use crate::attestation_verification::{ Error as AttestationError, SignatureVerifiedAttestation, VerifiedAggregatedAttestation, VerifiedUnaggregatedAttestation, }; use crate::block_verification::{ check_block_is_finalized_descendant, check_block_relevancy, get_block_root, signature_verify_chain_segment, BlockError, FullyVerifiedBlock, GossipVerifiedBlock, IntoFullyVerifiedBlock, }; use crate::chain_config::ChainConfig; use crate::errors::{BeaconChainError as Error, BlockProductionError}; use crate::eth1_chain::{Eth1Chain, Eth1ChainBackend}; use crate::events::{EventHandler, EventKind}; use crate::head_tracker::HeadTracker; use crate::migrate::BackgroundMigrator; use crate::naive_aggregation_pool::{Error as NaiveAggregationError, NaiveAggregationPool}; use crate::observed_attestations::{Error as AttestationObservationError, ObservedAttestations}; use crate::observed_attesters::{ObservedAggregators, ObservedAttesters}; use crate::observed_block_producers::ObservedBlockProducers; use crate::observed_operations::{ObservationOutcome, ObservedOperations}; use crate::persisted_beacon_chain::{PersistedBeaconChain, DUMMY_CANONICAL_HEAD_BLOCK_ROOT}; use crate::persisted_fork_choice::PersistedForkChoice; use crate::shuffling_cache::{BlockShufflingIds, ShufflingCache}; use crate::snapshot_cache::SnapshotCache; use crate::timeout_rw_lock::TimeoutRwLock; use crate::validator_pubkey_cache::ValidatorPubkeyCache; use crate::BeaconForkChoiceStore; use crate::BeaconSnapshot; use crate::{metrics, BeaconChainError}; use fork_choice::ForkChoice; use futures::channel::mpsc::Sender; use itertools::process_results; use operation_pool::{OperationPool, PersistedOperationPool}; use parking_lot::{Mutex, RwLock}; use slasher::Slasher; use slog::{crit, debug, error, info, trace, warn, Logger}; use slot_clock::SlotClock; use state_processing::{ common::get_indexed_attestation, per_block_processing, per_block_processing::errors::AttestationValidationError, per_slot_processing, BlockSignatureStrategy, SigVerifiedOp, VerifyOperation, }; use std::borrow::Cow; use std::cmp::Ordering; use std::collections::HashMap; use std::collections::HashSet; use std::io::prelude::*; use std::sync::Arc; use std::time::{Duration, Instant}; use store::iter::{BlockRootsIterator, ParentRootBlockIterator, StateRootsIterator}; use store::{Error as DBError, HotColdDB, KeyValueStore, KeyValueStoreOp, StoreItem, StoreOp}; use types::*; pub type ForkChoiceError = fork_choice::Error; /// The time-out before failure during an operation to take a read/write RwLock on the canonical /// head. pub const HEAD_LOCK_TIMEOUT: Duration = Duration::from_secs(1); /// The time-out before failure during an operation to take a read/write RwLock on the block /// processing cache. pub const BLOCK_PROCESSING_CACHE_LOCK_TIMEOUT: Duration = Duration::from_secs(1); /// The time-out before failure during an operation to take a read/write RwLock on the /// attestation cache. pub const ATTESTATION_CACHE_LOCK_TIMEOUT: Duration = Duration::from_secs(1); /// The time-out before failure during an operation to take a read/write RwLock on the /// validator pubkey cache. pub const VALIDATOR_PUBKEY_CACHE_LOCK_TIMEOUT: Duration = Duration::from_secs(1); // These keys are all zero because they get stored in different columns, see `DBColumn` type. pub const BEACON_CHAIN_DB_KEY: Hash256 = Hash256::zero(); pub const OP_POOL_DB_KEY: Hash256 = Hash256::zero(); pub const ETH1_CACHE_DB_KEY: Hash256 = Hash256::zero(); pub const FORK_CHOICE_DB_KEY: Hash256 = Hash256::zero(); /// The result of a chain segment processing. pub enum ChainSegmentResult { /// Processing this chain segment finished successfully. Successful { imported_blocks: usize }, /// There was an error processing this chain segment. Before the error, some blocks could /// have been imported. Failed { imported_blocks: usize, error: BlockError, }, } /// The accepted clock drift for nodes gossiping blocks and attestations. See: /// /// https://github.com/ethereum/eth2.0-specs/blob/v0.12.1/specs/phase0/p2p-interface.md#configuration pub const MAXIMUM_GOSSIP_CLOCK_DISPARITY: Duration = Duration::from_millis(500); #[derive(Debug, PartialEq)] pub enum AttestationProcessingOutcome { Processed, EmptyAggregationBitfield, UnknownHeadBlock { beacon_block_root: Hash256, }, /// The attestation is attesting to a state that is later than itself. (Viz., attesting to the /// future). AttestsToFutureBlock { block: Slot, attestation: Slot, }, /// The slot is finalized, no need to import. FinalizedSlot { attestation: Slot, finalized: Slot, }, FutureEpoch { attestation_epoch: Epoch, current_epoch: Epoch, }, PastEpoch { attestation_epoch: Epoch, current_epoch: Epoch, }, BadTargetEpoch, UnknownTargetRoot(Hash256), InvalidSignature, NoCommitteeForSlotAndIndex { slot: Slot, index: CommitteeIndex, }, Invalid(AttestationValidationError), } /// Defines how a `BeaconState` should be "skipped" through skip-slots. pub enum StateSkipConfig { /// Calculate the state root during each skip slot, producing a fully-valid `BeaconState`. WithStateRoots, /// Don't calculate the state root at each slot, instead just use the zero hash. This is orders /// of magnitude faster, however it produces a partially invalid state. /// /// This state is useful for operations that don't use the state roots; e.g., for calculating /// the shuffling. WithoutStateRoots, } #[derive(Debug, PartialEq)] pub struct HeadInfo { pub slot: Slot, pub block_root: Hash256, pub state_root: Hash256, pub current_justified_checkpoint: types::Checkpoint, pub finalized_checkpoint: types::Checkpoint, pub fork: Fork, pub genesis_time: u64, pub genesis_validators_root: Hash256, } pub trait BeaconChainTypes: Send + Sync + 'static { type HotStore: store::ItemStore; type ColdStore: store::ItemStore; type SlotClock: slot_clock::SlotClock; type Eth1Chain: Eth1ChainBackend; type EthSpec: types::EthSpec; type EventHandler: EventHandler; } /// Represents the "Beacon Chain" component of Ethereum 2.0. Allows import of blocks and block /// operations and chooses a canonical head. pub struct BeaconChain { pub spec: ChainSpec, /// Configuration for `BeaconChain` runtime behaviour. pub config: ChainConfig, /// Persistent storage for blocks, states, etc. Typically an on-disk store, such as LevelDB. pub store: Arc>, /// Database migrator for running background maintenance on the store. pub store_migrator: BackgroundMigrator, /// Reports the current slot, typically based upon the system clock. pub slot_clock: T::SlotClock, /// Stores all operations (e.g., `Attestation`, `Deposit`, etc) that are candidates for /// inclusion in a block. pub op_pool: OperationPool, /// A pool of attestations dedicated to the "naive aggregation strategy" defined in the eth2 /// specs. /// /// This pool accepts `Attestation` objects that only have one aggregation bit set and provides /// a method to get an aggregated `Attestation` for some `AttestationData`. pub naive_aggregation_pool: RwLock>, /// Contains a store of attestations which have been observed by the beacon chain. pub(crate) observed_attestations: RwLock>, /// Maintains a record of which validators have been seen to attest in recent epochs. pub(crate) observed_attesters: RwLock>, /// Maintains a record of which validators have been seen to create `SignedAggregateAndProofs` /// in recent epochs. pub(crate) observed_aggregators: RwLock>, /// Maintains a record of which validators have proposed blocks for each slot. pub(crate) observed_block_producers: RwLock>, /// Maintains a record of which validators have submitted voluntary exits. pub(crate) observed_voluntary_exits: Mutex>, /// Maintains a record of which validators we've seen proposer slashings for. pub(crate) observed_proposer_slashings: Mutex>, /// Maintains a record of which validators we've seen attester slashings for. pub(crate) observed_attester_slashings: Mutex, T::EthSpec>>, /// Provides information from the Ethereum 1 (PoW) chain. pub eth1_chain: Option>, /// Stores a "snapshot" of the chain at the time the head-of-the-chain block was received. pub(crate) canonical_head: TimeoutRwLock>, /// The root of the genesis block. pub genesis_block_root: Hash256, /// The root of the genesis state. pub genesis_state_root: Hash256, /// The root of the list of genesis validators, used during syncing. pub genesis_validators_root: Hash256, #[allow(clippy::type_complexity)] /// A state-machine that is updated with information from the network and chooses a canonical /// head block. pub fork_choice: RwLock< ForkChoice, T::EthSpec>, >, /// A handler for events generated by the beacon chain. pub event_handler: T::EventHandler, /// Used to track the heads of the beacon chain. pub(crate) head_tracker: Arc, /// A cache dedicated to block processing. pub(crate) snapshot_cache: TimeoutRwLock>, /// Caches the shuffling for a given epoch and state root. pub(crate) shuffling_cache: TimeoutRwLock, /// Caches a map of `validator_index -> validator_pubkey`. pub(crate) validator_pubkey_cache: TimeoutRwLock, /// A list of any hard-coded forks that have been disabled. pub disabled_forks: Vec, /// Sender given to tasks, so that if they encounter a state in which execution cannot /// continue they can request that everything shuts down. pub shutdown_sender: Sender<&'static str>, /// Logging to CLI, etc. pub(crate) log: Logger, /// Arbitrary bytes included in the blocks. pub(crate) graffiti: Graffiti, /// Optional slasher. pub(crate) slasher: Option>>, } type BeaconBlockAndState = (BeaconBlock, BeaconState); impl BeaconChain { /// Persists the head tracker and fork choice. /// /// We do it atomically even though no guarantees need to be made about blocks from /// the head tracker also being present in fork choice. pub fn persist_head_and_fork_choice(&self) -> Result<(), Error> { let mut batch = vec![]; let _head_timer = metrics::start_timer(&metrics::PERSIST_HEAD); batch.push(self.persist_head_in_batch()); let _fork_choice_timer = metrics::start_timer(&metrics::PERSIST_FORK_CHOICE); batch.push(self.persist_fork_choice_in_batch()); self.store.hot_db.do_atomically(batch)?; Ok(()) } /// Return a `PersistedBeaconChain` representing the current head. pub fn make_persisted_head(&self) -> PersistedBeaconChain { PersistedBeaconChain { _canonical_head_block_root: DUMMY_CANONICAL_HEAD_BLOCK_ROOT, genesis_block_root: self.genesis_block_root, ssz_head_tracker: self.head_tracker.to_ssz_container(), } } /// Return a database operation for writing the beacon chain head to disk. pub fn persist_head_in_batch(&self) -> KeyValueStoreOp { self.make_persisted_head() .as_kv_store_op(BEACON_CHAIN_DB_KEY) } /// Return a database operation for writing fork choice to disk. pub fn persist_fork_choice_in_batch(&self) -> KeyValueStoreOp { let fork_choice = self.fork_choice.read(); let persisted_fork_choice = PersistedForkChoice { fork_choice: fork_choice.to_persisted(), fork_choice_store: fork_choice.fc_store().to_persisted(), }; persisted_fork_choice.as_kv_store_op(FORK_CHOICE_DB_KEY) } /// Persists `self.op_pool` to disk. /// /// ## Notes /// /// This operation is typically slow and causes a lot of allocations. It should be used /// sparingly. pub fn persist_op_pool(&self) -> Result<(), Error> { let _timer = metrics::start_timer(&metrics::PERSIST_OP_POOL); self.store.put_item( &OP_POOL_DB_KEY, &PersistedOperationPool::from_operation_pool(&self.op_pool), )?; Ok(()) } /// Persists `self.eth1_chain` and its caches to disk. pub fn persist_eth1_cache(&self) -> Result<(), Error> { let _timer = metrics::start_timer(&metrics::PERSIST_OP_POOL); if let Some(eth1_chain) = self.eth1_chain.as_ref() { self.store .put_item(Ð1_CACHE_DB_KEY, ð1_chain.as_ssz_container())?; } Ok(()) } /// Returns the slot _right now_ according to `self.slot_clock`. Returns `Err` if the slot is /// unavailable. /// /// The slot might be unavailable due to an error with the system clock, or if the present time /// is before genesis (i.e., a negative slot). pub fn slot(&self) -> Result { self.slot_clock.now().ok_or(Error::UnableToReadSlot) } /// Returns the epoch _right now_ according to `self.slot_clock`. Returns `Err` if the epoch is /// unavailable. /// /// The epoch might be unavailable due to an error with the system clock, or if the present time /// is before genesis (i.e., a negative epoch). pub fn epoch(&self) -> Result { self.slot() .map(|slot| slot.epoch(T::EthSpec::slots_per_epoch())) } /// Iterates across all `(block_root, slot)` pairs from the head of the chain (inclusive) to /// the earliest reachable ancestor (may or may not be genesis). /// /// ## Notes /// /// `slot` always decreases by `1`. /// - Skipped slots contain the root of the closest prior /// non-skipped slot (identical to the way they are stored in `state.block_roots`) . /// - Iterator returns `(Hash256, Slot)`. /// - As this iterator starts at the `head` of the chain (viz., the best block), the first slot /// returned may be earlier than the wall-clock slot. pub fn rev_iter_block_roots( &self, ) -> Result>, Error> { let head = self.head()?; let iter = BlockRootsIterator::owned(self.store.clone(), head.beacon_state); Ok( std::iter::once(Ok((head.beacon_block_root, head.beacon_block.slot()))) .chain(iter) .map(|result| result.map_err(|e| e.into())), ) } pub fn forwards_iter_block_roots( &self, start_slot: Slot, ) -> Result>, Error> { let local_head = self.head()?; let iter = HotColdDB::forwards_block_roots_iterator( self.store.clone(), start_slot, local_head.beacon_state, local_head.beacon_block_root, &self.spec, )?; Ok(iter.map(|result| result.map_err(Into::into))) } /// Traverse backwards from `block_root` to find the block roots of its ancestors. /// /// ## Notes /// /// `slot` always decreases by `1`. /// - Skipped slots contain the root of the closest prior /// non-skipped slot (identical to the way they are stored in `state.block_roots`) . /// - Iterator returns `(Hash256, Slot)`. /// - The provided `block_root` is included as the first item in the iterator. pub fn rev_iter_block_roots_from( &self, block_root: Hash256, ) -> Result>, Error> { let block = self .get_block(&block_root)? .ok_or(Error::MissingBeaconBlock(block_root))?; let state = self .get_state(&block.state_root(), Some(block.slot()))? .ok_or_else(|| Error::MissingBeaconState(block.state_root()))?; let iter = BlockRootsIterator::owned(self.store.clone(), state); Ok(std::iter::once(Ok((block_root, block.slot()))) .chain(iter) .map(|result| result.map_err(|e| e.into()))) } /// Traverse backwards from `block_root` to find the root of the ancestor block at `slot`. pub fn get_ancestor_block_root( &self, block_root: Hash256, slot: Slot, ) -> Result, Error> { process_results(self.rev_iter_block_roots_from(block_root)?, |mut iter| { iter.find(|(_, ancestor_slot)| *ancestor_slot == slot) .map(|(ancestor_block_root, _)| ancestor_block_root) }) } /// Iterates across all `(state_root, slot)` pairs from the head of the chain (inclusive) to /// the earliest reachable ancestor (may or may not be genesis). /// /// ## Notes /// /// `slot` always decreases by `1`. /// - Iterator returns `(Hash256, Slot)`. /// - As this iterator starts at the `head` of the chain (viz., the best block), the first slot /// returned may be earlier than the wall-clock slot. pub fn rev_iter_state_roots( &self, ) -> Result>, Error> { let head = self.head()?; let slot = head.beacon_state.slot; let iter = StateRootsIterator::owned(self.store.clone(), head.beacon_state); let iter = std::iter::once(Ok((head.beacon_state_root, slot))) .chain(iter) .map(|result| result.map_err(Into::into)); Ok(iter) } /// As for `rev_iter_state_roots` but starting from an arbitrary `BeaconState`. pub fn rev_iter_state_roots_from<'a>( &self, state_root: Hash256, state: &'a BeaconState, ) -> impl Iterator> + 'a { std::iter::once(Ok((state_root, state.slot))) .chain(StateRootsIterator::new(self.store.clone(), state)) .map(|result| result.map_err(Into::into)) } /// Returns the block at the given slot, if any. Only returns blocks in the canonical chain. /// /// ## Errors /// /// May return a database error. pub fn block_at_slot( &self, slot: Slot, ) -> Result>, Error> { let root = process_results(self.rev_iter_block_roots()?, |mut iter| { iter.find(|(_, this_slot)| *this_slot == slot) .map(|(root, _)| root) })?; if let Some(block_root) = root { Ok(self.store.get_item(&block_root)?) } else { Ok(None) } } /// Returns the block at the given slot, if any. Only returns blocks in the canonical chain. /// /// ## Errors /// /// May return a database error. pub fn state_root_at_slot(&self, slot: Slot) -> Result, Error> { process_results(self.rev_iter_state_roots()?, |mut iter| { iter.find(|(_, this_slot)| *this_slot == slot) .map(|(root, _)| root) }) } /// Returns the block root at the given slot, if any. Only returns roots in the canonical chain. /// /// ## Errors /// /// May return a database error. pub fn block_root_at_slot(&self, slot: Slot) -> Result, Error> { process_results(self.rev_iter_block_roots()?, |mut iter| { iter.find(|(_, this_slot)| *this_slot == slot) .map(|(root, _)| root) }) } /// Returns the block at the given root, if any. /// /// ## Errors /// /// May return a database error. pub fn get_block( &self, block_root: &Hash256, ) -> Result>, Error> { Ok(self.store.get_block(block_root)?) } /// Returns the state at the given root, if any. /// /// ## Errors /// /// May return a database error. pub fn get_state( &self, state_root: &Hash256, slot: Option, ) -> Result>, Error> { Ok(self.store.get_state(state_root, slot)?) } /// Returns a `Checkpoint` representing the head block and state. Contains the "best block"; /// the head of the canonical `BeaconChain`. /// /// It is important to note that the `beacon_state` returned may not match the present slot. It /// is the state as it was when the head block was received, which could be some slots prior to /// now. pub fn head(&self) -> Result, Error> { self.with_head(|head| Ok(head.clone_with_only_committee_caches())) } /// Apply a function to the canonical head without cloning it. pub fn with_head( &self, f: impl FnOnce(&BeaconSnapshot) -> Result, ) -> Result where E: From, { let head_lock = self .canonical_head .try_read_for(HEAD_LOCK_TIMEOUT) .ok_or(Error::CanonicalHeadLockTimeout)?; f(&head_lock) } /// Returns the beacon block root at the head of the canonical chain. /// /// See `Self::head` for more information. pub fn head_beacon_block_root(&self) -> Result { self.with_head(|s| Ok(s.beacon_block_root)) } /// Returns the beacon block at the head of the canonical chain. /// /// See `Self::head` for more information. pub fn head_beacon_block(&self) -> Result, Error> { self.with_head(|s| Ok(s.beacon_block.clone())) } /// Returns the beacon state at the head of the canonical chain. /// /// See `Self::head` for more information. pub fn head_beacon_state(&self) -> Result, Error> { self.with_head(|s| { Ok(s.beacon_state .clone_with(CloneConfig::committee_caches_only())) }) } /// Returns info representing the head block and state. /// /// A summarized version of `Self::head` that involves less cloning. pub fn head_info(&self) -> Result { self.with_head(|head| { Ok(HeadInfo { slot: head.beacon_block.slot(), block_root: head.beacon_block_root, state_root: head.beacon_state_root, current_justified_checkpoint: head.beacon_state.current_justified_checkpoint, finalized_checkpoint: head.beacon_state.finalized_checkpoint, fork: head.beacon_state.fork, genesis_time: head.beacon_state.genesis_time, genesis_validators_root: head.beacon_state.genesis_validators_root, }) }) } /// Returns the current heads of the `BeaconChain`. For the canonical head, see `Self::head`. /// /// Returns `(block_root, block_slot)`. pub fn heads(&self) -> Vec<(Hash256, Slot)> { self.head_tracker.heads() } pub fn knows_head(&self, block_hash: &SignedBeaconBlockHash) -> bool { self.head_tracker.contains_head((*block_hash).into()) } /// Returns the `BeaconState` at the given slot. /// /// Returns `None` when the state is not found in the database or there is an error skipping /// to a future state. pub fn state_at_slot( &self, slot: Slot, config: StateSkipConfig, ) -> Result, Error> { let head_state = self.head()?.beacon_state; match slot.cmp(&head_state.slot) { Ordering::Equal => Ok(head_state), Ordering::Greater => { if slot > head_state.slot + T::EthSpec::slots_per_epoch() { warn!