* Add first efforts at broadcast
* Tidy
* Move broadcast code to client
* Progress with broadcast impl
* Rename to address change
* Fix compile errors
* Use `while` loop
* Tidy
* Flip broadcast condition
* Switch to forgetting individual indices
* Always broadcast when the node starts
* Refactor into two functions
* Add testing
* Add another test
* Tidy, add more testing
* Tidy
* Add test, rename enum
* Rename enum again
* Tidy
* Break loop early
* Add V15 schema migration
* Bump schema version
* Progress with migration
* Update beacon_node/client/src/address_change_broadcast.rs
Co-authored-by: Michael Sproul <micsproul@gmail.com>
* Fix typo in function name
---------
Co-authored-by: Michael Sproul <micsproul@gmail.com>
* add historical summaries
* fix tree hash caching, disable the sanity slots test with fake crypto
* add ssz static HistoricalSummary
* only store historical summaries after capella
* Teach `UpdatePattern` about Capella
* Tidy EF tests
* Clippy
Co-authored-by: Michael Sproul <michael@sigmaprime.io>
- there was a bug in responding range blob requests where we would incorrectly label the first slot of an epoch as a non-skipped slot if it were skipped. this bug did not exist in the code for responding to block range request because the logic error was mitigated by defensive coding elsewhere
- there was a bug where a block received during range sync without a corresponding blob (and vice versa) was incorrectly interpreted as a stream termination
- RPC size limit fixes.
- Our blob cache was dead locking so I removed use of it for now.
- Because of our change in finalized sync batch size from 2 to 1 and our transition to using exact epoch boundaries for batches (rather than one slot past the epoch boundary), we need to sync finalized sync to 2 epochs + 1 slot past our peer's finalized slot in order to finalize the chain locally.
- use fork context bytes in rpc methods on both the server and client side
* Add API endpoint to count statuses of all validators (#3756)
* Delete DB schema migrations for v11 and earlier (#3761)
Co-authored-by: Mac L <mjladson@pm.me>
Co-authored-by: Michael Sproul <michael@sigmaprime.io>
## Proposed Changes
Now that the Gnosis merge is scheduled, all users should have upgraded beyond Lighthouse v3.0.0. Accordingly we can delete schema migrations for versions prior to v3.0.0.
## Additional Info
I also deleted the state cache stuff I added in #3714 as it turned out to be useless for the light client proofs due to the one-slot offset.
## Summary
The deposit cache now has the ability to finalize deposits. This will cause it to drop unneeded deposit logs and hashes in the deposit Merkle tree that are no longer required to construct deposit proofs. The cache is finalized whenever the latest finalized checkpoint has a new `Eth1Data` with all deposits imported.
This has three benefits:
1. Improves the speed of constructing Merkle proofs for deposits as we can just replay deposits since the last finalized checkpoint instead of all historical deposits when re-constructing the Merkle tree.
2. Significantly faster weak subjectivity sync as the deposit cache can be transferred to the newly syncing node in compressed form. The Merkle tree that stores `N` finalized deposits requires a maximum of `log2(N)` hashes. The newly syncing node then only needs to download deposits since the last finalized checkpoint to have a full tree.
3. Future proofing in preparation for [EIP-4444](https://eips.ethereum.org/EIPS/eip-4444) as execution nodes will no longer be required to store logs permanently so we won't always have all historical logs available to us.
## More Details
Image to illustrate how the deposit contract merkle tree evolves and finalizes along with the resulting `DepositTreeSnapshot`
![image](https://user-images.githubusercontent.com/37123614/151465302-5fc56284-8a69-4998-b20e-45db3934ac70.png)
## Other Considerations
I've changed the structure of the `SszDepositCache` so once you load & save your database from this version of lighthouse, you will no longer be able to load it from older versions.
Co-authored-by: ethDreamer <37123614+ethDreamer@users.noreply.github.com>
## Issue Addressed
Closes https://github.com/sigp/lighthouse/issues/2371
## Proposed Changes
Backport some changes from `tree-states` that remove duplicated calculations of the `proposer_index`.
With this change the proposer index should be calculated only once for each block, and then plumbed through to every place it is required.
## Additional Info
In future I hope to add more data to the consensus context that is cached on a per-epoch basis, like the effective balances of validators and the base rewards.
There are some other changes to remove indexing in tests that were also useful for `tree-states` (the `tree-states` types don't implement `Index`).
