extern crate byteorder; extern crate fast_math; use crate::{ForkChoice, ForkChoiceError}; use byteorder::{BigEndian, ByteOrder}; use db::{ stores::{BeaconBlockStore, BeaconStateStore}, ClientDB, }; use fast_math::log2_raw; use std::collections::HashMap; use std::sync::Arc; use types::{ readers::BeaconBlockReader, validator_registry::get_active_validator_indices, BeaconBlock, Hash256, Slot, SlotHeight, }; //TODO: Pruning - Children //TODO: Handle Syncing //TODO: Sort out global constants const GENESIS_SLOT: u64 = 0; const FORK_CHOICE_BALANCE_INCREMENT: u64 = 1e9 as u64; const MAX_DEPOSIT_AMOUNT: u64 = 32e9 as u64; const EPOCH_LENGTH: u64 = 64; /// The optimised LMD-GHOST fork choice rule. /// NOTE: This uses u32 to represent difference between block heights. Thus this is only /// applicable for block height differences in the range of a u32. /// This can potentially be parallelized in some parts. // we use fast log2, a log2 lookup table is implemented in Vitaliks code, potentially do // the comparison. Log2_raw takes 2ns according to the documentation. #[inline] fn log2_int(x: u32) -> u32 { log2_raw(x as f32) as u32 } fn power_of_2_below(x: u32) -> u32 { 2u32.pow(log2_int(x)) } /// Stores the necessary data structures to run the optimised lmd ghost algorithm. pub struct OptimisedLMDGhost { /// A cache of known ancestors at given heights for a specific block. //TODO: Consider FnvHashMap cache: HashMap, Hash256>, /// Log lookup table for blocks to their ancestors. //TODO: Verify we only want/need a size 16 log lookup ancestors: Vec>, /// Stores the children for any given parent. children: HashMap>, /// The latest attestation targets as a map of validator index to block hash. //TODO: Could this be a fixed size vec latest_attestation_targets: HashMap, /// Block storage access. block_store: Arc>, /// State storage access. state_store: Arc>, max_known_height: SlotHeight, } impl OptimisedLMDGhost where T: ClientDB + Sized, { pub fn new( block_store: Arc>, state_store: Arc>, ) -> Self { OptimisedLMDGhost { cache: HashMap::new(), ancestors: vec![HashMap::new(); 16], latest_attestation_targets: HashMap::new(), children: HashMap::new(), max_known_height: SlotHeight::new(0), block_store, state_store, } } /// Finds the latest votes weighted by validator balance. Returns a hashmap of block_hash to /// weighted votes. pub fn get_latest_votes( &self, state_root: &Hash256, block_slot: Slot, ) -> Result, ForkChoiceError> { // get latest votes // Note: Votes are weighted by min(balance, MAX_DEPOSIT_AMOUNT) // // FORK_CHOICE_BALANCE_INCREMENT // build a hashmap of block_hash to weighted votes trace!("FORKCHOICE: Getting the latest votes"); let mut latest_votes: HashMap = HashMap::new(); // gets the current weighted votes let current_state = self .state_store .get_deserialized(&state_root)? .ok_or_else(|| ForkChoiceError::MissingBeaconState(*state_root))?; let active_validator_indices = get_active_validator_indices( ¤t_state.validator_registry[..], block_slot.epoch(EPOCH_LENGTH), ); trace!( "FORKCHOICE: Active validator indicies: {:?}", active_validator_indices ); for index in active_validator_indices { let balance = std::cmp::min(current_state.validator_balances[index], MAX_DEPOSIT_AMOUNT) / FORK_CHOICE_BALANCE_INCREMENT; if balance > 0 { if let Some(target) = self.latest_attestation_targets.get(&(index as u64)) { *latest_votes.entry(*target).or_insert_with(|| 0) += balance; } } } trace!("FORKCHOICE: Latest votes: {:?}", latest_votes); Ok(latest_votes) } /// Gets the ancestor at a given height `at_height` of a block specified by `block_hash`. fn get_ancestor(&mut self, block_hash: Hash256, at_height: SlotHeight) -> Option { // return None if we can't get the block from the db. let block_height = { let block_slot = self .block_store .get_deserialized(&block_hash) .ok()? .expect("Should have returned already if None") .slot; block_slot.height(Slot::from(GENESIS_SLOT)) }; // verify we haven't exceeded the block height if at_height >= block_height { if at_height > block_height { return None; } else { return Some(block_hash); } } // check if the result is stored in our cache let cache_key = CacheKey::new(&block_hash, at_height.as_u32()); if let