use crate::checkpoint::CheckPoint; use crate::errors::{BeaconChainError as Error, BlockProductionError}; use crate::fork_choice::{Error as ForkChoiceError, ForkChoice}; use crate::metrics::Metrics; use crate::persisted_beacon_chain::{PersistedBeaconChain, BEACON_CHAIN_DB_KEY}; use lmd_ghost::LmdGhost; use log::trace; use operation_pool::DepositInsertStatus; use operation_pool::{OperationPool, PersistedOperationPool}; use parking_lot::{RwLock, RwLockReadGuard}; use slot_clock::SlotClock; use state_processing::per_block_processing::errors::{ AttestationValidationError, AttesterSlashingValidationError, DepositValidationError, ExitValidationError, ProposerSlashingValidationError, TransferValidationError, }; use state_processing::{ per_block_processing, per_block_processing_without_verifying_block_signature, per_slot_processing, BlockProcessingError, }; use std::sync::Arc; use store::iter::{BestBlockRootsIterator, BlockIterator, BlockRootsIterator, StateRootsIterator}; use store::{Error as DBError, Store}; use tree_hash::TreeHash; use types::*; // Text included in blocks. // Must be 32-bytes or panic. // // |-------must be this long------| pub const GRAFFITI: &str = "sigp/lighthouse-0.0.0-prerelease"; #[derive(Debug, PartialEq)] pub enum BlockProcessingOutcome { /// Block was valid and imported into the block graph. Processed { block_root: Hash256 }, /// The blocks parent_root is unknown. ParentUnknown { parent: Hash256 }, /// The block slot is greater than the present slot. FutureSlot { present_slot: Slot, block_slot: Slot, }, /// The block state_root does not match the generated state. StateRootMismatch, /// The block was a genesis block, these blocks cannot be re-imported. GenesisBlock, /// The slot is finalized, no need to import. FinalizedSlot, /// Block is already known, no need to re-import. BlockIsAlreadyKnown, /// The block could not be applied to the state, it is invalid. PerBlockProcessingError(BlockProcessingError), } pub trait BeaconChainTypes { type Store: store::Store; type SlotClock: slot_clock::SlotClock; type LmdGhost: LmdGhost; type EthSpec: types::EthSpec; } /// Represents the "Beacon Chain" component of Ethereum 2.0. Allows import of blocks and block /// operations and chooses a canonical head. pub struct BeaconChain { pub spec: ChainSpec, /// Persistent storage for blocks, states, etc. Typically an on-disk store, such as LevelDB. pub store: Arc, /// Reports the current slot, typically based upon the system clock. pub slot_clock: T::SlotClock, /// Stores all operations (e.g., `Attestation`, `Deposit`, etc) that are candidates for /// inclusion in a block. pub op_pool: OperationPool, /// Stores a "snapshot" of the chain at the time the head-of-the-chain block was received. canonical_head: RwLock>, /// The same state from `self.canonical_head`, but updated at the start of each slot with a /// skip slot if no block is received. This is effectively a cache that avoids repeating calls /// to `per_slot_processing`. state: RwLock>, /// The root of the genesis block. genesis_block_root: Hash256, /// A state-machine that is updated with information from the network and chooses a canonical /// head block. pub fork_choice: ForkChoice, /// Stores metrics about this `BeaconChain`. pub metrics: Metrics, } impl BeaconChain { /// Instantiate a new Beacon Chain, from genesis. pub fn from_genesis( store: Arc, slot_clock: T::SlotClock, mut genesis_state: BeaconState, genesis_block: BeaconBlock, spec: ChainSpec, ) -> Result { genesis_state.build_all_caches(&spec)?; let state_root = genesis_state.canonical_root(); store.put(&state_root, &genesis_state)?; let genesis_block_root = genesis_block.block_header().canonical_root(); store.put(&genesis_block_root, &genesis_block)?; // Also store the genesis block under the `ZERO_HASH` key. let genesis_block_root = genesis_block.block_header().canonical_root(); store.put(&spec.zero_hash, &genesis_block)?; let canonical_head = RwLock::new(CheckPoint::new( genesis_block.clone(), genesis_block_root, genesis_state.clone(), state_root, )); Ok(Self { spec, slot_clock, op_pool: OperationPool::new(), state: RwLock::new(genesis_state), canonical_head, genesis_block_root, fork_choice: ForkChoice::new(store.clone(), &genesis_block, genesis_block_root), metrics: Metrics::new()?, store, }) } /// Attempt to load an existing instance from the given `store`. pub fn from_store( store: Arc, spec: ChainSpec, ) -> Result>, Error> { let key = Hash256::from_slice(&BEACON_CHAIN_DB_KEY.as_bytes()); let p: PersistedBeaconChain = match store.get(&key) { Err(e) => return Err(e.into()), Ok(None) => return Ok(None), Ok(Some(p)) => p, }; let slot_clock = T::SlotClock::new( spec.genesis_slot, p.state.genesis_time, spec.seconds_per_slot, ); let last_finalized_root = p.canonical_head.beacon_state.finalized_root; let last_finalized_block = &p.canonical_head.beacon_block; let op_pool = p.op_pool.into_operation_pool(&p.state, &spec); Ok(Some(BeaconChain { spec, slot_clock, fork_choice: ForkChoice::new(store.clone(), last_finalized_block, last_finalized_root), op_pool, canonical_head: RwLock::new(p.canonical_head), state: RwLock::new(p.state), genesis_block_root: p.genesis_block_root, metrics: Metrics::new()?, store, })) } /// Attempt to save this instance to `self.store`. pub fn persist(&self) -> Result<(), Error> { let p: PersistedBeaconChain = PersistedBeaconChain { canonical_head: self.canonical_head.read().clone(), op_pool: PersistedOperationPool::from_operation_pool(&self.op_pool), genesis_block_root: self.genesis_block_root, state: self.state.read().clone(), }; let key = Hash256::from_slice(&BEACON_CHAIN_DB_KEY.as_bytes()); self.store.put(&key, &p)?; Ok(()) } /// Returns the beacon block body for each beacon block root in `roots`. /// /// Fails if any root in `roots` does not have a corresponding block. pub fn get_block_bodies(&self, roots: &[Hash256]) -> Result, Error> { let bodies: Result, _> = roots .iter() .map(|root| match self.get_block(root)? { Some(block) => Ok(block.body), None => Err(Error::DBInconsistent(format!("Missing block: {}", root))), }) .collect(); Ok(bodies?) } /// Returns the beacon block header for each beacon block root in `roots`. /// /// Fails if any root in `roots` does not have a corresponding block. pub fn get_block_headers(&self, roots: &[Hash256]) -> Result, Error> { let headers: Result, _> = roots .iter() .map(|root| match self.get_block(root)? { Some(block) => Ok(block.block_header()), None => Err(Error::DBInconsistent("Missing block".into())), }) .collect(); Ok(headers?) } /// Iterate in reverse (highest to lowest slot) through all blocks from the block at `slot` /// through to the genesis block. /// /// Returns `None` for headers prior to genesis or when there is an error reading from `Store`. /// /// Contains duplicate headers when skip slots are encountered. pub fn rev_iter_blocks(&self, slot: Slot) -> BlockIterator { BlockIterator::owned(self.store.clone(), self.state.read().clone(), slot) } /// Iterates in reverse (highest to lowest slot) through all block roots from `slot` through to /// genesis. /// /// Returns `None` for roots prior to genesis or when there is an error reading from `Store`. /// /// Contains duplicate roots when skip slots are encountered. pub fn rev_iter_block_roots(&self, slot: Slot) -> BlockRootsIterator { BlockRootsIterator::owned(self.store.clone(), self.state.read().clone(), slot) } /// Iterates in reverse (highest to lowest slot) through all block roots from largest /// `slot <= beacon_state.slot` through to genesis. /// /// Returns `None` for roots prior to genesis or when there is an error reading from `Store`. /// /// Contains duplicate roots when skip slots are encountered. pub fn rev_iter_best_block_roots( &self, slot: Slot, ) -> BestBlockRootsIterator { BestBlockRootsIterator::owned(self.store.clone(), self.state.read().clone(), slot) } /// Iterates in reverse (highest to lowest slot) through all state roots from `slot` through to /// genesis. /// /// Returns `None` for roots prior to genesis or when there is an error reading from `Store`. pub fn rev_iter_state_roots(&self, slot: Slot) -> StateRootsIterator { StateRootsIterator::owned(self.store.clone(), self.state.read().clone(), slot) } /// Returns