## Proposed Changes
Improve the payload pruning feature in several ways:
- Payload pruning is now entirely optional. It is enabled by default but can be disabled with `--prune-payloads false`. The previous `--prune-payloads-on-startup` flag from #3565 is removed.
- Initial payload pruning on startup now runs in a background thread. This thread will always load the split state, which is a small fraction of its total work (up to ~300ms) and then backtrack from that state. This pruning process ran in 2m5s on one Prater node with good I/O and 16m on a node with slower I/O.
- To work with the optional payload pruning the database function `try_load_full_block` will now attempt to load execution payloads for finalized slots _if_ pruning is currently disabled. This gives users an opt-out for the extensive traffic between the CL and EL for reconstructing payloads.
## Additional Info
If the `prune-payloads` flag is toggled on and off then the on-startup check may not see any payloads to delete and fail to clean them up. In this case the `lighthouse db prune_payloads` command should be used to force a manual sweep of the database.
## Issue Addressed
Closes https://github.com/sigp/lighthouse/issues/3556
## Proposed Changes
Delete finalized execution payloads from the database in two places:
1. When running the finalization migration in `migrate_database`. We delete the finalized payloads between the last split point and the new updated split point. _If_ payloads are already pruned prior to this then this is sufficient to prune _all_ payloads as non-canonical payloads are already deleted by the head pruner, and all canonical payloads prior to the previous split will already have been pruned.
2. To address the fact that users will update to this code _after_ the merge on mainnet (and testnets), we need a one-off scan to delete the finalized payloads from the canonical chain. This is implemented in `try_prune_execution_payloads` which runs on startup and scans the chain back to the Bellatrix fork or the anchor slot (if checkpoint synced after Bellatrix). In the case where payloads are already pruned this check only imposes a single state load for the split state, which shouldn't be _too slow_. Even so, a flag `--prepare-payloads-on-startup=false` is provided to turn this off after it has run the first time, which provides faster start-up times.
There is also a new `lighthouse db prune_payloads` subcommand for users who prefer to run the pruning manually.
## Additional Info
The tests have been updated to not rely on finalized payloads in the database, instead using the `MockExecutionLayer` to reconstruct them. Additionally a check was added to `check_chain_dump` which asserts the non-existence or existence of payloads on disk depending on their slot.
## Proposed Changes
This PR has two aims: to speed up attestation packing in the op pool, and to fix bugs in the verification of attester slashings, proposer slashings and voluntary exits. The changes are bundled into a single database schema upgrade (v12).
Attestation packing is sped up by removing several inefficiencies:
- No more recalculation of `attesting_indices` during packing.
- No (unnecessary) examination of the `ParticipationFlags`: a bitfield suffices. See `RewardCache`.
- No re-checking of attestation validity during packing: the `AttestationMap` provides attestations which are "correct by construction" (I have checked this using Hydra).
- No SSZ re-serialization for the clunky `AttestationId` type (it can be removed in a future release).
So far the speed-up seems to be roughly 2-10x, from 500ms down to 50-100ms.
Verification of attester slashings, proposer slashings and voluntary exits is fixed by:
- Tracking the `ForkVersion`s that were used to verify each message inside the `SigVerifiedOp`. This allows us to quickly re-verify that they match the head state's opinion of what the `ForkVersion` should be at the epoch(s) relevant to the message.
- Storing the `SigVerifiedOp` on disk rather than the raw operation. This allows us to continue track the fork versions after a reboot.
This is mostly contained in this commit 52bb1840ae5c4356a8fc3a51e5df23ed65ed2c7f.
## Additional Info
The schema upgrade uses the justified state to re-verify attestations and compute `attesting_indices` for them. It will drop any attestations that fail to verify, by the logic that attestations are most valuable in the few slots after they're observed, and are probably stale and useless by the time a node restarts. Exits and proposer slashings and similarly re-verified to obtain `SigVerifiedOp`s.
This PR contains a runtime killswitch `--paranoid-block-proposal` which opts out of all the optimisations in favour of closely verifying every included message. Although I'm quite sure that the optimisations are correct this flag could be useful in the event of an unforeseen emergency.
Finally, you might notice that the `RewardCache` appears quite useless in its current form because it is only updated on the hot-path immediately before proposal. My hope is that in future we can shift calls to `RewardCache::update` into the background, e.g. while performing the state advance. It is also forward-looking to `tree-states` compatibility, where iterating and indexing `state.{previous,current}_epoch_participation` is expensive and needs to be minimised.