( self.log, "Skipping more than an epoch"; "head_slot" => head_state.slot, "request_slot" => slot ) } let start_slot = head_state.slot; let task_start = Instant::now(); let max_task_runtime = Duration::from_millis(self.spec.milliseconds_per_slot); let head_state_slot = head_state.slot; let mut state = head_state; let skip_state_root = match config { StateSkipConfig::WithStateRoots => None, StateSkipConfig::WithoutStateRoots => Some(Hash256::zero()), }; while state.slot < slot { // Do not allow and forward state skip that takes longer than the maximum task duration. // // This is a protection against nodes doing too much work when they're not synced // to a chain. if task_start + max_task_runtime < Instant::now() { return Err(Error::StateSkipTooLarge { start_slot, requested_slot: slot, max_task_runtime, }); } // Note: supplying some `state_root` when it is known would be a cheap and easy // optimization. match per_slot_processing(&mut state, skip_state_root, &self.spec) { Ok(_) => (), Err(e) => { warn!( self.log, "Unable to load state at slot"; "error" => format!("{:?}", e), "head_slot" => head_state_slot, "requested_slot" => slot ); return Err(Error::NoStateForSlot(slot)); } }; } Ok(state) } Ordering::Less => { let state_root = process_results(self.rev_iter_state_roots()?, |iter| { iter.take_while(|(_, current_slot)| *current_slot >= slot) .find(|(_, current_slot)| *current_slot == slot) .map(|(root, _slot)| root) })? .ok_or(Error::NoStateForSlot(slot))?; Ok(self .get_state(&state_root, Some(slot))? .ok_or(Error::NoStateForSlot(slot))?) } } } /// Returns the `BeaconState` the current slot (viz., `self.slot()`). /// /// - A reference to the head state (note: this keeps a read lock on the head, try to use /// sparingly). /// - The head state, but with skipped slots (for states later than the head). /// /// Returns `None` when there is an error skipping to a future state or the slot clock cannot /// be read. pub fn wall_clock_state(&self) -> Result, Error> { self.state_at_slot(self.slot()?, StateSkipConfig::WithStateRoots) } /// Returns the slot of the highest block in the canonical chain. pub fn best_slot(&self) -> Result { self.canonical_head .try_read_for(HEAD_LOCK_TIMEOUT) .map(|head| head.beacon_block.slot()) .ok_or(Error::CanonicalHeadLockTimeout) } /// Returns the validator index (if any) for the given public key. /// /// ## Notes /// /// This query uses the `validator_pubkey_cache` which contains _all_ validators ever seen, /// even if those validators aren't included in the head state. It is important to remember /// that just because a validator exists here, it doesn't necessarily exist in all /// `BeaconStates`. /// /// ## Errors /// /// May return an error if acquiring a read-lock on the `validator_pubkey_cache` times out. pub fn validator_index(&self, pubkey: &PublicKeyBytes) -> Result, Error> { let pubkey_cache = self .validator_pubkey_cache .try_read_for(VALIDATOR_PUBKEY_CACHE_LOCK_TIMEOUT) .ok_or(Error::ValidatorPubkeyCacheLockTimeout)?; Ok(pubkey_cache.get_index(pubkey)) } /// Returns the validator pubkey (if any) for the given validator index. /// /// ## Notes /// /// This query uses the `validator_pubkey_cache` which contains _all_ validators ever seen, /// even if those validators aren't included in the head state. It is important to remember /// that just because a validator exists here, it doesn't necessarily exist in all /// `BeaconStates`. /// /// ## Errors /// /// May return an error if acquiring a read-lock on the `validator_pubkey_cache` times out. pub fn validator_pubkey(&self, validator_index: usize) -> Result, Error> { let pubkey_cache = self .validator_pubkey_cache .try_read_for(VALIDATOR_PUBKEY_CACHE_LOCK_TIMEOUT) .ok_or(Error::ValidatorPubkeyCacheLockTimeout)?; Ok(pubkey_cache.get(validator_index).cloned()) } /// Returns the block canonical root of the current canonical chain at a given slot. /// /// Returns `None` if the given slot doesn't exist in the chain. pub fn root_at_slot(&self, target_slot: Slot) -> Result, Error> { process_results(self.rev_iter_block_roots()?, |mut iter| { iter.find(|(_, slot)| *slot == target_slot) .map(|(root, _)| root) }) } /// Returns the block canonical root of the current canonical chain at a given slot, starting from the given state. /// /// Returns `None` if the given slot doesn't exist in the chain. pub fn root_at_slot_from_state( &self, target_slot: Slot, beacon_block_root: Hash256, state: &BeaconState, ) -> Result, Error> { let iter = BlockRootsIterator::new(self.store.clone(), state); let iter_with_head = std::iter::once(Ok((beacon_block_root, state.slot))) .chain(iter) .map(|result| result.map_err(|e| e.into())); process_results(iter_with_head, |mut iter| { iter.find(|(_, slot)| *slot == target_slot) .map(|(root, _)| root) }) } /// Returns the block proposer for a given slot. /// /// Information is read from the present `beacon_state` shuffling, only information from the /// present epoch is available. pub fn block_proposer(&self, slot: Slot) -> Result { let epoch = |slot: Slot| slot.epoch(T::EthSpec::slots_per_epoch()); let head_state = &self.head()?.beacon_state; let mut state = if epoch(slot) == epoch(head_state.slot) { self.head()?.beacon_state } else { // The block proposer shuffling is not affected by the state roots, so we don't need to // calculate them. self.state_at_slot(slot, StateSkipConfig::WithoutStateRoots)? }; state.build_committee_cache(RelativeEpoch::Current, &self.spec)?; if epoch(state.slot) != epoch(slot) { return Err(Error::InvariantViolated(format!( "Epochs in consistent in proposer lookup: state: {}, requested: {}", epoch(state.slot), epoch(slot) ))); } state .get_beacon_proposer_index(slot, &self.spec) .map_err(Into::into) } /// Returns the attestation duties for a given validator index. /// /// Information is read from the current state, so only information from the present and prior /// epoch is available. pub fn validator_attestation_duty( &self, validator_index: usize, epoch: Epoch, ) -> Result, Error> { let head_block_root = self.head_beacon_block_root()?; self.with_committee_cache(head_block_root, epoch, |committee_cache| { Ok(committee_cache.get_attestation_duties(validator_index)) }) } /// Returns an aggregated `Attestation`, if any, that has a matching `attestation.data`. /// /// The attestation will be obtained from `self.naive_aggregation_pool`. pub fn get_aggregated_attestation( &self, data: &AttestationData, ) -> Option> { self.naive_aggregation_pool.read().get(data) } /// Returns an aggregated `Attestation`, if any, that has a matching /// `attestation.data.tree_hash_root()`. /// /// The attestation will be obtained from `self.naive_aggregation_pool`. pub fn get_aggregated_attestation_by_slot_and_root( &self, slot: Slot, attestation_data_root: &Hash256, ) -> Option> { self.naive_aggregation_pool .read() .get_by_slot_and_root(slot, attestation_data_root) } /// Produce an unaggregated `Attestation` that is valid for the given `slot` and `index`. /// /// The produced `Attestation` will not be valid until it has been signed by exactly one /// validator that is in the committee for `slot` and `index` in the canonical chain. /// /// Always attests to the canonical chain. pub fn produce_unaggregated_attestation( &self, slot: Slot, index: CommitteeIndex, ) -> Result, Error> { // Note: we're taking a lock on the head. The work involved here should be trivial enough // that the lock should not be held for long. let head = self .canonical_head .try_read_for(HEAD_LOCK_TIMEOUT) .ok_or(Error::CanonicalHeadLockTimeout)?; if slot >= head.beacon_block.slot() { self.produce_unaggregated_attestation_for_block( slot, index, head.beacon_block_root, Cow::Borrowed(&head.beacon_state), ) } else { // Note: this method will fail if `slot` is more than `state.block_roots.len()` slots // prior to the head. // // This seems reasonable, producing an attestation at a slot so far // in the past seems useless, definitely in mainnet spec. In minimal spec, when the // block roots only contain two epochs of history, it's possible that you will fail to // produce an attestation that would be valid to be included in a block. Given that // minimal is only for testing, I think this is fine. // // It is important to note that what's _not_ allowed here is attesting to a slot in the // past. You can still attest to a block an arbitrary distance in the past, just not as // if you are in a slot in the past. let beacon_block_root = *head.beacon_state.get_block_root(slot)?; let state_root = *head.beacon_state.get_state_root(slot)?; // Avoid holding a lock on the head whilst doing database reads. Good boi functions // don't hog locks. drop(head); let mut state = self .get_state(&state_root, Some(slot))? .ok_or(Error::MissingBeaconState(state_root))?; state.build_committee_cache(RelativeEpoch::Current, &self.spec)?; self.produce_unaggregated_attestation_for_block( slot, index, beacon_block_root, Cow::Owned(state), ) } } /// Produces an "unaggregated" attestation for the given `slot` and `index` that attests to /// `beacon_block_root`. The provided `state` should match the `block.state_root` for the /// `block` identified by `beacon_block_root`. /// /// The attestation doesn't _really_ have anything about it that makes it unaggregated per say, /// however this function is only required in the context of forming an unaggregated /// attestation. It would be an (undetectable) violation of the protocol to create a /// `SignedAggregateAndProof` based upon the output of this function. pub fn produce_unaggregated_attestation_for_block( &self, slot: Slot, index: CommitteeIndex, beacon_block_root: Hash256, mut state: Cow>, ) -> Result, Error> { let epoch = slot.epoch(T::EthSpec::slots_per_epoch()); if state.slot > slot { return Err(Error::CannotAttestToFutureState); } else if state.current_epoch() < epoch { let mut_state = state.to_mut(); while mut_state.current_epoch() < epoch { // Note: here we provide `Hash256::zero()` as the root of the current state. This // has the effect of setting the values of all historic state roots to the zero // hash. This is an optimization, we don't need the state roots so why calculate // them? per_slot_processing(mut_state, Some(Hash256::zero()), &self.spec)?; } mut_state.build_committee_cache(RelativeEpoch::Current, &self.spec)?; } let committee_len = state.get_beacon_committee(slot, index)?.committee.len(); let target_slot = epoch.start_slot(T::EthSpec::slots_per_epoch()); let target_root = if state.slot <= target_slot { beacon_block_root } else { *state.get_block_root(target_slot)? }; Ok(Attestation { aggregation_bits: BitList::with_capacity(committee_len)?, data: AttestationData { slot, index, beacon_block_root, source: state.current_justified_checkpoint, target: Checkpoint { epoch, root: target_root, }, }, signature: AggregateSignature::empty(), }) } /// Accepts some `Attestation` from the network and attempts to verify it, returning `Ok(_)` if /// it is valid to be (re)broadcast on the gossip network. /// /// The attestation must be "unaggregated", that is it must have exactly one /// aggregation bit set. pub fn verify_unaggregated_attestation_for_gossip( &self, attestation: Attestation, subnet_id: Option, ) -> Result, AttestationError> { metrics::inc_counter(&metrics::UNAGGREGATED_ATTESTATION_PROCESSING_REQUESTS); let _timer = metrics::start_timer(&metrics::UNAGGREGATED_ATTESTATION_GOSSIP_VERIFICATION_TIMES); VerifiedUnaggregatedAttestation::verify(attestation, subnet_id, self).map(|v| { metrics::inc_counter(&metrics::UNAGGREGATED_ATTESTATION_PROCESSING_SUCCESSES); v }) } /// Accepts some `SignedAggregateAndProof` from the network and attempts to verify it, /// returning `Ok(_)` if it is valid to be (re)broadcast on the gossip network. pub fn verify_aggregated_attestation_for_gossip( &self, signed_aggregate: SignedAggregateAndProof, ) -> Result, AttestationError> { metrics::inc_counter(&metrics::AGGREGATED_ATTESTATION_PROCESSING_REQUESTS); let _timer = metrics::start_timer(&metrics::AGGREGATED_ATTESTATION_GOSSIP_VERIFICATION_TIMES); VerifiedAggregatedAttestation::verify(signed_aggregate, self).map(|v| { metrics::inc_counter(&metrics::AGGREGATED_ATTESTATION_PROCESSING_SUCCESSES); v }) } /// Accepts some attestation-type object and attempts to verify it in the context of fork /// choice. If it is valid it is applied to `self.fork_choice`. /// /// Common items that implement `SignatureVerifiedAttestation`: /// /// - `VerifiedUnaggregatedAttestation` /// - `VerifiedAggregatedAttestation` pub fn apply_attestation_to_fork_choice( &self, verified: &impl SignatureVerifiedAttestation, ) -> Result<(), Error> { let _timer = metrics::start_timer(&metrics::FORK_CHOICE_PROCESS_ATTESTATION_TIMES); self.fork_choice .write() .on_attestation(self.slot()?, verified.indexed_attestation()) .map_err(Into::into) } /// Accepts an `VerifiedUnaggregatedAttestation` and attempts to apply it to the "naive /// aggregation pool". /// /// The naive aggregation pool is used by local validators to produce /// `SignedAggregateAndProof`. /// /// If the attestation is too old (low slot) to be included in the pool it is simply dropped /// and no error is returned. pub fn add_to_naive_aggregation_pool( &self, unaggregated_attestation: VerifiedUnaggregatedAttestation, ) -> Result, AttestationError> { let _timer = metrics::start_timer(&metrics::ATTESTATION_PROCESSING_APPLY_TO_AGG_POOL); let attestation = unaggregated_attestation.attestation(); match self.naive_aggregation_pool.write().insert(attestation) { Ok(outcome) => trace!( self.log, "Stored unaggregated attestation"; "outcome" => format!("{:?}", outcome), "index" => attestation.data.index, "slot" => attestation.data.slot.as_u64(), ), Err(NaiveAggregationError::SlotTooLow { slot, lowest_permissible_slot, }) => { trace!( self.log, "Refused to store unaggregated attestation"; "lowest_permissible_slot" => lowest_permissible_slot.as_u64(), "slot" => slot.as_u64(), ); } Err(e) => { error!( self.log, "Failed to store unaggregated attestation"; "error" => format!("{:?}", e), "index" => attestation.data.index, "slot" => attestation.data.slot.as_u64(), ); return Err(Error::from(e).into()); } }; Ok(unaggregated_attestation) } /// Accepts a `VerifiedAggregatedAttestation` and attempts to apply it to `self.op_pool`. /// /// The op pool is used by local block producers to pack blocks with operations. pub fn add_to_block_inclusion_pool( &self, signed_aggregate: VerifiedAggregatedAttestation, ) -> Result, AttestationError> { let _timer = metrics::start_timer(&metrics::ATTESTATION_PROCESSING_APPLY_TO_OP_POOL); // If there's no eth1 chain then it's impossible to produce blocks and therefore // useless to put things in the op pool. if self.eth1_chain.is_some() { let fork = self .canonical_head .try_read_for(HEAD_LOCK_TIMEOUT) .ok_or(Error::CanonicalHeadLockTimeout)? .beacon_state .fork; self.op_pool .insert_attestation( // TODO: address this clone. signed_aggregate.attestation().clone(), &fork, self.genesis_validators_root, &self.spec, ) .map_err(Error::from)?; } Ok(signed_aggregate) } /// Move slashings collected by the slasher into the op pool for block inclusion. fn ingest_slashings_to_op_pool(&self, state: &BeaconState) { if let Some(slasher) = self.slasher.as_ref() { let attester_slashings = slasher.get_attester_slashings(); let proposer_slashings = slasher.get_proposer_slashings(); if !attester_slashings.is_empty() || !proposer_slashings.is_empty() { debug!( self.log, "Ingesting slashings"; "num_attester_slashings" => attester_slashings.len(), "num_proposer_slashings" => proposer_slashings.len(), ); } for slashing in attester_slashings { let verified_slashing = match slashing.clone().validate(state, &self.spec) { Ok(verified) => verified, Err(e) => { error!( self.log, "Attester slashing from slasher failed verification"; "error" => format!("{:?}", e), "slashing" => format!("{:?}", slashing), ); continue; } }; if let Err(e) = self.import_attester_slashing(verified_slashing) { error!( self.log, "Attester slashing from slasher is invalid"; "error" => format!("{:?}", e), "slashing" => format!("{:?}", slashing), ); } } for slashing in proposer_slashings { let verified_slashing = match slashing.clone().validate(state, &self.spec) { Ok(verified) => verified, Err(e) => { error!( self.log, "Proposer slashing from slasher failed verification"; "error" => format!("{:?}", e), "slashing" => format!("{:?}", slashing), ); continue; } }; self.import_proposer_slashing(verified_slashing); } } } /// Check that the shuffling at `block_root` is equal to one of the shufflings of `state`. /// /// The `target_epoch` argument determines which shuffling to check compatibility with, it /// should be equal to the current or previous epoch of `state`, or else `false` will be /// returned. /// /// The compatibility check is designed to be fast: we check that the block that /// determined the RANDAO mix for the `target_epoch` matches the ancestor of the block /// identified by `block_root` (at that slot). pub fn shuffling_is_compatible( &self, block_root: &Hash256, target_epoch: Epoch, state: &BeaconState, ) -> bool { let slots_per_epoch = T::EthSpec::slots_per_epoch(); let shuffling_lookahead = 1 + self.spec.min_seed_lookahead.as_u64(); // Shuffling can't have changed if we're in the first few epochs if state.current_epoch() < shuffling_lookahead { return true; } // Otherwise the shuffling is determined by the block at the end of the target epoch // minus the shuffling lookahead (usually 2). We call this the "pivot". let pivot_slot = if target_epoch == state.previous_epoch() || target_epoch == state.current_epoch() { (target_epoch - shuffling_lookahead).end_slot(slots_per_epoch) } else { return false; }; let state_pivot_block_root = match state.get_block_root(pivot_slot) { Ok(root) => *root, Err(e) => { warn!( &self.log, "Missing pivot block root for attestation"; "slot" => pivot_slot, "error" => format!("{:?}", e), ); return false; } }; // Use fork choice's view of the block DAG to quickly evaluate whether the attestation's // pivot block is the same as the current state's pivot block. If it is, then the // attestation's shuffling is the same as the current state's. // To account for skipped slots, find the first block at *or before* the pivot slot. let fork_choice_lock = self.fork_choice.read(); let pivot_block_root = fork_choice_lock .proto_array() .core_proto_array() .iter_block_roots(block_root) .find(|(_, slot)| *slot <= pivot_slot) .map(|(block_root, _)| block_root); drop(fork_choice_lock); match pivot_block_root { Some(root) => root == state_pivot_block_root, None => { debug!( &self.log, "Discarding attestation because of missing ancestor"; "pivot_slot" => pivot_slot.as_u64(), "block_root" => format!("{:?