the block at the given root, if any. /// /// ## Errors /// /// May return a database error. pub fn get_block(&self, block_root: &Hash256) -> Result, Error> { Ok(self.store.get(block_root)?) } /// Returns a read-lock guarded `BeaconState` which is the `canonical_head` that has been /// updated to match the current slot clock. pub fn current_state(&self) -> RwLockReadGuard> { self.state.read() } /// Returns a read-lock guarded `CheckPoint` struct for reading the head (as chosen by the /// fork-choice rule). /// /// It is important to note that the `beacon_state` returned may not match the present slot. It /// is the state as it was when the head block was received, which could be some slots prior to /// now. pub fn head(&self) -> RwLockReadGuard> { self.canonical_head.read() } /// Returns the slot of the highest block in the canonical chain. pub fn best_slot(&self) -> Slot { self.canonical_head.read().beacon_block.slot } /// Ensures the current canonical `BeaconState` has been transitioned to match the `slot_clock`. pub fn catchup_state(&self) -> Result<(), Error> { let spec = &self.spec; let present_slot = match self.slot_clock.present_slot() { Ok(Some(slot)) => slot, _ => return Err(Error::UnableToReadSlot), }; if self.state.read().slot < present_slot { let mut state = self.state.write(); // If required, transition the new state to the present slot. for _ in state.slot.as_u64()..present_slot.as_u64() { // Ensure the next epoch state caches are built in case of an epoch transition. state.build_committee_cache(RelativeEpoch::Next, spec)?; per_slot_processing(&mut *state, spec)?; } state.build_all_caches(spec)?; } Ok(()) } /// Build all of the caches on the current state. /// /// Ideally this shouldn't be required, however we leave it here for testing. pub fn ensure_state_caches_are_built(&self) -> Result<(), Error> { self.state.write().build_all_caches(&self.spec)?; Ok(()) } /// Returns the validator index (if any) for the given public key. /// /// Information is retrieved from the present `beacon_state.validator_registry`. pub fn validator_index(&self, pubkey: &PublicKey) -> Option { for (i, validator) in self .head() .beacon_state .validator_registry .iter() .enumerate() { if validator.pubkey == *pubkey { return Some(i); } } None } /// Reads the slot clock, returns `None` if the slot is unavailable. /// /// The slot might be unavailable due to an error with the system clock, or if the present time /// is before genesis (i.e., a negative slot). /// /// This is distinct to `present_slot`, which simply reads the latest state. If a /// call to `read_slot_clock` results in a higher slot than a call to `present_slot`, /// `self.state` should undergo per slot processing. pub fn read_slot_clock(&self) -> Option { match self.slot_clock.present_slot() { Ok(Some(some_slot)) => Some(some_slot), Ok(None) => None, _ => None, } } /// Reads the slot clock (see `self.read_slot_clock()` and returns the number of slots since /// genesis. pub fn slots_since_genesis(&self) -> Option { let now = self.read_slot_clock()?; let genesis_slot = self.spec.genesis_slot; if now < genesis_slot { None } else { Some(SlotHeight::from(now.as_u64() - genesis_slot.as_u64())) } } /// Returns slot of the present state. /// /// This is distinct to `read_slot_clock`, which reads from the actual system clock. If /// `self.state` has not been transitioned it is possible for the system clock to be on a /// different slot to what is returned from this call. pub fn present_slot(&self) -> Slot { self.state.read().slot } /// Returns the block proposer for a given slot. /// /// Information is read from the present `beacon_state` shuffling, only information from the /// present epoch is available. pub fn block_proposer(&self, slot: Slot) -> Result { // Ensures that the present state has been advanced to the present slot, skipping slots if // blocks are not present. self.catchup_state()?; // TODO: permit lookups of the proposer at any slot. let index = self.state.read().get_beacon_proposer_index( slot, RelativeEpoch::Current, &self.spec, )?; Ok(index) } /// Returns the attestation slot and shard for a given validator index. /// /// Information is read from the current state, so only information from the present and prior /// epoch is available. pub fn validator_attestation_slot_and_shard( &self, validator_index: usize, ) -> Result, BeaconStateError> { trace!