use crate::attestation_aggregator::{AttestationAggregator, Outcome as AggregationOutcome}; use crate::cached_beacon_state::CachedBeaconState; use crate::checkpoint::CheckPoint; use db::{ stores::{BeaconBlockStore, BeaconStateStore}, ClientDB, DBError, }; use fork_choice::{ForkChoice, ForkChoiceError}; use log::{debug, trace}; use parking_lot::{RwLock, RwLockReadGuard}; use slot_clock::SlotClock; use ssz::ssz_encode; use state_processing::{ BlockProcessable, BlockProcessingError, SlotProcessable, SlotProcessingError, }; use std::sync::Arc; use types::{ beacon_state::BeaconStateError, readers::{BeaconBlockReader, BeaconStateReader}, AttestationData, BeaconBlock, BeaconBlockBody, BeaconState, ChainSpec, Crosslink, Deposit, Epoch, Eth1Data, FreeAttestation, Hash256, PublicKey, Signature, Slot, }; #[derive(Debug, PartialEq)] pub enum Error { InsufficientValidators, BadRecentBlockRoots, BeaconStateError(BeaconStateError), DBInconsistent(String), DBError(String), ForkChoiceError(ForkChoiceError), MissingBeaconBlock(Hash256), MissingBeaconState(Hash256), } #[derive(Debug, PartialEq)] pub enum ValidBlock { /// The block was successfully processed. Processed, } #[derive(Debug, PartialEq)] pub enum InvalidBlock { /// The block slot is greater than the present slot. FutureSlot, /// The block state_root does not match the generated state. StateRootMismatch, /// The blocks parent_root is unknown. ParentUnknown, /// There was an error whilst advancing the parent state to the present slot. This condition /// should not occur, it likely represents an internal error. SlotProcessingError(SlotProcessingError), /// The block could not be applied to the state, it is invalid. PerBlockProcessingError(BlockProcessingError), } #[derive(Debug, PartialEq)] pub enum BlockProcessingOutcome { /// The block was successfully validated. ValidBlock(ValidBlock), /// The block was not successfully validated. InvalidBlock(InvalidBlock), } pub struct BeaconChain { pub block_store: Arc>, pub state_store: Arc>, pub slot_clock: U, pub attestation_aggregator: RwLock, canonical_head: RwLock, finalized_head: RwLock, pub state: RwLock, pub cached_state: RwLock, pub spec: ChainSpec, pub fork_choice: RwLock, } impl BeaconChain where T: ClientDB, U: SlotClock, F: ForkChoice, { /// Instantiate a new Beacon Chain, from genesis. pub fn genesis( state_store: Arc>, block_store: Arc>, slot_clock: U, genesis_time: u64, latest_eth1_data: Eth1Data, initial_validator_deposits: Vec, spec: ChainSpec, fork_choice: F, ) -> Result { if initial_validator_deposits.is_empty() { return Err(Error::InsufficientValidators); } let genesis_state = BeaconState::genesis( genesis_time, initial_validator_deposits, latest_eth1_data, &spec, )?; let state_root = genesis_state.canonical_root(); state_store.put(&state_root, &ssz_encode(&genesis_state)[..])?; let genesis_block = BeaconBlock::genesis(state_root, &spec); let block_root = genesis_block.canonical_root(); block_store.put(&block_root, &ssz_encode(&genesis_block)[..])?; let cached_state = RwLock::new(CachedBeaconState::from_beacon_state( genesis_state.clone(), spec.clone(), )?); let finalized_head = RwLock::new(CheckPoint::new( genesis_block.clone(), block_root, genesis_state.clone(), state_root, )); let canonical_head = RwLock::new(CheckPoint::new( genesis_block.clone(), block_root, genesis_state.clone(), state_root, )); let attestation_aggregator = RwLock::new(AttestationAggregator::new()); Ok(Self { block_store, state_store, slot_clock, attestation_aggregator, state: RwLock::new(genesis_state.clone()), cached_state, finalized_head, canonical_head, spec, fork_choice: RwLock::new(fork_choice), }) } /// Update the canonical head to some new values. pub fn update_canonical_head( &self, new_beacon_block: BeaconBlock, new_beacon_block_root: Hash256, new_beacon_state: BeaconState, new_beacon_state_root: Hash256, ) { let mut head = self.canonical_head.write(); head.update( new_beacon_block, new_beacon_block_root, new_beacon_state, new_beacon_state_root, ); } /// Returns a read-lock guarded `CheckPoint` struct for reading the head (as chosen by the /// fork-choice rule). /// /// It is important to note that the `beacon_state` returned may not match the present slot. It /// is the state as it was when the head block was recieved, which could be some slots prior to /// now. pub fn head(&self) -> RwLockReadGuard { self.canonical_head.read() } /// Update the justified head to some new values. pub fn update_finalized_head( &self, new_beacon_block: BeaconBlock, new_beacon_block_root: Hash256, new_beacon_state: BeaconState, new_beacon_state_root: Hash256, ) { let mut finalized_head = self.finalized_head.write(); finalized_head.update( new_beacon_block, new_beacon_block_root, new_beacon_state, new_beacon_state_root, ); } /// Returns a read-lock guarded `CheckPoint` struct for reading the justified head (as chosen, /// indirectly, by the fork-choice rule). pub fn finalized_head(&self) -> RwLockReadGuard { self.finalized_head.read() } /// Advance the `self.state` `BeaconState` to the supplied slot. /// /// This will perform per_slot and per_epoch processing as required. /// /// The `previous_block_root` will be set to the root of the current head block (as determined /// by the fork-choice rule). /// /// It is important to note that this is _not_ the state corresponding to the canonical head /// block, instead it is that state which may or may not have had additional per slot/epoch /// processing applied to it. pub fn advance_state(&self, slot: Slot) -> Result<(), SlotProcessingError> { let state_slot = self.state.read().slot; let head_block_root = self.head().beacon_block_root; for _ in state_slot.as_u64()..slot.as_u64() { self.state .write() .per_slot_processing(head_block_root, &self.spec)?; } Ok(()) } /// Returns the validator index (if any) for the given public key. /// /// Information is retrieved from the present `beacon_state.validator_registry`. pub fn validator_index(&self, pubkey: &PublicKey) -> Option { for (i, validator) in self .head() .beacon_state .validator_registry .iter() .enumerate() { if validator.pubkey == *pubkey { return Some(i); } } None } /// Reads the slot clock, returns `None` if the slot is unavailable. /// /// The slot might be unavailable due to an error with the system clock, or if the present time /// is before genesis (i.e., a negative slot). /// /// This is distinct to `present_slot`, which simply reads the latest state. If a /// call to `read_slot_clock` results in a higher slot than a call to `present_slot`, /// `self.state` should undergo per slot processing. pub fn read_slot_clock(&self) -> Option { match self.slot_clock.present_slot() { Ok(Some(some_slot)) => Some(some_slot), Ok(None) => None, _ => None, } } /// Returns slot of the present state. /// /// This is distinct to `read_slot_clock`, which reads from the actual system clock. If /// `self.state` has not been transitioned it is possible for the system clock to be on a /// different slot to what is returned from this call. pub fn present_slot(&self) -> Slot { self.state.read().slot } /// Returns the block proposer for a given slot. /// /// Information is read from the present `beacon_state` shuffling, so only information from the /// present and prior epoch is available. pub fn block_proposer(&self, slot: Slot) -> Result { trace!("BeaconChain::block_proposer: slot: {}", slot); let index = self .state .read() .get_beacon_proposer_index(slot, &self.spec)?; Ok(index) } /// Returns the justified slot for the present state. pub fn justified_epoch(&self) -> Epoch { self.state.read().justified_epoch } /// Returns the attestation slot and shard for a given validator index. /// /// Information is read from the current state, so only information from the present and prior /// epoch is available. pub fn validator_attestion_slot_and_shard( &self, validator_index: usize, ) -> Result, BeaconStateError> { trace!( "BeaconChain::validator_attestion_slot_and_shard: validator_index: {}", validator_index ); if let Some((slot, shard, _committee)) = self .cached_state .read() .attestation_slot_and_shard_for_validator(validator_index, &self.spec)? { Ok(Some((slot, shard))) } else { Ok(None) } } /// Produce an `AttestationData` that is valid for the present `slot` and given `shard`. pub fn produce_attestation_data(&self, shard: u64) -> Result { trace!