}", block_root), ); false } } } /// Verify a voluntary exit before allowing it to propagate on the gossip network. pub fn verify_voluntary_exit_for_gossip( &self, exit: SignedVoluntaryExit, ) -> Result, Error> { // NOTE: this could be more efficient if it avoided cloning the head state let wall_clock_state = self.wall_clock_state()?; Ok(self.observed_voluntary_exits.lock().verify_and_observe( exit, &wall_clock_state, &self.spec, )?) } /// Accept a pre-verified exit and queue it for inclusion in an appropriate block. pub fn import_voluntary_exit(&self, exit: SigVerifiedOp) { if self.eth1_chain.is_some() { self.op_pool.insert_voluntary_exit(exit) } } /// Verify a proposer slashing before allowing it to propagate on the gossip network. pub fn verify_proposer_slashing_for_gossip( &self, proposer_slashing: ProposerSlashing, ) -> Result, Error> { let wall_clock_state = self.wall_clock_state()?; Ok(self.observed_proposer_slashings.lock().verify_and_observe( proposer_slashing, &wall_clock_state, &self.spec, )?) } /// Accept some proposer slashing and queue it for inclusion in an appropriate block. pub fn import_proposer_slashing(&self, proposer_slashing: SigVerifiedOp) { if self.eth1_chain.is_some() { self.op_pool.insert_proposer_slashing(proposer_slashing) } } /// Verify an attester slashing before allowing it to propagate on the gossip network. pub fn verify_attester_slashing_for_gossip( &self, attester_slashing: AttesterSlashing, ) -> Result>, Error> { let wall_clock_state = self.wall_clock_state()?; Ok(self.observed_attester_slashings.lock().verify_and_observe( attester_slashing, &wall_clock_state, &self.spec, )?) } /// Accept some attester slashing and queue it for inclusion in an appropriate block. pub fn import_attester_slashing( &self, attester_slashing: SigVerifiedOp>, ) -> Result<(), Error> { if self.eth1_chain.is_some() { self.op_pool .insert_attester_slashing(attester_slashing, self.head_info()?.fork) } Ok(()) } /// Attempt to verify and import a chain of blocks to `self`. /// /// The provided blocks _must_ each reference the previous block via `block.parent_root` (i.e., /// be a chain). An error will be returned if this is not the case. /// /// This operation is not atomic; if one of the blocks in the chain is invalid then some prior /// blocks might be imported. /// /// This method is generally much more efficient than importing each block using /// `Self::process_block`. pub fn process_chain_segment( &self, chain_segment: Vec>, ) -> ChainSegmentResult { let mut filtered_chain_segment = Vec::with_capacity(chain_segment.len()); let mut imported_blocks = 0; // Produce a list of the parent root and slot of the child of each block. // // E.g., `children[0] == (chain_segment[1].parent_root(), chain_segment[1].slot())` let children = chain_segment .iter() .skip(1) .map(|block| (block.parent_root(), block.slot())) .collect::>(); for (i, block) in chain_segment.into_iter().enumerate() { let block_root = get_block_root(&block); if let Some((child_parent_root, child_slot)) = children.get(i) { // If this block has a child in this chain segment, ensure that its parent root matches // the root of this block. // // Without this check it would be possible to have a block verified using the // incorrect shuffling. That would be bad, mmkay. if block_root != *child_parent_root { return ChainSegmentResult::Failed { imported_blocks, error: BlockError::NonLinearParentRoots, }; } // Ensure that the slots are strictly increasing throughout the chain segment. if *child_slot <= block.slot() { return ChainSegmentResult::Failed { imported_blocks, error: BlockError::NonLinearSlots, }; } } match check_block_relevancy(&block, Some(block_root), self) { // If the block is relevant, add it to the filtered chain segment. Ok(_) => filtered_chain_segment.push((block_root, block)), // If the block is already known, simply ignore this block. Err(BlockError::BlockIsAlreadyKnown) => continue, // If the block is the genesis block, simply ignore this block. Err(BlockError::GenesisBlock) => continue, // If the block is is for a finalized slot, simply ignore this block. // // The block is either: // // 1. In the canonical finalized chain. // 2. In some non-canonical chain at a slot that has been finalized already. // // In the case of (1), there's no need to re-import and later blocks in this // segement might be useful. // // In the case of (2), skipping the block is valid since we should never import it. // However, we will potentially get a `ParentUnknown` on a later block. The sync // protocol will need to ensure this is handled gracefully. Err(BlockError::WouldRevertFinalizedSlot { .. }) => continue, // The block has a known parent that does not descend from the finalized block. // There is no need to process this block or any children. Err(BlockError::NotFinalizedDescendant { block_parent_root }) => { return ChainSegmentResult::Failed { imported_blocks, error: BlockError::NotFinalizedDescendant { block_parent_root }, }; } // If there was an error whilst determining if the block was invalid, return that // error. Err(BlockError::BeaconChainError(e)) => { return ChainSegmentResult::Failed { imported_blocks, error: BlockError::BeaconChainError(e), }; } // If the block was decided to be irrelevant for any other reason, don't include // this block or any of it's children in the filtered chain segment. _ => break, } } while let Some((_root, block)) = filtered_chain_segment.first() { // Determine the epoch of the first block in the remaining segment. let start_epoch = block.slot().epoch(T::EthSpec::slots_per_epoch()); // The `last_index` indicates the position of the last block that is in the current // epoch of `start_epoch`. let last_index = filtered_chain_segment .iter() .position(|(_root, block)| { block.slot().epoch(T::EthSpec::slots_per_epoch()) > start_epoch }) .unwrap_or_else(|| filtered_chain_segment.len()); // Split off the first section blocks that are all either within the current epoch of // the first block. These blocks can all be signature-verified with the same // `BeaconState`. let mut blocks = filtered_chain_segment.split_off(last_index); std::mem::swap(&mut blocks, &mut filtered_chain_segment); // Verify the signature of the blocks, returning early if the signature is invalid. let signature_verified_blocks = match signature_verify_chain_segment(blocks, self) { Ok(blocks) => blocks, Err(error) => { return ChainSegmentResult::Failed { imported_blocks, error, }; } }; // Import the blocks into the chain. for signature_verified_block in signature_verified_blocks { match self.process_block(signature_verified_block) { Ok(_) => imported_blocks += 1, Err(error) => { return ChainSegmentResult::Failed { imported_blocks, error, }; } } } } ChainSegmentResult::Successful { imported_blocks } } /// Returns `Ok(GossipVerifiedBlock)` if the supplied `block` should be forwarded onto the /// gossip network. The block is not imported into the chain, it is just partially verified. /// /// The returned `GossipVerifiedBlock` should be provided to `Self::process_block` immediately /// after it is returned, unless some other circumstance decides it should not be imported at /// all. /// /// ## Errors /// /// Returns an `Err` if the given block was invalid, or an error was encountered during pub fn verify_block_for_gossip( &self, block: SignedBeaconBlock, ) -> Result, BlockError> { let slot = block.message.slot; let graffiti_string = block.message.body.graffiti.as_utf8_lossy(); match GossipVerifiedBlock::new(block, self) { Ok(verified) => { debug!( self.log, "Successfully processed gossip block"; "graffiti" => graffiti_string, "slot" => slot, "root" => format!("{:?}", verified.block_root()), ); Ok(verified) } Err(e) => { debug!( self.log, "Rejected gossip block"; "error" => e.to_string(), "graffiti" => graffiti_string, "slot" => slot, ); Err(e) } } } /// Returns `Ok(block_root)` if the given `unverified_block` was successfully verified and /// imported into the chain. /// /// Items that implement `IntoFullyVerifiedBlock` include: /// /// - `SignedBeaconBlock` /// - `GossipVerifiedBlock` /// /// ## Errors /// /// Returns an `Err` if the given block was invalid, or an error was encountered during /// verification. pub fn process_block>( &self, unverified_block: B, ) -> Result> { // Start the Prometheus timer. let _full_timer = metrics::start_timer(&metrics::BLOCK_PROCESSING_TIMES); // Increment the Prometheus counter for block processing requests. metrics::inc_counter(&metrics::BLOCK_PROCESSING_REQUESTS); // Clone the block so we can provide it to the event handler. let block = unverified_block.block().clone(); // A small closure to group the verification and import errors. let import_block = |unverified_block: B| -> Result> { let fully_verified = unverified_block.into_fully_verified_block(self)?; self.import_block(fully_verified) }; // Verify and import the block. match import_block(unverified_block) { // The block was successfully verified and imported. Yay. Ok(block_root) => { trace!( self.log, "Beacon block imported"; "block_root" => format!("{:?}", block_root), "block_slot" => format!("{:?}", block.slot().as_u64()), ); // Increment the Prometheus counter for block processing successes. metrics::inc_counter(&metrics::BLOCK_PROCESSING_SUCCESSES); let _ = self.event_handler.register(EventKind::BeaconBlockImported { block_root, block: Box::new(block), }); Ok(block_root) } // There was an error whilst attempting to verify and import the block. The block might // be partially verified or partially imported. Err(BlockError::BeaconChainError(e)) => { crit!( self.log, "Beacon block processing error"; "error" => format!("{:?}", e), ); let _ = self.event_handler.register(EventKind::BeaconBlockRejected { reason: format!("Internal error: {:?}", e), block: Box::new(block), }); Err(BlockError::BeaconChainError(e)) } // The block failed verification. Err(other) => { trace!( self.log, "Beacon block rejected"; "reason" => other.to_string(), ); let _ = self.event_handler.register(EventKind::BeaconBlockRejected { reason: format!