( "BeaconChain::validator_attestation_slot_and_shard: validator_index: {}", validator_index ); if let Some(attestation_duty) = self .state .read() .get_attestation_duties(validator_index, RelativeEpoch::Current)? { Ok(Some((attestation_duty.slot, attestation_duty.shard))) } else { Ok(None) } } /// Produce an `AttestationData` that is valid for the present `slot` and given `shard`. /// /// Attests to the canonical chain. pub fn produce_attestation_data(&self, shard: u64) -> Result { let state = self.state.read(); let head_block_root = self.head().beacon_block_root; let head_block_slot = self.head().beacon_block.slot; self.produce_attestation_data_for_block(shard, head_block_root, head_block_slot, &*state) } /// Produce an `AttestationData` that attests to the chain denoted by `block_root` and `state`. /// /// Permits attesting to any arbitrary chain. Generally, the `produce_attestation_data` /// function should be used as it attests to the canonical chain. pub fn produce_attestation_data_for_block( &self, shard: u64, head_block_root: Hash256, head_block_slot: Slot, state: &BeaconState, ) -> Result { // Collect some metrics. self.metrics.attestation_production_requests.inc(); let timer = self.metrics.attestation_production_times.start_timer(); let slots_per_epoch = T::EthSpec::slots_per_epoch(); let current_epoch_start_slot = state.current_epoch().start_slot(slots_per_epoch); // The `target_root` is the root of the first block of the current epoch. // // The `state` does not know the root of the block for it's current slot (it only knows // about blocks from prior slots). This creates an edge-case when the state is on the first // slot of the epoch -- we're unable to obtain the `target_root` because it is not a prior // root. // // This edge case is handled in two ways: // // - If the head block is on the same slot as the state, we use it's root. // - Otherwise, assume the current slot has been skipped and use the block root from the // prior slot. // // For all other cases, we simply read the `target_root` from `state.latest_block_roots`. let target_root = if state.slot == current_epoch_start_slot { if head_block_slot == current_epoch_start_slot { head_block_root } else { *state.get_block_root(current_epoch_start_slot - 1)? } } else { *state.get_block_root(current_epoch_start_slot)? }; let previous_crosslink_root = Hash256::from_slice(&state.get_current_crosslink(shard)?.tree_hash_root()); // Collect some metrics. self.metrics.attestation_production_successes.inc(); timer.observe_duration(); Ok(AttestationData { beacon_block_root: head_block_root, source_epoch: state.current_justified_epoch, source_root: state.current_justified_root, target_epoch: state.current_epoch(), target_root, shard, previous_crosslink_root, crosslink_data_root: Hash256::zero(), }) } /// Accept a new attestation from the network. /// /// If valid, the attestation is added to the `op_pool` and aggregated with another attestation /// if possible. pub fn process_attestation( &self, attestation: Attestation, ) -> Result<(), AttestationValidationError> { self.metrics.attestation_processing_requests.inc(); let timer = self.metrics.attestation_processing_times.start_timer(); let result = self .op_pool .insert_attestation(attestation, &*self.state.read(), &self.spec); timer.observe_duration(); if result.is_ok() { self.metrics.attestation_processing_successes.inc(); } // TODO: process attestation. Please consider: // // - Because a block was not added to the op pool does not mean it's invalid (it might // just be old). // - The attestation should be rejected if we don't know the block (ideally it should be // queued, but this may be overkill). // - The attestation _must_ be validated against it's state before being added to fork // choice. // - You can avoid verifying some