## Issue Addressed
N/A
## Proposed Changes
Fix clippy lints for latest rust version 1.63. I have allowed the [derive_partial_eq_without_eq](https://rust-lang.github.io/rust-clippy/master/index.html#derive_partial_eq_without_eq) lint as satisfying this lint would result in more code that we might not want and I feel it's not required.
Happy to fix this lint across lighthouse if required though.
## Issue Addressed
Closes https://github.com/sigp/lighthouse/issues/3241
Closes https://github.com/sigp/lighthouse/issues/3242
## Proposed Changes
* [x] Implement logic to remove equivocating validators from fork choice per https://github.com/ethereum/consensus-specs/pull/2845
* [x] Update tests to v1.2.0-rc.1. The new test which exercises `equivocating_indices` is passing.
* [x] Pull in some SSZ abstractions from the `tree-states` branch that make implementing Vec-compatible encoding for types like `BTreeSet` and `BTreeMap`.
* [x] Implement schema upgrades and downgrades for the database (new schema version is V11).
* [x] Apply attester slashings from blocks to fork choice
## Additional Info
* This PR doesn't need the `BTreeMap` impl, but `tree-states` does, and I don't think there's any harm in keeping it. But I could also be convinced to drop it.
Blocked on #3322.
## Issue Addressed
Add a flag that optionally enables unrealized vote tracking. Would like to test out on testnets and benchmark differences in methods of vote tracking. This PR includes a DB schema upgrade to enable to new vote tracking style.
Co-authored-by: realbigsean <sean@sigmaprime.io>
Co-authored-by: Paul Hauner <paul@paulhauner.com>
Co-authored-by: sean <seananderson33@gmail.com>
Co-authored-by: Mac L <mjladson@pm.me>
## Issue Addressed
#3031
## Proposed Changes
Updates the following API endpoints to conform with https://github.com/ethereum/beacon-APIs/pull/190 and https://github.com/ethereum/beacon-APIs/pull/196
- [x] `beacon/states/{state_id}/root`
- [x] `beacon/states/{state_id}/fork`
- [x] `beacon/states/{state_id}/finality_checkpoints`
- [x] `beacon/states/{state_id}/validators`
- [x] `beacon/states/{state_id}/validators/{validator_id}`
- [x] `beacon/states/{state_id}/validator_balances`
- [x] `beacon/states/{state_id}/committees`
- [x] `beacon/states/{state_id}/sync_committees`
- [x] `beacon/headers`
- [x] `beacon/headers/{block_id}`
- [x] `beacon/blocks/{block_id}`
- [x] `beacon/blocks/{block_id}/root`
- [x] `beacon/blocks/{block_id}/attestations`
- [x] `debug/beacon/states/{state_id}`
- [x] `debug/beacon/heads`
- [x] `validator/duties/attester/{epoch}`
- [x] `validator/duties/proposer/{epoch}`
- [x] `validator/duties/sync/{epoch}`
Updates the following Server-Sent Events:
- [x] `events?topics=head`
- [x] `events?topics=block`
- [x] `events?topics=finalized_checkpoint`
- [x] `events?topics=chain_reorg`
## Backwards Incompatible
There is a very minor breaking change with the way the API now handles requests to `beacon/blocks/{block_id}/root` and `beacon/states/{state_id}/root` when `block_id` or `state_id` is the `Root` variant of `BlockId` and `StateId` respectively.
Previously a request to a non-existent root would simply echo the root back to the requester:
```
curl "http://localhost:5052/eth/v1/beacon/states/0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/root"
{"data":{"root":"0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"}}
```
Now it will return a `404`:
```
curl "http://localhost:5052/eth/v1/beacon/blocks/0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/root"
{"code":404,"message":"NOT_FOUND: beacon block with root 0xaaaa…aaaa","stacktraces":[]}
```
In addition to this is the block root `0x0000000000000000000000000000000000000000000000000000000000000000` previously would return the genesis block. It will now return a `404`:
```
curl "http://localhost:5052/eth/v1/beacon/blocks/0x0000000000000000000000000000000000000000000000000000000000000000"
{"code":404,"message":"NOT_FOUND: beacon block with root 0x0000…0000","stacktraces":[]}
```
## Additional Info
- `execution_optimistic` is always set, and will return `false` pre-Bellatrix. I am also open to the idea of doing something like `#[serde(skip_serializing_if = "Option::is_none")]`.
- The value of `execution_optimistic` is set to `false` where possible. Any computation that is reliant on the `head` will simply use the `ExecutionStatus` of the head (unless the head block is pre-Bellatrix).