Some(ancestor) = self.cache.get(&cache_key) { return Some(*ancestor); } // not in the cache recursively search for ancestors using a log-lookup if let Some(ancestor) = { let ancestor_lookup = self.ancestors [log2_int((block_height - at_height - 1u64).as_u32()) as usize] .get(&block_hash) //TODO: Panic if we can't lookup and fork choice fails .expect("All blocks should be added to the ancestor log lookup table"); self.get_ancestor(*ancestor_lookup, at_height) } { // add the result to the cache self.cache.insert(cache_key, ancestor); return Some(ancestor); } None } // looks for an obvious block winner given the latest votes for a specific height fn get_clear_winner( &mut self, latest_votes: &HashMap, block_height: SlotHeight, ) -> Option { // map of vote counts for every hash at this height let mut current_votes: HashMap = HashMap::new(); let mut total_vote_count = 0; // loop through the latest votes and count all votes // these have already been weighted by balance for (hash, votes) in latest_votes.iter() { if let Some(ancestor) = self.get_ancestor(*hash, block_height) { let current_vote_value = current_votes.get(&ancestor).unwrap_or_else(|| &0); current_votes.insert(ancestor, current_vote_value + *votes); total_vote_count += votes; } } // Check if there is a clear block winner at this height. If so return it. for (hash, votes) in current_votes.iter() { if *votes >= total_vote_count / 2 { // we have a clear winner, return it return Some(*hash); } } // didn't find a clear winner None } // Finds the best child, splitting children into a binary tree, based on their hashes fn choose_best_child(&self, votes: &HashMap) -> Option { println!("Votes: {:?}", votes); let mut bitmask = 0; for bit in (0..=255).rev() { let mut zero_votes = 0; let mut one_votes = 0; let mut single_candidate = None; for (candidate, votes) in votes.iter() { let candidate_uint = BigEndian::read_u32(candidate); if candidate_uint >> (bit + 1) != bitmask { continue; } if (candidate_uint >> bit) % 2 == 0 { zero_votes += votes; } else { one_votes += votes; } if single_candidate.is_none() { single_candidate = Some(candidate); } else { single_candidate = None; } } bitmask = (bitmask * 2) + { if one_votes > zero_votes { 1 } else { 0 } }; if let Some(candidate) = single_candidate { return Some(*candidate); } //TODO Remove this during benchmark after testing assert!(bit >= 1); } // should never reach here None } } impl ForkChoice for OptimisedLMDGhost { fn add_block( &mut self, block: &BeaconBlock, block_hash: &Hash256, ) -> Result<(), ForkChoiceError> { // get the height of the parent let parent_height = self .block_store .get_deserialized(&block.parent_root)? .ok_or_else(|| ForkChoiceError::MissingBeaconBlock(block.parent_root))? .slot() .height(Slot::from(GENESIS_SLOT)); let parent_hash = &block.parent_root; // add the new block to the children of parent (*self .children .entry(block.parent_root) .or_insert_with(|| vec![])) .push(block_hash.clone()); // build the ancestor data structure for index in 0..16 { if parent_height % (1 << index) == 0 { self.ancestors[index].insert(*block_hash, *parent_hash); } else { // TODO: This is unsafe. Will panic if parent_hash doesn't exist. Using it for debugging let parent_ancestor = self.ancestors[index][parent_hash]; self.ancestors[index].insert(*block_hash, parent_ancestor); } } // update the max height self.max_known_height = std::cmp::max(self.max_known_height, parent_height + 1); Ok(()) } fn add_attestation( &mut self, validator_index: u64, target_block_root: &Hash256, ) -> Result<(), ForkChoiceError> { // simply add the attestation to the latest_attestation_target if the block_height is // larger trace!( "FORKCHOICE: Adding attestation of validator: {:?} for block: {:?}", validator_index, target_block_root ); let attestation_target = self .latest_attestation_targets .entry(validator_index) .or_insert_with(|| *target_block_root); // if we already have a value if attestation_target != target_block_root { trace!( "FORKCHOICE: Old attestation found: {:?