attestations by first checking if they're a latest // message. This would involve expanding the `LmdGhost` API. result } /// Accept some deposit and queue it for inclusion in an appropriate block. pub fn process_deposit( &self, deposit: Deposit, ) -> Result { self.op_pool.insert_deposit(deposit) } /// Accept some exit and queue it for inclusion in an appropriate block. pub fn process_voluntary_exit(&self, exit: VoluntaryExit) -> Result<(), ExitValidationError> { self.op_pool .insert_voluntary_exit(exit, &*self.state.read(), &self.spec) } /// Accept some transfer and queue it for inclusion in an appropriate block. pub fn process_transfer(&self, transfer: Transfer) -> Result<(), TransferValidationError> { self.op_pool .insert_transfer(transfer, &*self.state.read(), &self.spec) } /// Accept some proposer slashing and queue it for inclusion in an appropriate block. pub fn process_proposer_slashing( &self, proposer_slashing: ProposerSlashing, ) -> Result<(), ProposerSlashingValidationError> { self.op_pool .insert_proposer_slashing(proposer_slashing, &*self.state.read(), &self.spec) } /// Accept some attester slashing and queue it for inclusion in an appropriate block. pub fn process_attester_slashing( &self, attester_slashing: AttesterSlashing, ) -> Result<(), AttesterSlashingValidationError> { self.op_pool .insert_attester_slashing(attester_slashing, &*self.state.read(), &self.spec) } /// Accept some block and attempt to add it to block DAG. /// /// Will accept blocks from prior slots, however it will reject any block from a future slot. pub fn process_block(&self, block: BeaconBlock) -> Result { self.metrics.block_processing_requests.inc(); let timer = self.metrics.block_processing_times.start_timer(); let finalized_slot = self .state .read() .finalized_epoch .start_slot(T::EthSpec::slots_per_epoch()); if block.slot <= finalized_slot { return Ok(BlockProcessingOutcome::FinalizedSlot); } if block.slot == 0 { return Ok(BlockProcessingOutcome::GenesisBlock); } let block_root = block.block_header().canonical_root(); if block_root == self.genesis_block_root { return Ok(BlockProcessingOutcome::GenesisBlock); } let present_slot = self .read_slot_clock() .ok_or_else(|| Error::UnableToReadSlot)?; if block.slot > present_slot { return Ok(BlockProcessingOutcome::FutureSlot { present_slot, block_slot: block.slot, }); } if self.store.exists::(&block_root)? { return Ok(BlockProcessingOutcome::BlockIsAlreadyKnown); } // Load the blocks parent block from the database, returning invalid if that block is not // found. let parent_block_root = block.previous_block_root; let parent_block: BeaconBlock = match self.store.get(&parent_block_root)? { Some(previous_block_root) => previous_block_root, None => { return Ok(BlockProcessingOutcome::ParentUnknown { parent: parent_block_root, }); } }; // Load the parent blocks state from the database, returning an error if it is not found. // It is an error because if know the parent block we should also know the parent state. let parent_state_root = parent_block.state_root; let parent_state = self .store .get(&parent_state_root)? .ok_or_else(|| Error::DBInconsistent(format!("Missing state {}", parent_state_root)))?; // Transition the parent state to the block slot. let mut state: BeaconState = parent_state; for _ in state.slot.as_u64()..block.slot.as_u64() { per_slot_processing(&mut state, &self.spec)?; } state.build_committee_cache(RelativeEpoch::Current, &self.spec)?; // Apply the received block to its parent state (which has been transitioned into this // slot). match per_block_processing(&mut state, &block, &self.spec) { Err(BlockProcessingError::BeaconStateError(e)) => { return Err(Error::BeaconStateError(e)) } Err(e) => return Ok(BlockProcessingOutcome::PerBlockProcessingError(e)), _ => {} } let state_root = state.canonical_root(); if block.state_root != state_root { return Ok(BlockProcessingOutcome::StateRootMismatch); } // Store the block and state. self.store.put(&block_root, &block)?; self.store.put(&state_root, &state)?; // Register the new block with the fork choice service. self.fork_choice.process_block(&state, &block, block_root)?; // Execute