//! The optimised bitwise LMD-GHOST fork choice rule. extern crate bit_vec; use crate::{ForkChoice, ForkChoiceError}; use bit_vec::BitVec; use db::{ stores::{BeaconBlockStore, BeaconStateStore}, ClientDB, }; use log::{debug, trace}; use std::collections::HashMap; use std::sync::Arc; use types::{ readers::BeaconBlockReader, validator_registry::get_active_validator_indices, BeaconBlock, ChainSpec, Hash256, Slot, SlotHeight, }; //TODO: Pruning - Children //TODO: Handle Syncing // NOTE: This uses u32 to represent difference between block heights. Thus this is only // applicable for block height differences in the range of a u32. // This can potentially be parallelized in some parts. /// Compute the base-2 logarithm of an integer, floored (rounded down) #[inline] fn log2_int(x: u64) -> u32 { if x == 0 { return 0; } 63 - x.leading_zeros() } fn power_of_2_below(x: u64) -> u64 { 2u64.pow(log2_int(x)) } /// Stores the necessary data structures to run the optimised bitwise lmd ghost algorithm. pub struct BitwiseLMDGhost { /// A cache of known ancestors at given heights for a specific block. //TODO: Consider FnvHashMap cache: HashMap, Hash256>, /// Log lookup table for blocks to their ancestors. //TODO: Verify we only want/need a size 16 log lookup ancestors: Vec>, /// Stores the children for any given parent. children: HashMap>, /// The latest attestation targets as a map of validator index to block hash. //TODO: Could this be a fixed size vec latest_attestation_targets: HashMap, /// Block storage access. block_store: Arc>, /// State storage access. state_store: Arc>, max_known_height: SlotHeight, } impl BitwiseLMDGhost where T: ClientDB + Sized, { pub fn new( block_store: Arc>, state_store: Arc>, ) -> Self { BitwiseLMDGhost { cache: HashMap::new(), ancestors: vec![HashMap::new(); 16], latest_attestation_targets: HashMap::new(), children: HashMap::new(), max_known_height: SlotHeight::new(0), block_store, state_store, } } /// Finds the latest votes weighted by validator balance. Returns a hashmap of block_hash to /// weighted votes. pub fn get_latest_votes( &self, state_root: &Hash256, block_slot: Slot, spec: &ChainSpec, ) -> Result, ForkChoiceError> { // get latest votes // Note: Votes are weighted by min(balance, MAX_DEPOSIT_AMOUNT) // // FORK_CHOICE_BALANCE_INCREMENT // build a hashmap of block_hash to weighted votes let mut latest_votes: HashMap = HashMap::new(); // gets the current weighted votes let current_state = self .state_store .get_deserialized(&state_root)? .ok_or_else(|| ForkChoiceError::MissingBeaconState(*state_root))?; let active_validator_indices = get_active_validator_indices( ¤t_state.validator_registry[..], block_slot.epoch(spec.slots_per_epoch), ); for index in active_validator_indices { let balance = std::cmp::min( current_state.validator_balances[index], spec.max_deposit_amount, ) / spec.fork_choice_balance_increment; if balance > 0 { if let Some(target) = self.latest_attestation_targets.get(&(index as u64)) { *latest_votes.entry(*target).or_insert_with(|| 0) += balance; } } } trace!("Latest votes: {:?}", latest_votes); Ok(latest_votes) } /// Gets the ancestor at a given height `at_height` of a block specified by `block_hash`. fn get_ancestor( &mut self, block_hash: Hash256, target_height: SlotHeight, spec: &ChainSpec, ) -> Option { // return None if we can't get the block from the db. let block_height = { let block_slot = self .block_store .get_deserialized(&block_hash) .ok()? .expect("Should have returned already if None") .slot; block_slot.height(spec.genesis_slot) }; // verify we haven't exceeded the block height if target_height >= block_height { if target_height > block_height { return None; } else { return Some(block_hash); } } // check if the result is stored in our cache let cache_key = CacheKey::new(&block_hash, target_height.as_u64()); if let Some(ancestor) = self.cache.get(&cache_key) { return Some(*ancestor); } // not in the cache recursively search for ancestors using a log-lookup if let Some(ancestor) = { let ancestor_lookup = self.ancestors [log2_int((block_height - target_height - 1u64).as_u64()) as usize] .get(&block_hash) //TODO: Panic if we can't lookup and fork choice fails .expect("All blocks should be added to the ancestor log lookup table"); self.get_ancestor(*ancestor_lookup, target_height, &spec) } { // add the result to the cache self.cache.insert(cache_key, ancestor); return Some(ancestor); } None } // looks for an obvious block winner given the latest votes for a specific height fn get_clear_winner( &mut self, latest_votes: &HashMap, block_height: SlotHeight, spec: &ChainSpec, ) -> Option { // map of vote counts for every hash at this height let mut current_votes: HashMap = HashMap::new(); let mut total_vote_count = 0; trace!