}", attestation_target ); // get the height of the target block let block_height = self .block_store .get_deserialized(&target_block_root)? .ok_or_else(|| ForkChoiceError::MissingBeaconBlock(*target_block_root))? .slot() .height(Slot::from(GENESIS_SLOT)); // get the height of the past target block let past_block_height = self .block_store .get_deserialized(&attestation_target)? .ok_or_else(|| ForkChoiceError::MissingBeaconBlock(*attestation_target))? .slot() .height(Slot::from(GENESIS_SLOT)); trace!("FORKCHOICE: Old block height: {:?}", past_block_height); trace!("FORKCHOICE: New block height: {:?}", block_height); // update the attestation only if the new target is higher if past_block_height < block_height { trace!("FORKCHOICE: Updating old attestation"); *attestation_target = *target_block_root; } } Ok(()) } /// Perform lmd_ghost on the current chain to find the head. fn find_head(&mut self, justified_block_start: &Hash256) -> Result { trace!("Starting optimised fork choice"); let block = self .block_store .get_deserialized(&justified_block_start)? .ok_or_else(|| ForkChoiceError::MissingBeaconBlock(*justified_block_start))?; let block_slot = block.slot(); let block_height = block_slot.height(Slot::from(GENESIS_SLOT)); let state_root = block.state_root(); let mut current_head = *justified_block_start; let mut latest_votes = self.get_latest_votes(&state_root, block_slot)?; // remove any votes that don't relate to our current head. latest_votes.retain(|hash, _| self.get_ancestor(*hash, block_height) == Some(current_head)); trace!("FORKCHOICE: Latest votes: {:?}", latest_votes); // begin searching for the head loop { // if there are no children, we are done, return the current_head let children = match self.children.get(¤t_head) { Some(children) => children.clone(), None => return Ok(current_head), }; // logarithmic lookup blocks to see if there are obvious winners, if so, // progress to the next iteration. let mut step = power_of_2_below(self.max_known_height.saturating_sub(block_height).as_u32()) / 2; while step > 0 { if let Some(clear_winner) = self.get_clear_winner( &latest_votes, block_height - (block_height % u64::from(step)) + u64::from(step), ) { current_head = clear_winner; break; } step /= 2; } if step > 0 { trace!("FORKCHOICE: Found clear winner in log lookup"); } // if our skip lookup failed and we only have one child, progress to that child else if children.len() == 1 { current_head = children[0]; trace!( "FORKCHOICE: Lookup failed, only one child, proceeding to child: {}", current_head ); } // we need to find the best child path to progress down. else { trace!("FORKCHOICE: Searching for best child"); let mut child_votes = HashMap::new(); for (voted_hash, vote) in latest_votes.iter() { // if the latest votes correspond to a child if let Some(child) = self.get_ancestor(*voted_hash, block_height + 1) { // add up the votes for each child *child_votes.entry(child).or_insert_with(|| 0) += vote; } } println!("Child votes: {:?}", child_votes); // given the votes on the children, find the best child current_head = self .choose_best_child(&child_votes) .ok_or(ForkChoiceError::CannotFindBestChild)?; trace!("FORKCHOICE: Best child found: {}", current_head); } // No head was found, re-iterate // update the block height for the next iteration let block_height = self .block_store .get_deserialized(¤t_head)? .ok_or_else(|| ForkChoiceError::MissingBeaconBlock(*justified_block_start))? .slot() .height(Slot::from(GENESIS_SLOT)); // prune the latest votes for votes that are not part of current chosen chain // more specifically, only keep votes that have head as an ancestor latest_votes .retain(|hash, _| self.get_ancestor(*hash, block_height) == Some(current_head)); } } } /// Type for storing blocks in a memory cache. Key is comprised of block-hash plus the height. #[derive(PartialEq, Eq, Hash)] pub struct CacheKey { block_hash: Hash256, block_height: T, } impl CacheKey { pub fn new(block_hash: &Hash256, block_height: T) -> Self { CacheKey { block_hash: *block_hash, block_height, } } } #[cfg(test)] mod tests { use super::*; #[test] pub fn test_power_of_2_below() { println!("{:?}", std::f32::MAX); assert_eq!(power_of_2_below(4), 4); assert_eq!(power_of_2_below(5), 4); assert_eq!(power_of_2_below(7), 4); assert_eq!(power_of_2_below(24), 16); assert_eq!(power_of_2_below(32), 32); assert_eq!(power_of_2_below(33), 32); assert_eq!(power_of_2_below(63), 32); } }