("Invalid block: {}", other), block: Box::new(block), }); Err(other) } } } /// Accepts a fully-verified block and imports it into the chain without performing any /// additional verification. /// /// An error is returned if the block was unable to be imported. It may be partially imported /// (i.e., this function is not atomic). fn import_block( &self, fully_verified_block: FullyVerifiedBlock, ) -> Result> { let signed_block = fully_verified_block.block; let block_root = fully_verified_block.block_root; let mut state = fully_verified_block.state; let current_slot = self.slot()?; let mut ops = fully_verified_block.confirmation_db_batch; let attestation_observation_timer = metrics::start_timer(&metrics::BLOCK_PROCESSING_ATTESTATION_OBSERVATION); // Iterate through the attestations in the block and register them as an "observed // attestation". This will stop us from propagating them on the gossip network. for a in &signed_block.message.body.attestations { match self .observed_attestations .write() .observe_attestation(a, None) { // If the observation was successful or if the slot for the attestation was too // low, continue. // // We ignore `SlotTooLow` since this will be very common whilst syncing. Ok(_) | Err(AttestationObservationError::SlotTooLow { .. }) => {} Err(e) => return Err(BlockError::BeaconChainError(e.into())), } } metrics::stop_timer(attestation_observation_timer); // If a slasher is configured, provide the attestations from the block. if let Some(slasher) = self.slasher.as_ref() { for attestation in &signed_block.message.body.attestations { let committee = state.get_beacon_committee(attestation.data.slot, attestation.data.index)?; let indexed_attestation = get_indexed_attestation(&committee.committee, attestation) .map_err(|e| BlockError::BeaconChainError(e.into()))?; slasher.accept_attestation(indexed_attestation); } } // If there are new validators in this block, update our pubkey cache. // // We perform this _before_ adding the block to fork choice because the pubkey cache is // used by attestation processing which will only process an attestation if the block is // known to fork choice. This ordering ensure that the pubkey cache is always up-to-date. self.validator_pubkey_cache .try_write_for(VALIDATOR_PUBKEY_CACHE_LOCK_TIMEOUT) .ok_or(Error::ValidatorPubkeyCacheLockTimeout)? .import_new_pubkeys(&state)?; // For the current and next epoch of this state, ensure we have the shuffling from this // block in our cache. for relative_epoch in &[RelativeEpoch::Current, RelativeEpoch::Next] { let shuffling_id = ShufflingId::new(block_root, &state, *relative_epoch)?; let shuffling_is_cached = self .shuffling_cache .try_read_for(ATTESTATION_CACHE_LOCK_TIMEOUT) .ok_or(Error::AttestationCacheLockTimeout)? .contains(&shuffling_id); if !shuffling_is_cached { state.build_committee_cache(*relative_epoch, &self.spec)?; let committee_cache = state.committee_cache(*relative_epoch)?; self.shuffling_cache .try_write_for(ATTESTATION_CACHE_LOCK_TIMEOUT) .ok_or(Error::AttestationCacheLockTimeout)? .insert(shuffling_id, committee_cache); } } let mut fork_choice = self.fork_choice.write(); // Do not import a block that doesn't descend from the finalized root. let signed_block = check_block_is_finalized_descendant::(signed_block, &fork_choice, &self.store)?; let block = &signed_block.message; // compare the existing finalized checkpoint with the incoming block's finalized checkpoint let old_finalized_checkpoint = fork_choice.finalized_checkpoint(); let new_finalized_checkpoint = state.finalized_checkpoint; // Only perform the weak subjectivity check if it was configured. if let Some(wss_checkpoint) = self.config.weak_subjectivity_checkpoint { // This ensures we only perform the check once. if (old_finalized_checkpoint.epoch < wss_checkpoint.epoch) && (wss_checkpoint.epoch <= new_finalized_checkpoint.epoch) { if let Err(e) = self.verify_weak_subjectivity_checkpoint(wss_checkpoint, block_root, &state) { let mut shutdown_sender = self.shutdown_sender(); crit!( self.log, "Weak subjectivity checkpoint verification failed while importing block!"; "block_root" => format!("{:?}", block_root), "parent_root" => format!("{:?}", block.parent_root), "old_finalized_epoch" => format!("{:?}", old_finalized_checkpoint.epoch), "new_finalized_epoch" => format!("{:?}", new_finalized_checkpoint.epoch), "weak_subjectivity_epoch" => format!("{:?}", wss_checkpoint.epoch), "error" => format!("{:?}", e), ); crit!(self.log, "You must use the `--purge-db` flag to clear the database and restart sync. You may be on a hostile network."); shutdown_sender.try_send("Weak subjectivity checkpoint verification failed. Provided block root is not a checkpoint.") .map_err(|err|BlockError::BeaconChainError(BeaconChainError::WeakSubjectivtyShutdownError(err)))?; return Err(BlockError::WeakSubjectivityConflict); } } } // Register the new block with the fork choice service. { let _fork_choice_block_timer = metrics::start_timer(&metrics::FORK_CHOICE_PROCESS_BLOCK_TIMES); fork_choice .on_block(current_slot, block, block_root, &state) .map_err(|e| BlockError::BeaconChainError(e.into()))?; } // Register each attestation in the block with the fork choice service. for attestation in &block.body.attestations[..] { let _fork_choice_attestation_timer = metrics::start_timer(&metrics::FORK_CHOICE_PROCESS_ATTESTATION_TIMES); let committee = state.get_beacon_committee(attestation.data.slot, attestation.data.index)?; let indexed_attestation = get_indexed_attestation(committee.committee, attestation) .map_err(|e| BlockError::BeaconChainError(e.into()))?; match fork_choice.on_attestation(current_slot, &indexed_attestation) { Ok(()) => Ok(()), // Ignore invalid attestations whilst importing attestations from a block. The // block might be very old and therefore the attestations useless to fork choice. Err(ForkChoiceError::InvalidAttestation(_)) => Ok(()), Err(e) => Err(BlockError::BeaconChainError(e.into())), }?; } metrics::observe( &metrics::OPERATIONS_PER_BLOCK_ATTESTATION, block.body.attestations.len() as f64, ); let db_write_timer = metrics::start_timer(&metrics::BLOCK_PROCESSING_DB_WRITE); // Store the block and its state, and execute the confirmation batch for the intermediate // states, which will delete their temporary flags. ops.push(StoreOp::PutBlock( block_root, Box::new(signed_block.clone()), )); ops.push(StoreOp::PutState(block.state_root, &state)); let txn_lock = self.store.hot_db.begin_rw_transaction(); self.store.do_atomically(ops)?; drop(txn_lock); // The fork choice write-lock is dropped *after* the on-disk database has been updated. // This prevents inconsistency between the two at the expense of concurrency. drop(fork_choice); let parent_root = block.parent_root; let slot = block.slot; self.snapshot_cache .try_write_for(BLOCK_PROCESSING_CACHE_LOCK_TIMEOUT) .map(|mut snapshot_cache| { snapshot_cache.insert(BeaconSnapshot { beacon_state: state, beacon_state_root: signed_block.state_root(), beacon_block: signed_block, beacon_block_root: block_root, }); }) .unwrap_or_else(|| { error!( self.log, "Failed to obtain cache write lock"; "lock" => "snapshot_cache", "task" => "process block" ); }); self.head_tracker .register_block(block_root, parent_root, slot); metrics::stop_timer(db_write_timer); metrics::inc_counter(&metrics::BLOCK_PROCESSING_SUCCESSES); Ok(block_root) } /// Produce a new block at the given `slot`. /// /// The produced block will not be inherently valid, it must be signed by a block producer. /// Block signing is out of the scope of this function and should be done by a separate program. pub fn produce_block( &self, randao_reveal: Signature, slot: Slot, validator_graffiti: Option, ) -> Result, BlockProductionError> { let state = self .state_at_slot(slot - 1, StateSkipConfig::WithStateRoots) .map_err(|_| BlockProductionError::UnableToProduceAtSlot(slot))?; self.produce_block_on_state(state, slot, randao_reveal, validator_graffiti) } /// Produce a block for some `slot` upon the given `state`. /// /// Typically the `self.produce_block()` function should be used, instead of calling this /// function directly. This function is useful for purposefully creating forks or blocks at /// non-current slots. /// /// The given state will be advanced to the given `produce_at_slot`, then a block will be /// produced at that slot height. pub fn produce_block_on_state( &self, mut state: BeaconState, produce_at_slot: Slot, randao_reveal: Signature, validator_graffiti: Option, ) -> Result, BlockProductionError> { metrics::inc_counter(&metrics::BLOCK_PRODUCTION_REQUESTS); let timer = metrics::start_timer(&metrics::BLOCK_PRODUCTION_TIMES); let eth1_chain = self .eth1_chain .as_ref() .ok_or(BlockProductionError::NoEth1ChainConnection)?; // If required, transition the new state to the present slot. // // Note: supplying some `state_root` when it it is known would be a cheap and easy // optimization. while state.slot < produce_at_slot { per_slot_processing(&mut state, None, &self.spec)?; } state.build_committee_cache(RelativeEpoch::Current, &self.spec)?; let parent_root = if state.slot > 0 { *state .get_block_root(state.slot - 1) .map_err(|_| BlockProductionError::UnableToGetBlockRootFromState)? } else { state.latest_block_header.canonical_root() }; self.ingest_slashings_to_op_pool(&state); let (proposer_slashings, attester_slashings) = self.op_pool.get_slashings(&state, &self.spec); let eth1_data = eth1_chain.eth1_data_for_block_production(&state, &self.spec)?; let deposits = eth1_chain .deposits_for_block_inclusion(&state, ð1_data, &self.spec)? .into(); // Map from attestation head block root to shuffling compatibility. // Used to memoize the `attestation_shuffling_is_compatible` function. let mut shuffling_filter_cache = HashMap::new(); let attestation_filter = |att: &&Attestation| -> bool { *shuffling_filter_cache .entry((att.data.beacon_block_root, att.data.target.epoch)) .or_insert_with(|| { self.shuffling_is_compatible( &att.data.beacon_block_root, att.data.target.epoch, &state, ) }) }; // Iterate through the naive aggregation pool and ensure all the attestations from there // are included in the operation pool. for attestation in self.naive_aggregation_pool.read().iter() { if let Err(e) = self.op_pool.insert_attestation( attestation.clone(), &state.fork, state.genesis_validators_root, &self.spec, ) { // Don't stop block production if there's an error, just create a log. error!( self.log, "Attestation did not transfer to op pool"; "reason" => format!("{:?