("BeaconChain::produce_attestation_data: shard: {}", shard); let justified_epoch = self.justified_epoch(); let justified_block_root = *self .state .read() .get_block_root( justified_epoch.start_slot(self.spec.epoch_length), &self.spec, ) .ok_or_else(|| Error::BadRecentBlockRoots)?; let epoch_boundary_root = *self .state .read() .get_block_root( self.state.read().current_epoch_start_slot(&self.spec), &self.spec, ) .ok_or_else(|| Error::BadRecentBlockRoots)?; Ok(AttestationData { slot: self.state.read().slot, shard, beacon_block_root: self.head().beacon_block_root, epoch_boundary_root, shard_block_root: Hash256::zero(), latest_crosslink: Crosslink { epoch: self.state.read().slot.epoch(self.spec.epoch_length), shard_block_root: Hash256::zero(), }, justified_epoch, justified_block_root, }) } /// Validate a `FreeAttestation` and either: /// /// - Create a new `Attestation`. /// - Aggregate it to an existing `Attestation`. pub fn process_free_attestation( &self, free_attestation: FreeAttestation, ) -> Result { let aggregation_outcome = self .attestation_aggregator .write() .process_free_attestation(&self.cached_state.read(), &free_attestation, &self.spec)?; // return if the attestation is invalid if !aggregation_outcome.valid { return Ok(aggregation_outcome); } // valid attestation, proceed with fork-choice logic self.fork_choice.write().add_attestation( free_attestation.validator_index, &free_attestation.data.beacon_block_root, &self.spec, )?; Ok(aggregation_outcome) } /// Dumps the entire canonical chain, from the head to genesis to a vector for analysis. /// /// This could be a very expensive operation and should only be done in testing/analysis /// activities. pub fn chain_dump(&self) -> Result, Error> { let mut dump = vec![]; let mut last_slot = CheckPoint { beacon_block: self.head().beacon_block.clone(), beacon_block_root: self.head().beacon_block_root, beacon_state: self.head().beacon_state.clone(), beacon_state_root: self.head().beacon_state_root, }; dump.push(last_slot.clone()); loop { let beacon_block_root = last_slot.beacon_block.parent_root; if beacon_block_root == self.spec.zero_hash { break; // Genesis has been reached. } let beacon_block = self .block_store .get_deserialized(&beacon_block_root)? .ok_or_else(|| { Error::DBInconsistent(format!("Missing block {}", beacon_block_root)) })?; let beacon_state_root = beacon_block.state_root; let beacon_state = self .state_store .get_deserialized(&beacon_state_root)? .ok_or_else(|| { Error::DBInconsistent(format!("Missing state {}", beacon_state_root)) })?; let slot = CheckPoint { beacon_block, beacon_block_root, beacon_state, beacon_state_root, }; dump.push(slot.clone()); last_slot = slot; } Ok(dump) } /// Accept some block and attempt to add it to block DAG. /// /// Will accept blocks from prior slots, however it will reject any block from a future slot. pub fn process_block(&self, block: BeaconBlock) -> Result { debug!("Processing block with slot {}...", block.slot()); let block_root = block.canonical_root(); let present_slot = self.present_slot(); if block.slot > present_slot { return Ok(BlockProcessingOutcome::InvalidBlock( InvalidBlock::FutureSlot, )); } // Load the blocks parent block from the database, returning invalid if that block is not // found. let parent_block_root = block.parent_root; let parent_block = match self.block_store.get_reader(&parent_block_root)? { Some(parent_root) => parent_root, None => { return Ok(BlockProcessingOutcome::InvalidBlock( InvalidBlock::ParentUnknown, )); } }; // Load the parent blocks state from the database, returning an error if it is not found. // It is an error because if know the parent block we should also know the parent state. let parent_state_root = parent_block.state_root(); let parent_state = self .state_store .get_reader(&parent_state_root)? .ok_or_else(|| Error::DBInconsistent(format!("Missing state {}", parent_state_root)))? .into_beacon_state() .ok_or_else(|| { Error::DBInconsistent(format!