use super::hashing::canonical_hash; const SEED_SIZE_BYTES: usize = 32; const RAND_BYTES: usize = 3; // 24 / 8 const RAND_MAX: u32 = 16_777_216; // 2**24 /// A pseudo-random number generator which given a seed /// uses successive blake2s hashing to generate "entropy". pub struct ShuffleRng { seed: Vec, idx: usize, pub rand_max: u32, } impl ShuffleRng { /// Create a new instance given some "seed" bytes. pub fn new(initial_seed: &[u8]) -> Self { Self { seed: canonical_hash(initial_seed), idx: 0, rand_max: RAND_MAX, } } /// "Regenerates" the seed by hashing it. fn rehash_seed(&mut self) { self.seed = canonical_hash(&self.seed); self.idx = 0; } /// Extracts 3 bytes from the `seed`. Rehashes seed if required. fn rand(&mut self) -> u32 { self.idx += RAND_BYTES; if self.idx >= SEED_SIZE_BYTES { self.rehash_seed(); self.rand() } else { int_from_byte_slice( &self.seed, self.idx - RAND_BYTES, ) } } /// Generate a random u32 below the specified maximum `n`. /// /// Provides a filtered result from a higher-level rng, by discarding /// results which may bias the output. Because of this, execution time is /// not linear and may potentially be infinite. pub fn rand_range(&mut self, n: u32) -> u32 { assert!(n < RAND_MAX, "RAND_MAX exceed"); let mut x = self.rand(); while x >= self.rand_max - (self.rand_max % n) { x = self.rand(); } x % n } } /// Reads the next three bytes of `source`, starting from `offset` and /// interprets those bytes as a 24 bit big-endian integer. /// Returns that integer. fn int_from_byte_slice(source: &[u8], offset: usize) -> u32 { ( u32::from(source[offset + 2])) | (u32::from(source[offset + 1]) << 8) | (u32::from(source[offset ]) << 16 ) } #[cfg(test)] mod tests { use super::*; #[test] fn test_shuffling_int_from_slice() { let mut x = int_from_byte_slice( &[0, 0, 1], 0); assert_eq!((x as u32), 1); x = int_from_byte_slice( &[0, 1, 1], 0); assert_eq!(x, 257); x = int_from_byte_slice( &[1, 1, 1], 0); assert_eq!(x, 65793); x = int_from_byte_slice( &[255, 1, 1], 0); assert_eq!(x, 16711937); x = int_from_byte_slice( &[255, 255, 255], 0); assert_eq!(x, 16777215); x = int_from_byte_slice( &[0x8f, 0xbb, 0xc7], 0); assert_eq!(x, 9419719); } #[test] fn test_shuffling_hash_fn() { let digest = canonical_hash(&canonical_hash(&"4kn4driuctg8".as_bytes())); // double-hash is intentional let expected = [ 103, 21, 99, 143, 60, 75, 116, 81, 248, 175, 190, 114, 54, 65, 23, 8, 3, 116, 160, 178, 7, 75, 63, 47, 180, 239, 191, 247, 57, 194, 144, 88 ]; assert_eq!(digest.len(), expected.len()); assert_eq!(digest, expected) } }