}", e) ); } } // Override the beacon node's graffiti with graffiti from the validator, if present. let graffiti = match validator_graffiti { Some(graffiti) => graffiti, None => self.graffiti, }; let mut block = SignedBeaconBlock { message: BeaconBlock { slot: state.slot, proposer_index: state.get_beacon_proposer_index(state.slot, &self.spec)? as u64, parent_root, state_root: Hash256::zero(), body: BeaconBlockBody { randao_reveal, eth1_data, graffiti, proposer_slashings: proposer_slashings.into(), attester_slashings: attester_slashings.into(), attestations: self .op_pool .get_attestations(&state, attestation_filter, &self.spec) .map_err(BlockProductionError::OpPoolError)? .into(), deposits, voluntary_exits: self.op_pool.get_voluntary_exits(&state, &self.spec).into(), }, }, // The block is not signed here, that is the task of a validator client. signature: Signature::empty(), }; per_block_processing( &mut state, &block, None, BlockSignatureStrategy::NoVerification, &self.spec, )?; let state_root = state.update_tree_hash_cache()?; block.message.state_root = state_root; metrics::inc_counter(&metrics::BLOCK_PRODUCTION_SUCCESSES); metrics::stop_timer(timer); trace!( self.log, "Produced beacon block"; "parent" => format!("{}", block.message.parent_root), "attestations" => block.message.body.attestations.len(), "slot" => block.message.slot ); Ok((block.message, state)) } /// Execute the fork choice algorithm and enthrone the result as the canonical head. pub fn fork_choice(&self) -> Result<(), Error> { metrics::inc_counter(&metrics::FORK_CHOICE_REQUESTS); let _timer = metrics::start_timer(&metrics::FORK_CHOICE_TIMES); let result = self.fork_choice_internal(); if result.is_err() { metrics::inc_counter(&metrics::FORK_CHOICE_ERRORS); } result } fn fork_choice_internal(&self) -> Result<(), Error> { // Determine the root of the block that is the head of the chain. let beacon_block_root = self.fork_choice.write().get_head(self.slot()?)?; let current_head = self.head_info()?; let old_finalized_checkpoint = current_head.finalized_checkpoint; if beacon_block_root == current_head.block_root { return Ok(()); } // At this point we know that the new head block is not the same as the previous one metrics::inc_counter(&metrics::FORK_CHOICE_CHANGED_HEAD); // Try and obtain the snapshot for `beacon_block_root` from the snapshot cache, falling // back to a database read if that fails. let new_head = self .snapshot_cache .try_read_for(BLOCK_PROCESSING_CACHE_LOCK_TIMEOUT) .and_then(|snapshot_cache| snapshot_cache.get_cloned(beacon_block_root)) .map::, _>(Ok) .unwrap_or_else(|| { let beacon_block = self .get_block(&beacon_block_root)? .ok_or(Error::MissingBeaconBlock(beacon_block_root))?; let beacon_state_root = beacon_block.state_root(); let beacon_state: BeaconState = self .get_state(&beacon_state_root, Some(beacon_block.slot()))? .ok_or(Error::MissingBeaconState(beacon_state_root))?; Ok(BeaconSnapshot { beacon_block, beacon_block_root, beacon_state, beacon_state_root, }) }) .and_then(|mut snapshot| { // Regardless of where we got the state from, attempt to build the committee // caches. snapshot .beacon_state .build_all_committee_caches(&self.spec) .map_err(Into::into) .map(|()| snapshot) })?; // Attempt to detect if the new head is not on the same chain as the previous block // (i.e., a re-org). // // Note: this will declare a re-org if we skip `SLOTS_PER_HISTORICAL_ROOT` blocks // between calls to fork choice without swapping between chains. This seems like an // extreme-enough scenario that a warning is fine. let is_reorg = current_head.block_root != new_head .beacon_state .get_block_root(current_head.slot) .map(|root| *root) .unwrap_or_else(|_| Hash256::random()); if is_reorg { metrics::inc_counter(&metrics::FORK_CHOICE_REORG_COUNT); warn!( self.log, "Beacon chain re-org"; "previous_head" => format!("{}", current_head.block_root), "previous_slot" => current_head.slot, "new_head_parent" => format!("{}", new_head.beacon_block.parent_root()), "new_head" => format!("{}", beacon_block_root), "new_slot" => new_head.beacon_block.slot() ); } else { debug!( self.log, "Head beacon block"; "justified_root" => format!("{}", new_head.beacon_state.current_justified_checkpoint.root), "justified_epoch" => new_head.beacon_state.current_justified_checkpoint.epoch, "finalized_root" => format!("{}", new_head.beacon_state.finalized_checkpoint.root), "finalized_epoch" => new_head.beacon_state.finalized_checkpoint.epoch, "root" => format!("{}", beacon_block_root), "slot" => new_head.beacon_block.slot(), ); }; let new_finalized_checkpoint = new_head.beacon_state.finalized_checkpoint; // It is an error to try to update to a head with a lesser finalized epoch. if new_finalized_checkpoint.epoch < old_finalized_checkpoint.epoch { return Err(Error::RevertedFinalizedEpoch { previous_epoch: old_finalized_checkpoint.epoch, new_epoch: new_finalized_checkpoint.epoch, }); } if current_head.slot.epoch(T::EthSpec::slots_per_epoch()) < new_head .beacon_state .slot .epoch(T::EthSpec::slots_per_epoch()) || is_reorg { self.persist_head_and_fork_choice()?; self.op_pool.prune_attestations(self.epoch()?); self.ingest_slashings_to_op_pool(&new_head.beacon_state); self.persist_op_pool()?; } let update_head_timer = metrics::start_timer(&metrics::UPDATE_HEAD_TIMES); // Update the snapshot that stores the head of the chain at the time it received the // block. *self .canonical_head .try_write_for(HEAD_LOCK_TIMEOUT) .ok_or(Error::CanonicalHeadLockTimeout)? = new_head; metrics::stop_timer(update_head_timer); self.snapshot_cache .try_write_for(BLOCK_PROCESSING_CACHE_LOCK_TIMEOUT) .map(|mut snapshot_cache| { snapshot_cache.update_head(beacon_block_root); }) .unwrap_or_else(|| { error!( self.log, "Failed to obtain cache write lock"; "lock" => "snapshot_cache", "task" => "update head" ); }); if new_finalized_checkpoint.epoch != old_finalized_checkpoint.epoch { // Due to race conditions, it's technically possible that the head we load here is // different to the one earlier in this function. // // Since the head can't move backwards in terms of finalized epoch, we can only load a // head with a *later* finalized state. There is no harm in this. let head = self .canonical_head .try_read_for(HEAD_LOCK_TIMEOUT) .ok_or(Error::CanonicalHeadLockTimeout)?; // State root of the finalized state on the epoch boundary, NOT the state // of the finalized block. We need to use an iterator in case the state is beyond // the reach of the new head's `state_roots` array. let new_finalized_slot = head .beacon_state .finalized_checkpoint .epoch .start_slot(T::EthSpec::slots_per_epoch()); let new_finalized_state_root = process_results( StateRootsIterator::new(self.store.clone(), &head.beacon_state), |mut iter| { iter.find_map(|(state_root, slot)| { if slot == new_finalized_slot { Some(state_root) } else { None } }) }, )? .ok_or(Error::MissingFinalizedStateRoot(new_finalized_slot))?; self.after_finalization(&head.beacon_state, new_finalized_state_root)?; } let _ = self.event_handler.register(EventKind::BeaconHeadChanged { reorg: is_reorg, previous_head_beacon_block_root: current_head.block_root, current_head_beacon_block_root: beacon_block_root, }); Ok(()) } /// This function takes a configured weak subjectivity `Checkpoint` and the latest finalized `Checkpoint`. /// If the weak subjectivity checkpoint and finalized checkpoint share the same epoch, we compare /// roots. If we the weak subjectivity checkpoint is from an older epoch, we iterate back through /// roots in the canonical chain until we reach the finalized checkpoint from the correct epoch, and /// compare roots. This must called on startup and during verification of any block which causes a finality /// change affecting the weak subjectivity checkpoint. pub fn verify_weak_subjectivity_checkpoint( &self, wss_checkpoint: Checkpoint, beacon_block_root: Hash256, state: &BeaconState, ) -> Result<(), BeaconChainError> { let finalized_checkpoint = state.finalized_checkpoint; info!(self.log, "Verifying the configured weak subjectivity checkpoint"; "weak_subjectivity_epoch" => wss_checkpoint.epoch, "weak_subjectivity_root" => format!("{:?}", wss_checkpoint.root)); // If epochs match, simply compare roots. if wss_checkpoint.epoch == finalized_checkpoint.epoch && wss_checkpoint.root != finalized_checkpoint.root { crit!( self.log, "Root found at the specified checkpoint differs"; "weak_subjectivity_root" => format!("{:?}", wss_checkpoint.root), "finalized_checkpoint_root" => format!("{:?}", finalized_checkpoint.root) ); return Err(BeaconChainError::WeakSubjectivtyVerificationFailure); } else if wss_checkpoint.epoch < finalized_checkpoint.epoch { let slot = wss_checkpoint .epoch .start_slot(T::EthSpec::slots_per_epoch()); // Iterate backwards through block roots from the given state. If first slot of the epoch is a skip-slot, // this will return the root of the closest prior non-skipped slot. match self.root_at_slot_from_state(slot, beacon_block_root, state)? { Some(root) => { if root != wss_checkpoint.root { crit!( self.log, "Root found at the specified checkpoint differs"; "weak_subjectivity_root" => format!("{:?}", wss_checkpoint.root), "finalized_checkpoint_root" => format!("{:?}", finalized_checkpoint.root) ); return Err(BeaconChainError::WeakSubjectivtyVerificationFailure); } } None => { crit!(self.log, "The root at the start slot of the given epoch could not be found"; "wss_checkpoint_slot" => format!("{:?}", slot)); return Err(BeaconChainError::WeakSubjectivtyVerificationFailure); } } } Ok(()) } /// Called by the timer on every slot. /// /// Performs slot-based pruning. pub fn per_slot_task(&self) { trace!(self.log, "Running beacon chain per slot tasks"); if let Some(slot) = self.slot_clock.now() { self.naive_aggregation_pool.write().prune(slot); } } /// Called after `self` has had a new block finalized. /// /// Performs pruning and finality-based optimizations. fn after_finalization( &self, head_state: &BeaconState, new_finalized_state_root: Hash256, ) -> Result<(), Error> { self.fork_choice.write().prune()?; let new_finalized_checkpoint = head_state.finalized_checkpoint; self.observed_block_producers.write().prune( new_finalized_checkpoint .epoch .start_slot(T::EthSpec::slots_per_epoch()), ); self.snapshot_cache .try_write_for(BLOCK_PROCESSING_CACHE_LOCK_TIMEOUT) .map(|mut snapshot_cache| { snapshot_cache.prune(new_finalized_checkpoint.epoch); }) .unwrap_or_else(|| { error!