("State SSZ invalid {}", parent_state_root)) })?; // TODO: check the block proposer signature BEFORE doing a state transition. This will // significantly lower exposure surface to DoS attacks. // Transition the parent state to the present slot. let mut state = parent_state; for _ in state.slot.as_u64()..present_slot.as_u64() { if let Err(e) = state.per_slot_processing(parent_block_root, &self.spec) { return Ok(BlockProcessingOutcome::InvalidBlock( InvalidBlock::SlotProcessingError(e), )); } } // Apply the received block to its parent state (which has been transitioned into this // slot). if let Err(e) = state.per_block_processing(&block, &self.spec) { return Ok(BlockProcessingOutcome::InvalidBlock( InvalidBlock::PerBlockProcessingError(e), )); } let state_root = state.canonical_root(); if block.state_root != state_root { return Ok(BlockProcessingOutcome::InvalidBlock( InvalidBlock::StateRootMismatch, )); } // Store the block and state. self.block_store.put(&block_root, &ssz_encode(&block)[..])?; self.state_store.put(&state_root, &ssz_encode(&state)[..])?; // run the fork_choice add_block logic self.fork_choice .write() .add_block(&block, &block_root, &self.spec)?; // If the parent block was the parent_block, automatically update the canonical head. // // TODO: this is a first-in-best-dressed scenario that is not ideal; fork_choice should be // run instead. if self.head().beacon_block_root == parent_block_root { self.update_canonical_head( block.clone(), block_root.clone(), state.clone(), state_root, ); // Update the local state variable. *self.state.write() = state.clone(); // Update the cached state variable. *self.cached_state.write() = CachedBeaconState::from_beacon_state(state.clone(), self.spec.clone())?; } Ok(BlockProcessingOutcome::ValidBlock(ValidBlock::Processed)) } /// Produce a new block at the present slot. /// /// The produced block will not be inherently valid, it must be signed by a block producer. /// Block signing is out of the scope of this function and should be done by a separate program. pub fn produce_block(&self, randao_reveal: Signature) -> Option<(BeaconBlock, BeaconState)> { debug!("Producing block at slot {}...", self.state.read().slot); let mut state = self.state.read().clone(); trace!("Finding attestations for new block..."); let attestations = self .attestation_aggregator .read() .get_attestations_for_state(&state, &self.spec); trace!( "Inserting {} attestation(s) into new block.", attestations.len() ); let parent_root = *state.get_block_root(state.slot.saturating_sub(1_u64), &self.spec)?; let mut block = BeaconBlock { slot: state.slot, parent_root, state_root: Hash256::zero(), // Updated after the state is calculated. randao_reveal, eth1_data: Eth1Data { // TODO: replace with real data deposit_root: Hash256::zero(), block_hash: Hash256::zero(), }, signature: self.spec.empty_signature.clone(), // To be completed by a validator. body: BeaconBlockBody { proposer_slashings: vec![], attester_slashings: vec![], attestations, deposits: vec![], exits: vec![], }, }; trace!("BeaconChain::produce_block: updating state for new block.",); let result = state.per_block_processing_without_verifying_block_signature(&block, &self.spec); trace!( "BeaconNode::produce_block: state processing result: {:?}", result ); result.ok()?; let state_root = state.canonical_root(); block.state_root = state_root; trace!("Block produced."); Some((block, state)) } // TODO: Left this as is, modify later pub fn fork_choice(&self) -> Result<(), Error> { let present_head = self.finalized_head().beacon_block_root; let new_head = self .fork_choice .write() .find_head(&present_head, &self.spec)?; if new_head != present_head { let block = self .block_store .get_deserialized(&new_head)? .ok_or_else(|| Error::MissingBeaconBlock(new_head))?; let block_root = block.canonical_root(); let state = self .state_store .get_deserialized(&block.state_root)? .ok_or_else(|| Error::MissingBeaconState(block.state_root))?; let state_root = state.canonical_root(); self.update_canonical_head(block, block_root, state, state_root); } Ok(()) } } impl From for Error { fn from(e: DBError) -> Error { Error::DBError(e.message) } } impl From for Error { fn from(e: ForkChoiceError) -> Error { Error::ForkChoiceError(e) } } impl From for Error { fn from(e: BeaconStateError) -> Error { Error::BeaconStateError(e) } }