Co-authored-by: Paul Hauner <paul@paulhauner.com>
## Overview
This rather extensive PR achieves two primary goals:
1. Uses the finalized/justified checkpoints of fork choice (FC), rather than that of the head state.
2. Refactors fork choice, block production and block processing to `async` functions.
Additionally, it achieves:
- Concurrent forkchoice updates to the EL and cache pruning after a new head is selected.
- Concurrent "block packing" (attestations, etc) and execution payload retrieval during block production.
- Concurrent per-block-processing and execution payload verification during block processing.
- The `Arc`-ification of `SignedBeaconBlock` during block processing (it's never mutated, so why not?):
- I had to do this to deal with sending blocks into spawned tasks.
- Previously we were cloning the beacon block at least 2 times during each block processing, these clones are either removed or turned into cheaper `Arc` clones.
- We were also `Box`-ing and un-`Box`-ing beacon blocks as they moved throughout the networking crate. This is not a big deal, but it's nice to avoid shifting things between the stack and heap.
- Avoids cloning *all the blocks* in *every chain segment* during sync.
- It also has the potential to clean up our code where we need to pass an *owned* block around so we can send it back in the case of an error (I didn't do much of this, my PR is already big enough 😅)
- The `BeaconChain::HeadSafetyStatus` struct was removed. It was an old relic from prior merge specs.
For motivation for this change, see https://github.com/sigp/lighthouse/pull/3244#issuecomment-1160963273
## Changes to `canonical_head` and `fork_choice`
Previously, the `BeaconChain` had two separate fields:
```
canonical_head: RwLock<Snapshot>,
fork_choice: RwLock<BeaconForkChoice>
```
Now, we have grouped these values under a single struct:
```
canonical_head: CanonicalHead {
cached_head: RwLock<Arc<Snapshot>>,
fork_choice: RwLock<BeaconForkChoice>
}
```
Apart from ergonomics, the only *actual* change here is wrapping the canonical head snapshot in an `Arc`. This means that we no longer need to hold the `cached_head` (`canonical_head`, in old terms) lock when we want to pull some values from it. This was done to avoid deadlock risks by preventing functions from acquiring (and holding) the `cached_head` and `fork_choice` locks simultaneously.
## Breaking Changes
### The `state` (root) field in the `finalized_checkpoint` SSE event
Consider the scenario where epoch `n` is just finalized, but `start_slot(n)` is skipped. There are two state roots we might in the `finalized_checkpoint` SSE event:
1. The state root of the finalized block, which is `get_block(finalized_checkpoint.root).state_root`.
4. The state root at slot of `start_slot(n)`, which would be the state from (1), but "skipped forward" through any skip slots.
Previously, Lighthouse would choose (2). However, we can see that when [Teku generates that event](de2b2801c8/data/beaconrestapi/src/main/java/tech/pegasys/teku/beaconrestapi/handlers/v1/events/EventSubscriptionManager.java (L171-L182)) it uses [`getStateRootFromBlockRoot`](de2b2801c8/data/provider/src/main/java/tech/pegasys/teku/api/ChainDataProvider.java (L336-L341)) which uses (1).
I have switched Lighthouse from (2) to (1). I think it's a somewhat arbitrary choice between the two, where (1) is easier to compute and is consistent with Teku.
## Notes for Reviewers
I've renamed `BeaconChain::fork_choice` to `BeaconChain::recompute_head`. Doing this helped ensure I broke all previous uses of fork choice and I also find it more descriptive. It describes an action and can't be confused with trying to get a reference to the `ForkChoice` struct.
I've changed the ordering of SSE events when a block is received. It used to be `[block, finalized, head]` and now it's `[block, head, finalized]`. It was easier this way and I don't think we were making any promises about SSE event ordering so it's not "breaking".
I've made it so fork choice will run when it's first constructed. I did this because I wanted to have a cached version of the last call to `get_head`. Ensuring `get_head` has been run *at least once* means that the cached values doesn't need to wrapped in an `Option`. This was fairly simple, it just involved passing a `slot` to the constructor so it knows *when* it's being run. When loading a fork choice from the store and a slot clock isn't handy I've just used the `slot` that was saved in the `fork_choice_store`. That seems like it would be a faithful representation of the slot when we saved it.
I added the `genesis_time: u64` to the `BeaconChain`. It's small, constant and nice to have around.
Since we're using FC for the fin/just checkpoints, we no longer get the `0x00..00` roots at genesis. You can see I had to remove a work-around in `ef-tests` here: b56be3bc2. I can't find any reason why this would be an issue, if anything I think it'll be better since the genesis-alias has caught us out a few times (0x00..00 isn't actually a real root). Edit: I did find a case where the `network` expected the 0x00..00 alias and patched it here: 3f26ac3e2.