( self.log, "Failed to obtain cache write lock"; "lock" => "snapshot_cache", "task" => "prune" ); }); self.op_pool.prune_all(head_state, self.epoch()?); self.store_migrator.process_finalization( new_finalized_state_root.into(), new_finalized_checkpoint, self.head_tracker.clone(), )?; let _ = self.event_handler.register(EventKind::BeaconFinalization { epoch: new_finalized_checkpoint.epoch, root: new_finalized_checkpoint.root, }); Ok(()) } /// Runs the `map_fn` with the committee cache for `shuffling_epoch` from the chain with head /// `head_block_root`. /// /// It's not necessary that `head_block_root` matches our current view of the chain, it can be /// any block that is: /// /// - Known to us. /// - The finalized block or a descendant of the finalized block. /// /// It would be quite common for attestation verification operations to use a `head_block_root` /// that differs from our view of the head. /// /// ## Important /// /// This function is **not** suitable for determining proposer duties. /// /// ## Notes /// /// This function exists in this odd "map" pattern because efficiently obtaining a committee /// can be complex. It might involve reading straight from the `beacon_chain.shuffling_cache` /// or it might involve reading it from a state from the DB. Due to the complexities of /// `RwLock`s on the shuffling cache, a simple `Cow` isn't suitable here. /// /// If the committee for `(head_block_root, shuffling_epoch)` isn't found in the /// `shuffling_cache`, we will read a state from disk and then update the `shuffling_cache`. pub(crate) fn with_committee_cache( &self, head_block_root: Hash256, shuffling_epoch: Epoch, map_fn: F, ) -> Result where F: Fn(&CommitteeCache) -> Result, { let head_block = self .fork_choice .read() .get_block(&head_block_root) .ok_or(Error::MissingBeaconBlock(head_block_root))?; let shuffling_id = BlockShufflingIds { current: head_block.current_epoch_shuffling_id.clone(), next: head_block.next_epoch_shuffling_id.clone(), block_root: head_block.root, } .id_for_epoch(shuffling_epoch) .ok_or_else(|| Error::InvalidShufflingId { shuffling_epoch, head_block_epoch: head_block.slot.epoch(T::EthSpec::slots_per_epoch()), })?; // Obtain the shuffling cache, timing how long we wait. let cache_wait_timer = metrics::start_timer(&metrics::ATTESTATION_PROCESSING_SHUFFLING_CACHE_WAIT_TIMES); let mut shuffling_cache = self .shuffling_cache .try_write_for(ATTESTATION_CACHE_LOCK_TIMEOUT) .ok_or(Error::AttestationCacheLockTimeout)?; metrics::stop_timer(cache_wait_timer); if let Some(committee_cache) = shuffling_cache.get(&shuffling_id) { map_fn(committee_cache) } else { // Drop the shuffling cache to avoid holding the lock for any longer than // required. drop(shuffling_cache); debug!( self.log, "Committee cache miss"; "shuffling_epoch" => shuffling_epoch.as_u64(), "head_block_root" => head_block_root.to_string(), ); let state_read_timer = metrics::start_timer(&metrics::ATTESTATION_PROCESSING_STATE_READ_TIMES); let mut state = self .store .get_inconsistent_state_for_attestation_verification_only( &head_block.state_root, Some(head_block.slot), )? .ok_or(Error::MissingBeaconState(head_block.state_root))?; metrics::stop_timer(state_read_timer); let state_skip_timer = metrics::start_timer(&metrics::ATTESTATION_PROCESSING_STATE_SKIP_TIMES); while state.current_epoch() + 1 < shuffling_epoch { // Here we tell `per_slot_processing` to skip hashing the state and just // use the zero hash instead. // // The state roots are not useful for the shuffling, so there's no need to // compute them. per_slot_processing(&mut state, Some(Hash256::zero()), &self.spec) .map_err(Error::from)?; } metrics::stop_timer(state_skip_timer); let committee_building_timer = metrics::start_timer(&metrics::ATTESTATION_PROCESSING_COMMITTEE_BUILDING_TIMES); let relative_epoch = RelativeEpoch::from_epoch(state.current_epoch(), shuffling_epoch) .map_err(Error::IncorrectStateForAttestation)?; state.build_committee_cache(relative_epoch, &self.spec)?; let committee_cache = state.committee_cache(relative_epoch)?; self.shuffling_cache .try_write_for(ATTESTATION_CACHE_LOCK_TIMEOUT) .ok_or(Error::AttestationCacheLockTimeout)? .insert(shuffling_id, committee_cache); metrics::stop_timer(committee_building_timer); map_fn(&committee_cache) } } /// Returns `true` if the given block root has not been processed. pub fn is_new_block_root(&self, beacon_block_root: &Hash256) -> Result { Ok(!self .store .item_exists::>(beacon_block_root)?) } /// Dumps the entire canonical chain, from the head to genesis to a vector for analysis. /// /// This could be a very expensive operation and should only be done in testing/analysis /// activities. pub fn chain_dump(&self) -> Result>, Error> { let mut dump = vec![]; let mut last_slot = BeaconSnapshot { beacon_block: self.head()?.beacon_block, beacon_block_root: self.head()?.beacon_block_root, beacon_state: self.head()?.beacon_state, beacon_state_root: self.head()?.beacon_state_root, }; dump.push(last_slot.clone()); loop { let beacon_block_root = last_slot.beacon_block.parent_root(); if beacon_block_root == Hash256::zero() { break; // Genesis has been reached. } let beacon_block = self.store.get_block(&beacon_block_root)?.ok_or_else(|| { Error::DBInconsistent(format!("Missing block {}", beacon_block_root)) })?; let beacon_state_root = beacon_block.state_root(); let beacon_state = self .store .get_state(&beacon_state_root, Some(beacon_block.slot()))? .ok_or_else(|| { Error::DBInconsistent(format!("Missing state {:?}", beacon_state_root)) })?; let slot = BeaconSnapshot { beacon_block, beacon_block_root, beacon_state, beacon_state_root, }; dump.push(slot.clone()); last_slot = slot; } dump.reverse(); Ok(dump) } /// Gets the current `EnrForkId`. pub fn enr_fork_id(&self) -> EnrForkId { // If we are unable to read the slot clock we assume that it is prior to genesis and // therefore use the genesis slot. let slot = self.slot().unwrap_or(self.spec.genesis_slot); self.spec.enr_fork_id(slot, self.genesis_validators_root) } /// Calculates the `Duration` to the next fork, if one exists. pub fn duration_to_next_fork(&self) -> Option { let epoch = self.spec.next_fork_epoch()?; self.slot_clock .duration_to_slot(epoch.start_slot(T::EthSpec::slots_per_epoch())) } pub fn dump_as_dot(&self, output: &mut W) { let canonical_head_hash = self .canonical_head .try_read_for(HEAD_LOCK_TIMEOUT) .ok_or(Error::CanonicalHeadLockTimeout) .unwrap() .beacon_block_root; let mut visited: HashSet = HashSet::new(); let mut finalized_blocks: HashSet = HashSet::new(); let mut justified_blocks: HashSet = HashSet::new(); let genesis_block_hash = Hash256::zero(); writeln!(output, "digraph beacon {{").unwrap(); writeln!(output, "\t_{:?}[label=\"zero\"];", genesis_block_hash).unwrap(); // Canonical head needs to be processed first as otherwise finalized blocks aren't detected // properly. let heads = { let mut heads = self.heads(); let canonical_head_index = heads .iter() .position(|(block_hash, _)| *block_hash == canonical_head_hash) .unwrap(); let (canonical_head_hash, canonical_head_slot) = heads.swap_remove(canonical_head_index); heads.insert(0, (canonical_head_hash, canonical_head_slot)); heads }; for (head_hash, _head_slot) in heads { for maybe_pair in ParentRootBlockIterator::new(&*self.store, head_hash) { let (block_hash, signed_beacon_block) = maybe_pair.unwrap(); if visited.contains(&block_hash) { break; } visited.insert(block_hash); if signed_beacon_block.slot() % T::EthSpec::slots_per_epoch() == 0 { let block = self.get_block(&block_hash).unwrap().unwrap(); let state = self .get_state(&block.state_root(), Some(block.slot())) .unwrap() .unwrap(); finalized_blocks.insert(state.finalized_checkpoint.root); justified_blocks.insert(state.current_justified_checkpoint.root); justified_blocks.insert(state.previous_justified_checkpoint.root); } if block_hash == canonical_head_hash { writeln!( output, "\t_{:?}[label=\"{} ({})\" shape=box3d];", block_hash, block_hash, signed_beacon_block.slot() ) .unwrap(); } else if finalized_blocks.contains(&block_hash) { writeln!( output, "\t_{:?}[label=\"{} ({})\" shape=Msquare];", block_hash, block_hash, signed_beacon_block.slot() ) .unwrap(); } else if justified_blocks.contains(&block_hash) { writeln!( output, "\t_{:?}[label=\"{} ({})\" shape=cds];", block_hash, block_hash, signed_beacon_block.slot() ) .unwrap(); } else { writeln!( output, "\t_{:?}[label=\"{} ({})\" shape=box];", block_hash, block_hash, signed_beacon_block.slot() ) .unwrap(); } writeln!( output, "\t_{:?} -> _{:?};", block_hash, signed_beacon_block.parent_root() ) .unwrap(); } } writeln!(output, "}}").unwrap(); } /// Get a channel to request shutting down. pub fn shutdown_sender(&self) -> Sender<&'static str> { self.shutdown_sender.clone() } // Used for debugging #[allow(dead_code)] pub fn dump_dot_file(&self, file_name: &str) { let mut file = std::fs::File::create(file_name).unwrap(); self.dump_as_dot(&mut file); } } impl Drop for BeaconChain { fn drop(&mut self) { let drop = || -> Result<(), Error> { self.persist_head_and_fork_choice()?; self.persist_op_pool()?; self.persist_eth1_cache() }; if let Err(e) = drop() { error!( self.log, "Failed to persist on BeaconChain drop"; "error" => format!("{:?}", e) ) } else { info!( self.log, "Saved beacon chain to disk"; ) } } } impl From for Error { fn from(e: DBError) -> Error { Error::DBError(e) } } impl From for Error { fn from(e: ForkChoiceError) -> Error { Error::ForkChoiceError(e) } } impl From for Error { fn from(e: BeaconStateError) -> Error { Error::BeaconStateError(e) } } impl ChainSegmentResult { pub fn into_block_error(self) -> Result<(), BlockError> { match self { ChainSegmentResult::Failed { error, .. } => Err(error), ChainSegmentResult::Successful { .. } => Ok(()), } } }