?; Some(self.voters.remove(i)) } pub fn add_voter(&mut self, voter: usize) { self.voters.push(voter); } pub fn has_votes(&self) -> bool { !self.voters.is_empty() } } #[derive(Debug, Clone, Copy)] pub struct Vote { hash: Hash256, slot: Slot, } /// A Vec-wrapper which will grow to match any request. /// /// E.g., a `get` or `insert` to an out-of-bounds element will cause the Vec to grow (using /// Default) to the smallest size required to fulfill the request. #[derive(Default, Clone)] pub struct ElasticList(Vec); impl ElasticList where T: Default, { fn ensure(&mut self, i: usize) { if self.0.len() <= i { self.0.resize_with(i + 1, Default::default); } } pub fn get(&mut self, i: usize) -> &T { self.ensure(i); &self.0[i] } pub fn insert(&mut self, i: usize, element: T) { self.ensure(i); self.0[i] = element; } } impl From for String { fn from(e: Error) -> String { format!("{:?}", e) } }