("Clear winner at block height: {}", block_height); // loop through the latest votes and count all votes // these have already been weighted by balance for (hash, votes) in latest_votes.iter() { if let Some(ancestor) = self.get_ancestor(*hash, block_height, spec) { let current_vote_value = current_votes.get(&ancestor).unwrap_or_else(|| &0); current_votes.insert(ancestor, current_vote_value + *votes); total_vote_count += votes; } } // Check if there is a clear block winner at this height. If so return it. for (hash, votes) in current_votes.iter() { if *votes > total_vote_count / 2 { // we have a clear winner, return it return Some(*hash); } } // didn't find a clear winner None } // Finds the best child, splitting children into a binary tree, based on their hashes (Bitwise // LMD Ghost) fn choose_best_child(&self, votes: &HashMap) -> Option { if votes.is_empty() { return None; } let mut bitmask: BitVec = BitVec::new(); // loop through all bits for bit in 0..=256 { let mut zero_votes = 0; let mut one_votes = 0; let mut single_candidate = (None, false); trace!("Child vote length: {}", votes.len()); for (candidate, votes) in votes.iter() { let candidate_bit: BitVec = BitVec::from_bytes(candidate.as_bytes()); // if the bitmasks don't match, exclude candidate if !bitmask.iter().eq(candidate_bit.iter().take(bit)) { trace!( "Child: {} was removed in bit: {} with the bitmask: {:?}", candidate, bit, bitmask ); continue; } if candidate_bit.get(bit) == Some(false) { zero_votes += votes; } else { one_votes += votes; } if single_candidate.0.is_none() { single_candidate.0 = Some(candidate); single_candidate.1 = true; } else { single_candidate.1 = false; } } bitmask.push(one_votes > zero_votes); if single_candidate.1 { return Some(*single_candidate.0.expect("Cannot reach this")); } } // should never reach here None } } impl ForkChoice for BitwiseLMDGhost { fn add_block( &mut self, block: &BeaconBlock, block_hash: &Hash256, spec: &ChainSpec, ) -> Result<(), ForkChoiceError> { // get the height of the parent let parent_height = self .block_store .get_deserialized(&block.parent_root)? .ok_or_else(|| ForkChoiceError::MissingBeaconBlock(block.parent_root))? .slot() .height(spec.genesis_slot); let parent_hash = &block.parent_root; // add the new block to the children of parent (*self .children .entry(block.parent_root) .or_insert_with(|| vec![])) .push(block_hash.clone()); // build the ancestor data structure for index in 0..16 { if parent_height % (1 << index) == 0 { self.ancestors[index].insert(*block_hash, *parent_hash); } else { // TODO: This is unsafe. Will panic if parent_hash doesn't exist. Using it for debugging let parent_ancestor = self.ancestors[index][parent_hash]; self.ancestors[index].insert(*block_hash, parent_ancestor); } } // update the max height self.max_known_height = std::cmp::max(self.max_known_height, parent_height + 1); Ok(()) } fn add_attestation( &mut self, validator_index: u64, target_block_root: &Hash256, spec: &ChainSpec, ) -> Result<(), ForkChoiceError> { // simply add the attestation to the latest_attestation_target if the block_height is // larger trace!( "Adding attestation of validator: {:?} for block: {}", validator_index, target_block_root ); let attestation_target = self .latest_attestation_targets .entry(validator_index) .or_insert_with(|| *target_block_root); // if we already have a value if attestation_target != target_block_root { trace!("Old attestation found: {:?}", attestation_target); // get the height of the target block let block_height = self .block_store .get_deserialized(&target_block_root)? .ok_or_else(|| ForkChoiceError::MissingBeaconBlock(*target_block_root))? .slot() .height(spec.genesis_slot); // get the height of the past target block let past_block_height = self .block_store .get_deserialized(&attestation_target)? .ok_or_else(|| ForkChoiceError::MissingBeaconBlock(*attestation_target))? .slot() .height(spec.genesis_slot); // update the attestation only if the new target is higher if past_block_height < block_height { trace!