You'll notice a lot of changes in tests. Generally, tests should be functionally equivalent. Here are the things creating the most diff-noise in tests:
- Changing tests to be `tokio::async` tests.
- Adding `.await` to fork choice, block processing and block production functions.
- Refactor of the `canonical_head` "API" provided by the `BeaconChain`. E.g., `chain.canonical_head.cached_head()` instead of `chain.canonical_head.read()`.
- Wrapping `SignedBeaconBlock` in an `Arc`.
- In the `beacon_chain/tests/block_verification`, we can't use the `lazy_static` `CHAIN_SEGMENT` variable anymore since it's generated with an async function. We just generate it in each test, not so efficient but hopefully insignificant.
I had to disable `rayon` concurrent tests in the `fork_choice` tests. This is because the use of `rayon` and `block_on` was causing a panic.
Co-authored-by: Mac L <mjladson@pm.me>
## Proposed Changes
Reduce post-merge disk usage by not storing finalized execution payloads in Lighthouse's database.
⚠️ **This is achieved in a backwards-incompatible way for networks that have already merged** ⚠️. Kiln users and shadow fork enjoyers will be unable to downgrade after running the code from this PR. The upgrade migration may take several minutes to run, and can't be aborted after it begins.
The main changes are:
- New column in the database called `ExecPayload`, keyed by beacon block root.
- The `BeaconBlock` column now stores blinded blocks only.
- Lots of places that previously used full blocks now use blinded blocks, e.g. analytics APIs, block replay in the DB, etc.
- On finalization:
- `prune_abanonded_forks` deletes non-canonical payloads whilst deleting non-canonical blocks.
- `migrate_db` deletes finalized canonical payloads whilst deleting finalized states.
- Conversions between blinded and full blocks are implemented in a compositional way, duplicating some work from Sean's PR #3134.
- The execution layer has a new `get_payload_by_block_hash` method that reconstructs a payload using the EE's `eth_getBlockByHash` call.
- I've tested manually that it works on Kiln, using Geth and Nethermind.
- This isn't necessarily the most efficient method, and new engine APIs are being discussed to improve this: https://github.com/ethereum/execution-apis/pull/146.
- We're depending on the `ethers` master branch, due to lots of recent changes. We're also using a workaround for https://github.com/gakonst/ethers-rs/issues/1134.
- Payload reconstruction is used in the HTTP API via `BeaconChain::get_block`, which is now `async`. Due to the `async` fn, the `blocking_json` wrapper has been removed.
- Payload reconstruction is used in network RPC to serve blocks-by-{root,range} responses. Here the `async` adjustment is messier, although I think I've managed to come up with a reasonable compromise: the handlers take the `SendOnDrop` by value so that they can drop it on _task completion_ (after the `fn` returns). Still, this is introducing disk reads onto core executor threads, which may have a negative performance impact (thoughts appreciated).
## Additional Info
- [x] For performance it would be great to remove the cloning of full blocks when converting them to blinded blocks to write to disk. I'm going to experiment with a `put_block` API that takes the block by value, breaks it into a blinded block and a payload, stores the blinded block, and then re-assembles the full block for the caller.
- [x] We should measure the latency of blocks-by-root and blocks-by-range responses.
- [x] We should add integration tests that stress the payload reconstruction (basic tests done, issue for more extensive tests: https://github.com/sigp/lighthouse/issues/3159)
- [x] We should (manually) test the schema v9 migration from several prior versions, particularly as blocks have changed on disk and some migrations rely on being able to load blocks.
Co-authored-by: Paul Hauner <paul@paulhauner.com>
## Proposed Changes
Increase the default `--slots-per-restore-point` to 8192 for a 4x reduction in freezer DB disk usage.
Existing nodes that use the previous default of 2048 will be left unchanged. Newly synced nodes (with or without checkpoint sync) will use the new 8192 default.
Long-term we could do away with the freezer DB entirely for validator-only nodes, but this change is much simpler and grants us some extra space in the short term. We can also roll it out gradually across our nodes by purging databases one by one, while keeping the Ansible config the same.
## Additional Info
We ignore a change from 2048 to 8192 if the user hasn't set the 8192 explicitly. We fire a debug log in the case where we do ignore:
```
DEBG Ignoring slots-per-restore-point config in favour of on-disk value, on_disk: 2048, config: 8192
```