#![recursion_limit = "256"] extern crate proc_macro; use proc_macro::TokenStream; use quote::quote; use std::collections::HashMap; use syn::{parse_macro_input, Attribute, DeriveInput, Meta}; /// Return a Vec of `syn::Ident` for each named field in the struct, whilst filtering out fields /// that should not be hashed. /// /// # Panics /// Any unnamed struct field (like in a tuple struct) will raise a panic at compile time. fn get_hashable_fields<'a>(struct_data: &'a syn::DataStruct) -> Vec<&'a syn::Ident> { get_hashable_fields_and_their_caches(struct_data) .into_iter() .map(|(ident, _, _)| ident) .collect() } /// Return a Vec of the hashable fields of a struct, and each field's type and optional cache field. fn get_hashable_fields_and_their_caches<'a>( struct_data: &'a syn::DataStruct, ) -> Vec<(&'a syn::Ident, syn::Type, Option)> { struct_data .fields .iter() .filter_map(|f| { if should_skip_hashing(&f) { None } else { let ident = f .ident .as_ref() .expect("tree_hash_derive only supports named struct fields"); let opt_cache_field = get_cache_field_for(&f); Some((ident, f.ty.clone(), opt_cache_field)) } }) .collect() } /// Parse the cached_tree_hash attribute for a field. /// /// Extract the cache field name from `#[cached_tree_hash(cache_field_name)]` /// /// Return `Some(cache_field_name)` if the field has a cached tree hash attribute, /// or `None` otherwise. fn get_cache_field_for<'a>(field: &'a syn::Field) -> Option { use syn::{MetaList, NestedMeta}; let parsed_attrs = cached_tree_hash_attr_metas(&field.attrs); if let [Meta::List(MetaList { nested, .. })] = &parsed_attrs[..] { nested.iter().find_map(|x| match x { NestedMeta::Meta(Meta::Word(cache_field_ident)) => Some(cache_field_ident.clone()), _ => None, }) } else { None } } /// Process the `cached_tree_hash` attributes from a list of attributes into structured `Meta`s. fn cached_tree_hash_attr_metas(attrs: &[Attribute]) -> Vec { attrs .iter() .filter(|attr| attr.path.is_ident("cached_tree_hash")) .flat_map(|attr| attr.parse_meta()) .collect() } /// Parse the top-level cached_tree_hash struct attribute. /// /// Return the type from `#[cached_tree_hash(type = "T")]`. /// /// **Panics** if the attribute is missing or the type is malformed. fn parse_cached_tree_hash_struct_attrs(attrs: &[Attribute]) -> syn::Type { use syn::{Lit, MetaList, MetaNameValue, NestedMeta}; let parsed_attrs = cached_tree_hash_attr_metas(attrs); if let [Meta::List(MetaList { nested, .. })] = &parsed_attrs[..] { let eqns = nested .iter() .flat_map(|x| match x { NestedMeta::Meta(Meta::NameValue(MetaNameValue { ident, lit: Lit::Str(lit_str), .. })) => Some((ident.to_string(), lit_str.clone())), _ => None, }) .collect::>(); eqns["type"] .clone() .parse() .expect("valid type required for cache") } else { panic!("missing attribute `#[cached_tree_hash(type = ...)` on struct"); } } /// Returns true if some field has an attribute declaring it should not be hashed. /// /// The field attribute is: `#[tree_hash(skip_hashing)]` fn should_skip_hashing(field: &syn::Field) -> bool { field.attrs.iter().any(|attr| { attr.path.is_ident("tree_hash") && attr.tts.to_string().replace(" ", "") == "(skip_hashing)" }) } /// Implements `tree_hash::TreeHash` for some `struct`. /// /// Fields are hashed in the order they are defined. #[proc_macro_derive(TreeHash, attributes(tree_hash))] pub fn tree_hash_derive(input: TokenStream) -> TokenStream { let item = parse_macro_input!(input as DeriveInput); let name = &item.ident; let (impl_generics, ty_generics, where_clause) = &item.generics.split_for_impl(); let struct_data = match &item.data { syn::Data::Struct(s) => s, _ => panic!("tree_hash_derive only supports structs."), }; let idents = get_hashable_fields(&struct_data); let output = quote! { impl #impl_generics tree_hash::TreeHash for #name #ty_generics #where_clause { fn tree_hash_type() -> tree_hash::TreeHashType { tree_hash::TreeHashType::Container } fn tree_hash_packed_encoding(&self) -> Vec { unreachable!