("Updating old attestation"); *attestation_target = *target_block_root; } } Ok(()) } /// Perform lmd_ghost on the current chain to find the head. fn find_head( &mut self, justified_block_start: &Hash256, spec: &ChainSpec, ) -> Result { debug!( "Starting optimised fork choice at block: {}", justified_block_start ); let block = self .block_store .get_deserialized(&justified_block_start)? .ok_or_else(|| ForkChoiceError::MissingBeaconBlock(*justified_block_start))?; let block_slot = block.slot(); let state_root = block.state_root(); let mut block_height = block_slot.height(spec.genesis_slot); let mut current_head = *justified_block_start; let mut latest_votes = self.get_latest_votes(&state_root, block_slot, spec)?; // remove any votes that don't relate to our current head. latest_votes .retain(|hash, _| self.get_ancestor(*hash, block_height, spec) == Some(current_head)); // begin searching for the head loop { debug!( "Iteration for block: {} with vote length: {}", current_head, latest_votes.len() ); // if there are no children, we are done, return the current_head let children = match self.children.get(¤t_head) { Some(children) => children.clone(), None => { debug!("Head found: {}", current_head); return Ok(current_head); } }; // logarithmic lookup blocks to see if there are obvious winners, if so, // progress to the next iteration. let mut step = power_of_2_below(self.max_known_height.saturating_sub(block_height).as_u64()) / 2; while step > 0 { trace!("Current Step: {}", step); if let Some(clear_winner) = self.get_clear_winner( &latest_votes, block_height - (block_height % step) + step, spec, ) { current_head = clear_winner; break; } step /= 2; } if step > 0 { trace!("Found clear winner: {}", current_head); } // if our skip lookup failed and we only have one child, progress to that child else if children.len() == 1 { current_head = children[0]; trace!( "Lookup failed, only one child, proceeding to child: {}", current_head ); } // we need to find the best child path to progress down. else { trace!("Searching for best child"); let mut child_votes = HashMap::new(); for (voted_hash, vote) in latest_votes.iter() { // if the latest votes correspond to a child if let Some(child) = self.get_ancestor(*voted_hash, block_height + 1, spec) { // add up the votes for each child *child_votes.entry(child).or_insert_with(|| 0) += vote; } } // check if we have votes of children, if not select the smallest hash child if child_votes.is_empty() { current_head = *children .iter() .min_by(|child1, child2| child1.cmp(child2)) .expect("Must be children here"); trace!( "Children have no votes - smallest hash chosen: {}", current_head ); } else { // given the votes on the children, find the best child current_head = self .choose_best_child(&child_votes) .ok_or(ForkChoiceError::CannotFindBestChild)?; trace!("Best child found: {}", current_head); } } // didn't find head yet, proceed to next iteration // update block height block_height = self .block_store .get_deserialized(¤t_head)? .ok_or_else(|| ForkChoiceError::MissingBeaconBlock(current_head))? .slot() .height(spec.genesis_slot); // prune the latest votes for votes that are not part of current chosen chain // more specifically, only keep votes that have head as an ancestor for hash in latest_votes.keys() { trace!( "Ancestor for vote: {} at height: {} is: {:?}", hash, block_height, self.get_ancestor(*hash, block_height, spec) ); } latest_votes.retain(|hash, _| { self.get_ancestor(*hash, block_height, spec) == Some(current_head) }); } } } /// Type for storing blocks in a memory cache. Key is comprised of block-hash plus the height. #[derive(PartialEq, Eq, Hash)] pub struct CacheKey { block_hash: Hash256, block_height: T, } impl CacheKey { pub fn new(block_hash: &Hash256, block_height: T) -> Self { CacheKey { block_hash: *block_hash, block_height, } } } #[cfg(test)] mod tests { use super::*; #[test] pub fn test_power_of_2_below() { assert_eq!(power_of_2_below(4), 4); assert_eq!(power_of_2_below(5), 4); assert_eq!(power_of_2_below(7), 4); assert_eq!(power_of_2_below(24), 16); assert_eq!(power_of_2_below(32), 32); assert_eq!(power_of_2_below(33), 32); assert_eq!(power_of_2_below(63), 32); } #[test] pub fn test_power_of_2_below_large() { let pow: u64 = 1 << 24; for x in (pow - 20)..(pow + 20) { assert!(power_of_2_below(x) <= x, "{}", x); } } }