the fork choice algorithm, enthroning a new head if discovered. // // Note: in the future we may choose to run fork-choice less often, potentially based upon // some heuristic around number of attestations seen for the block. self.fork_choice()?; self.metrics.block_processing_successes.inc(); self.metrics .operations_per_block_attestation .observe(block.body.attestations.len() as f64); timer.observe_duration(); Ok(BlockProcessingOutcome::Processed { block_root }) } /// Produce a new block at the present slot. /// /// The produced block will not be inherently valid, it must be signed by a block producer. /// Block signing is out of the scope of this function and should be done by a separate program. pub fn produce_block( &self, randao_reveal: Signature, ) -> Result<(BeaconBlock, BeaconState), BlockProductionError> { let state = self.state.read().clone(); let slot = self .read_slot_clock() .ok_or_else(|| BlockProductionError::UnableToReadSlot)?; self.produce_block_on_state(state, slot, randao_reveal) } /// Produce a block for some `slot` upon the given `state`. /// /// Typically the `self.produce_block()` function should be used, instead of calling this /// function directly. This function is useful for purposefully creating forks or blocks at /// non-current slots. /// /// The given state will be advanced to the given `produce_at_slot`, then a block will be /// produced at that slot height. pub fn produce_block_on_state( &self, mut state: BeaconState, produce_at_slot: Slot, randao_reveal: Signature, ) -> Result<(BeaconBlock, BeaconState), BlockProductionError> { self.metrics.block_production_requests.inc(); let timer = self.metrics.block_production_times.start_timer(); // If required, transition the new state to the present slot. while state.slot < produce_at_slot { per_slot_processing(&mut state, &self.spec)?; } state.build_committee_cache(RelativeEpoch::Current, &self.spec)?; let previous_block_root = if state.slot > 0 { *state .get_block_root(state.slot - 1) .map_err(|_| BlockProductionError::UnableToGetBlockRootFromState)? } else { state.latest_block_header.canonical_root() }; let mut graffiti: [u8; 32] = [0; 32]; graffiti.copy_from_slice(GRAFFITI.as_bytes()); let (proposer_slashings, attester_slashings) = self.op_pool.get_slashings(&state, &self.spec); let mut block = BeaconBlock { slot: state.slot, previous_block_root, state_root: Hash256::zero(), // Updated after the state is calculated. signature: Signature::empty_signature(), // To be completed by a validator. body: BeaconBlockBody { randao_reveal, // TODO: replace with real data. eth1_data: Eth1Data { deposit_count: 0, deposit_root: Hash256::zero(), block_hash: Hash256::zero(), }, graffiti, proposer_slashings, attester_slashings, attestations: self.op_pool.get_attestations(&state, &self.spec), deposits: self.op_pool.get_deposits(&state, &self.spec), voluntary_exits: self.op_pool.get_voluntary_exits(&state, &self.spec), transfers: self.op_pool.get_transfers(&state, &self.spec), }, }; per_block_processing_without_verifying_block_signature(&mut state, &block, &self.spec)?; let state_root = state.canonical_root(); block.state_root = state_root; self.metrics.block_production_successes.inc(); timer.observe_duration(); Ok((block, state)) } /// Execute the fork choice algorithm and enthrone the result as the canonical head. pub fn fork_choice(&self) -> Result<(), Error> { self.metrics.fork_choice_requests.inc(); // Start fork choice metrics timer. let timer = self.metrics.fork_choice_times.start_timer(); // Determine the root of the block that is the head of the chain. let beacon_block_root = self.fork_choice.find_head(&self)?; // End fork choice metrics timer. timer.observe_duration(); // If a new head was chosen. if beacon_block_root != self.head().beacon_block_root { self.metrics.fork_choice_changed_head.inc(); let beacon_block: BeaconBlock = self .store .get(&beacon_block_root)? .ok_or_else(|| Error::MissingBeaconBlock(beacon_block_root))?; let beacon_state_root = beacon_block.state_root; let beacon_state: BeaconState = self .store .get(&beacon_state_root)? .ok_or_else(|| Error::MissingBeaconState(beacon_state_root))?; // If we switched to a new chain (instead of building atop the present chain). if self.head().beacon_block_root != beacon_block.previous_block_root { self.metrics.fork_choice_reorg_count.inc(); }; let old_finalized_epoch = self.head().beacon_state.finalized_epoch; let new_finalized_epoch = beacon_state.finalized_epoch; let finalized_root = beacon_state.finalized_root; // Never revert back past a finalized epoch. if new_finalized_epoch < old_finalized_epoch { Err(Error::RevertedFinalizedEpoch { previous_epoch: old_finalized_epoch, new_epoch: new_finalized_epoch, }) } else { self.update_canonical_head(CheckPoint { beacon_block: beacon_block, beacon_block_root, beacon_state, beacon_state_root, })?; if new_finalized_epoch != old_finalized_epoch { self.after_finalization(old_finalized_epoch, finalized_root)?; } Ok(()) } } else { Ok(()) } } /// Update the canonical head to `new_head`. fn update_canonical_head(&self, new_head: CheckPoint) -> Result<(), Error> { // Update the checkpoint that stores the head of the chain at the time it received the // block. *self.canonical_head.write() = new_head; // Update the always-at-the-present-slot state we keep around for performance gains. *self.state.write() = { let mut state = self.canonical_head.read().beacon_state.clone(); let present_slot = match self.slot_clock.present_slot() { Ok(Some(slot)) => slot, _ => return Err(Error::UnableToReadSlot), }; // If required, transition the new state to the present slot. for _ in state.slot.as_u64()..present_slot.as_u64() { per_slot_processing(&mut state, &self.spec)?; } state.build_all_caches(&self.spec)?; state }; // Save `self` to `self.store`. self.persist()?; Ok(()) } /// Called after `self` has had a new block finalized. /// /// Performs pruning and finality-based optimizations. fn after_finalization( &self, old_finalized_epoch: Epoch, finalized_block_root: Hash256, ) -> Result<(), Error> { let finalized_block = self .store .get::(&finalized_block_root)? .ok_or_else(|| Error::MissingBeaconBlock(finalized_block_root))?; let new_finalized_epoch = finalized_block.slot.epoch(T::EthSpec::slots_per_epoch()); if new_finalized_epoch < old_finalized_epoch { Err(Error::RevertedFinalizedEpoch { previous_epoch: old_finalized_epoch, new_epoch: new_finalized_epoch, }) } else { self.fork_choice .process_finalization(&finalized_block, finalized_block_root)?; Ok(()) } } /// Returns `true` if the given block root has not been processed. pub fn is_new_block_root(&self, beacon_block_root: &Hash256) -> Result { Ok(!self.store.exists::(beacon_block_root)?) } /// Dumps the entire canonical chain, from the head to genesis to a vector for analysis. /// /// This could be a very expensive operation and should only be done in testing/analysis /// activities. pub fn chain_dump(&self) -> Result>, Error> { let mut dump = vec![]; let mut last_slot = CheckPoint { beacon_block: self.head().beacon_block.clone(), beacon_block_root: self.head().beacon_block_root, beacon_state: self.head().beacon_state.clone(), beacon_state_root: self.head().beacon_state_root, }; dump.push(last_slot.clone()); loop { let beacon_block_root = last_slot.beacon_block.previous_block_root; if beacon_block_root == self.spec.zero_hash { break; // Genesis has been reached. } let beacon_block: BeaconBlock = self.store.get(&beacon_block_root)?.ok_or_else(|| { Error::DBInconsistent(format!("Missing block {}", beacon_block_root)) })?; let beacon_state_root = beacon_block.state_root; let beacon_state = self.store.get(&beacon_state_root)?.ok_or_else(|| { Error::DBInconsistent(format!("Missing state {}", beacon_state_root)) })?; let slot = CheckPoint { beacon_block, beacon_block_root, beacon_state, beacon_state_root, }; dump.push(slot.clone()); last_slot = slot; } dump.reverse(); Ok(dump) } } impl From for Error { fn from(e: DBError) -> Error { Error::DBError(e) } } impl From for Error { fn from(e: ForkChoiceError) -> Error { Error::ForkChoiceError(e) } } impl From for Error { fn from(e: BeaconStateError) -> Error { Error::BeaconStateError(e) } }