("Struct should never be packed.") } fn tree_hash_packing_factor() -> usize { unreachable!("Struct should never be packed.") } fn tree_hash_root(&self) -> Vec { let mut leaves = Vec::with_capacity(4 * tree_hash::HASHSIZE); #( leaves.append(&mut self.#idents.tree_hash_root()); )* tree_hash::merkle_root(&leaves, 0) } } }; output.into() } #[proc_macro_derive(SignedRoot, attributes(signed_root))] pub fn tree_hash_signed_root_derive(input: TokenStream) -> TokenStream { let item = parse_macro_input!(input as DeriveInput); let name = &item.ident; let (impl_generics, ty_generics, where_clause) = &item.generics.split_for_impl(); let struct_data = match &item.data { syn::Data::Struct(s) => s, _ => panic!("tree_hash_derive only supports structs."), }; let idents = get_signed_root_named_field_idents(&struct_data); let num_elems = idents.len(); let output = quote! { impl #impl_generics tree_hash::SignedRoot for #name #ty_generics #where_clause { fn signed_root(&self) -> Vec { let mut leaves = Vec::with_capacity(#num_elems * tree_hash::HASHSIZE); #( leaves.append(&mut self.#idents.tree_hash_root()); )* tree_hash::merkle_root(&leaves, 0) } } }; output.into() } /// Derive the `CachedTreeHash` trait for a type. /// /// Requires two attributes: /// * `#[cached_tree_hash(type = "T")]` on the struct, declaring /// that the type `T` should be used as the tree hash cache. /// * `#[cached_tree_hash(f)]` on each struct field that makes use /// of the cache, which declares that the sub-cache for that field /// can be found in the field `cache.f` of the struct's cache. #[proc_macro_derive(CachedTreeHash, attributes(cached_tree_hash))] pub fn cached_tree_hash_derive(input: TokenStream) -> TokenStream { let item = parse_macro_input!(input as DeriveInput); let name = &item.ident; let cache_type = parse_cached_tree_hash_struct_attrs(&item.attrs); let (impl_generics, ty_generics, where_clause) = &item.generics.split_for_impl(); let struct_data = match &item.data { syn::Data::Struct(s) => s, _ => panic!("tree_hash_derive only supports structs."), }; let fields = get_hashable_fields_and_their_caches(&struct_data); let caching_field_ty = fields .iter() .filter(|(_, _, cache_field)| cache_field.is_some()) .map(|(_, ty, _)| ty); let caching_field_cache_field = fields .iter() .flat_map(|(_, _, cache_field)| cache_field.as_ref()); let tree_hash_root_expr = fields .iter() .map(|(field, _, caching_field)| match caching_field { None => quote! { self.#field.tree_hash_root() }, Some(caching_field) => quote! { self.#field .recalculate_tree_hash_root(&mut cache.#caching_field)? .as_bytes() .to_vec() }, }); let output = quote! { impl #impl_generics cached_tree_hash::CachedTreeHash<#cache_type> for #name #ty_generics #where_clause { fn new_tree_hash_cache() -> #cache_type { // Call new cache for each sub type #cache_type { initialized: true, #( #caching_field_cache_field: <#caching_field_ty>::new_tree_hash_cache() ),* } } fn recalculate_tree_hash_root( &self, cache: &mut #cache_type) -> std::result::Result { let mut leaves = vec![]; #( leaves.append(&mut #tree_hash_root_expr); )* Ok(Hash256::from_slice(&tree_hash::merkle_root(&leaves, 0))) } } }; output.into() } fn get_signed_root_named_field_idents(struct_data: &syn::DataStruct) -> Vec<&syn::Ident> { struct_data .fields .iter() .filter_map(|f| { if should_skip_signed_root(&f) { None } else { Some(match &f.ident { Some(ref ident) => ident, _ => panic!("tree_hash_derive only supports named struct fields"), }) } }) .collect() } fn should_skip_signed_root(field: &syn::Field) -> bool { field.attrs.iter().any(|attr| { attr.path.is_ident("signed_root") && attr.tts.to_string().replace(" ", "") == "(skip_hashing)" }) }